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Some results on quasi-Frobenius rings

Zhanmin Zhu

Abstract. We give some new characterizations of quasi-Frobenius rings by the
generalized injectivity of rings. Some characterizations give affirmative answers
to some open questions about quasi-Frobenius rings; and some characterizations
improve some results on quasi-Frobenius rings.
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Classification: 16D50, 16L30, 16L60, 16P60, 16P70

1. Introduction

Throughout this article, R is an associative ring with an identity. For a subset
X of R, the right and left annihilators of X are denoted by r(X) and l(X),
respectively. The Jacobson radical of R is denoted by J or J(R). The right and
left socle of R are denoted by Sr and Sl respectively, the right singular ideal of R
is denoted by Zr. Concepts which have not been explained can be found in [7].

Recall that a ring R is quasi-Frobenius if it is right or left self-injective and
right or left artinian or, equivalently, if it is right or left self-injective and right or
left noetherian. The concept of self-injective rings is generalized by many authors.
For example, a ring R is called right n-injective [5] if every R-homomorphism from
an n-generated right ideal of R to R extends to an endomorphism of R. A right
1-injective ring is also said to be right P -injective [5]. A ring R is said to be right

f.g self-injective [1] if it is right n-injective for each positive integer n. A ring R is
called right YJ-injective [10], [12] or right generalized principally injective (briefly
right GP-injective) [3], [4] if, for any 0 6= a ∈ R, there exists a positive integer
n such that an 6= 0 and any right R-homomorphism from anR to R extends to
an endomorphism of R. A ring R is called right JGP-injective [9] if, for any
0 6= a ∈ J(R), there exists a positive integer n such that an 6= 0 and any right
R-homomorphism from anR to R extends to an endomorphism of R. A ring R
is called right mininjective [6] if every R-homomorphism from a minimal right
ideal of R to R extends to an endomorphism of R. A ring R is called right AGP-

injective [15] if, for any 0 6= a ∈ R, there exist a positive integer n and a left ideal
Xan such that an 6= 0 and lr(an) = Ran⊕Xan . It is easy to see that the following
implications hold:

DOI 10.14712/1213-7243.2015.202



148 Zhu Z.

right self-injective ⇒ right f.g self-injective ⇒ right 2-injective ⇒ right P-
injective ⇒ right YJ-injective ⇒ right JGP-injective.

By [9, Proposition 3.4], we have JGP-injective ⇒ right mininjective. And by
[12, Lemma 3], we have right YJ-injective ⇒ right AGP-injective.

In this paper, we shall give some new characterizations of quasi-Frobenius
rings, some conditions will be given under which a right 2-injective (resp., minin-
jective, YJ-injective, AGP-injective, JGP-injective) ring is quasi-Frobenius. We
shall show that: (1) a two-sided YJ-injective ring with maximum condition on
right annihilators is quasi-Frobenius (see Corollary 2.2), which gives an affirma-
tive answer to an open question asked by Roger Yue Chi Ming in [13, Question 4];
(2) a right Johns, right YJ-injective ring is quasi-Frobenius (see Corollary 2.4),
which gives an affirmative answer to an open question asked by Roger Yue Chi
Ming in [13, Question 3]; (3) a right 2-injective, right perfect, left pseudo-coherent
ring is quasi-Frobenius (see Theorem 2.4), which improves a result on f.g self-
injective rings obtained by Björk, see [1, Theorem 4.3].

2. Results

The following result is known, see [6, Corollary 4.8] or [11, Theorem 2], here
we give a new proof.

Lemma 2.1. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a right artinian, two-sided mininjective ring.

Proof: (1) ⇒ (2) It is clear.
(2) ⇒ (1) Since R is right artinian, it is a semiprimary ring with maximum con-

dition on right annihilators. Since R is two-sided mininjective, we have Sr = Sl

by [6, Corollary 2.6]. Note that a semiprimary ring is semilocal, by [7, Theo-
rem 5.52], Sr is finite dimensional as a left R-module. So, by [2, Lemma 6], R
is left artinian. Thus, R is a two-sided artinian, two-sided mininjective ring, by
Ikeda’s theorem (see [7, Theorem 2.30]), R is a quasi-Frobenius ring. �

Recall that a ring R is called a right minannihilator ring [6] if every minimal
right ideal of R is a right annihilator.

Theorem 2.2. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a right artinian, right mininjective right minannihilator ring.

Proof: (1) ⇒ (2) It is obvious.
(2) ⇒ (1) Let K = Ra be a minimal left ideal. Since R is right artinian, aR

contains a minimal right ideal I = bR. Since l(a) is a maximal left ideal, l(a) =
l(b). Now aR ⊆ rl(a) = rl(b) = rl(bR) = bR because R is a right minannihilator
ring, so aR = bR, which shows that rl(a) = aR. By [6, Lemma 1.1], R is left
mininjective. Thus, R is a two-sided mininjective right artinian ring, and so it is
quasi-Frobenius by Lemma 2.1. �
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Recall that a ring R is called right GC2 [9], [15] if every right ideal that is
isomorphic to R is itself a direct summand; a ring R is called a right Goldie

ring [7] if it has the maximum condition on right annihilators and RR is finite
dimensional.

Theorem 2.3. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a two-sided mininjective, right AGP-injective ring with maximum

condition on right annihilators;

(3) R is a left mininjective, right JGP-injective, right Goldie, right GC2 ring;

(4) R is a semiprimary, two-sided mininjective ring with maximum condition

on right annihilators.

Proof: (1) ⇒ (2), and (1) ⇒ (3) are obvious.
(2) ⇒ (4) Since R is a right AGP-injective ring with maximum condition on

right annihilators, it is semiprimary by [15, Corollary 1.6], and so (4) follows.
(3) ⇒ (4) By the assumptions, R is right GC2 and right finite dimensional,

so R is semilocal by [9, Corollary 2.5]. Since R is right JGP-injective, it is right
mininjective by [9, Proposition 3.4], and J ⊆ Zr by [9, Theorem 3.6]. Since R has
maximum condition on right annihilators, Zr is nilpotent by [2, Lemma 1], and
so J is nilpotent. Thus, R is semiprimary, and (4) follows.

(4) ⇒ (1) Since R is two-sided mininjective, by [6, Theorem 1.14(4)], Sr = Sl.
Observing that semiprimary ring is semilocal, by [7, Theorem 5.52], Sr is finite
dimensional as a left R-module. So, by [2, Lemma 6], R is left artinian. Thus,
R is a two-sided mininjective left artinian ring, and hence it is a quasi-Frobenius
ring by Lemma 2.1. �

Our next Corollary 2.4 is an inference of Theorem 2.3 or [16, Theorem 2.5],
it improves some results in [8, Corollary 1], [13, Theorem 11], [14, Corollary 5,
Theorem 7], and gives an affirmative answer to an open question asked by Yue
Chi Ming for the case of general rings, see [13, Question 4].

Corollary 2.4. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a two-sided YJ-injective ring with maximum condition on right an-

nihilators.

Recall that a ring R is said to be a right Johns ring if it is right noetherian and
every right ideal is a right annihilator, it is easy to see that a right Johns ring is left
P-injective with maximum condition on right annihilators. By Theorem 2.3(2),
we have the following corollary, which gives an affirmative answer to an open
question asked by Yue Chi Ming in [13, Question 3].

Corollary 2.5. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a right Johns, right YJ-injective ring.
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Lemma 2.6. If R is a left Kasch ring, then J = lr(J).

Proof: Let T be any maximal left ideal of R. Then J ⊆ T , and hence lr(J) ⊆

lr(T ). But R is a left Kasch ring, by [7, Proposition 1.44], we have lr(T ) = T .
And so lr(J) ⊆ T . This follows that lr(J) ⊆ J , and therefore J = lr(J), as
required. �

Lemma 2.7. If R is a ring with the minimum condition on left annihilators of

finite subsets of R, then every left annihilator of a subset of R is a left annihilator

of a finite subset of R.

Proof: It is obvious. �

Recall that a ring R is called left pseudo-coherent [1] if the left annihilator of
every finite subsets of R is finitely generated; a ring R is right minfull [6] if it is
semiperfect, right mininjective and Soc(eR) 6= 0 for each local idempotent e ∈ R.

Theorem 2.8. The following statements are equivalent for a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a right 2-injective left perfect, left pseudo-coherent ring;

(3) R is a right 2-injective, right perfect, left pseudo-coherent ring;

(4) R is a right 2-injective left perfect, right pseudo-coherent ring.

Proof: (1) ⇒ (2)–(4) It is clear.
(2) ⇒ (1) Since R is left perfect, it is right semiartinian by [7, Theorem B.32],

and so Sr E RR. Thus it is right minfull. By [7, Theorem 3.12(1)], R is left and
right Kasch. Since R is left Kasch, we have J = lr(J) by Lemma 2.6. Since
R is right Kasch and right 2-injective, we have that R is left P-injective by [5,
Lemma 2.2], and hence R is left mininjective. By [7, Theorem 5.52], r(J) = Sl

is a finitely generated right ideal. But R is left pseudo-coherent, J is a finitely
generated left ideal, and so J is nilpotent by [7, Lemma 5.64] since J is left T-
nilpotent. Thus, R is semiprimary, and consequently right perfect. Since J/J2

is a finitely generated left R-module, by Osofsky’s Lemma [7, Lemma 6.50], R is
left artinian, and therefore R is a quasi-Frobenius ring by Lemma 2.1.

(3) ⇒ (1) Since R is right perfect, R has the minimum condition on finitely
generated left ideals. Noting that R is left pseudo-coherent, every left annihilator
of a finite subset of R is a finitely generated left ideal. So R has the minimum
condition on left annihilators of finite subsets of R. By Lemma 2.7, every left
annihilator of a subset of R is a left annihilator of a finite subset of R, and thus
every left annihilator in R is a finitely generated left ideal. It follows that R has
the minimum condition on left annihilators and so R has maximum condition on
right annihilators. By [8, Corollary 3], R is a quasi-Frobenius ring.

(4) ⇒ (1) Since R is left perfect and right 2-injective, we have that R is two-
sided Kasch and two-sided mininjective by the proof of (2) ⇒ (1). Since R is
right Kasch, we have J = rl(J) by Lemma 2.6. Since R is semilocal and right
mininjective, by [7, Theorem 5.52], l(J) = Sr is a finitely generated left ideal. But
R is right pseudo-coherent, J is a finitely generated right ideal, and then J/J2 is
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a finitely generated right R-module. Now, by Osofsky’s Lemma [7, Lemma 6.50]
again, we have that R is right artinian, and therefore R is a quasi-Frobenius ring
by [8, Corollary 3] again. �

Corollary 2.9 ([1, Theorem 4.3]). The following statements are equivalent for

a ring R:

(1) R is a quasi-Frobenius ring;

(2) R is a right f.g self-injective, right perfect, left pseudo-coherent ring.
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