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EVALUATION OF DECISION-MAKING UNITS
BASED ON THE WEIGHT-OPTIMIZED DEA MODEL

Jiasen Sun, Rui Yang, Xiang Ji and Jie Wu

Data envelopment analysis (DEA) is a methodology for measuring best relative efficiencies
of a group of peer decision-making units (DMUs) that take multiple inputs to produce multiple
outputs. However, the traditional DEA model only aims to maximize the efficiency of the
DMU under evaluation. This usually leads to very small weights (even zero weights) being
assigned to some inputs or outputs. Correspondingly, these inputs or outputs have little or
even no contribution to efficiency, which is unfair and irrational. The purpose of this paper
is to address this problem. Two new weight-optimized models are proposed based upon the
perspective of cross evaluation. Using the results of an Advanced Manufacturing Technology
(AMT) example, it is found that all AMTs are fully sorted. The decision maker can easily
choose the best AMT. In addition, unreasonable weights of AMTs are effectively avoided.

Keywords: data envelopment analysis (DEA), efficiency, weight-optimized model, cross
evaluation

Classification: 90B50

1. INTRODUCTION

Data envelopment analysis (DEA) is a famous non-parametric mathematical program-
ming method that is used extensively to evaluate relative effectiveness of decision making
units (DMUs) in macroeconomics [13], and is particularly adept at estimating efficiency
of multiple input and multiple output production activities [51]. The DEA was formally
proposed by Charnes et al. [6]. The multiplier model proposed in that famous paper,
together with its dual envelopment model, is called the CCR model. Banker et al. [3]
later generalized the CCR model by taking variable returns to scale into consideration;
their model is called the BCC model. Compared to other efficiency evaluation methods,
such as the Stochastic Frontier Analysis (SFA) or Free Disposal Hull (FDH), the DEA
has a significant advantage that it does not need any a priori assumptions about weights,
production functions, and probability distributions [19]. Accordingly, the DEA is more
frequently used in various fields: supply chain management [28], performance evaluation
[37], resource allocation [23], procurement management [24], strategic management [7]
etc. The conventional DEA model, such as the CCR model or BCC model, is a self-
evaluated mode [26]. The self-evaluated DEA model lets each DMU use most favorable
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weights to evaluate its efficiency. This may lead to the situation when more than one
DMU is evaluated as efficient, and such DEA-efficient DMUs cannot be further distin-
guished [42]. Therefore, the lack of effective distinction is one of the main drawbacks of
the DEA [43]. There is also another significant shortcoming of the fact that the DEA
allows each DMU to be evaluated using its most favorable weights. This leads to that
the weights obtained by the DEA are usually inconsistent with the practical production
process [44].

In order to improve the capability of the DEA in discriminating efficient DMUs,
Sexton et al. [36] proposed the cross-efficiency DEA method by integrating the concept
of peer evaluation into the classical DEA framework. According to the cross-efficiency
DEA, each DMU has n-1 peer-evaluated efficiency scores obtained by using other DMUs’
most favorable weights, besides the self-evaluated efficiency score obtained using its own
most favorable weight. Then, by making an aggregation of all these efficiency scores,
the cross-efficiency score for each DMU is obtained. Compared to the self-evaluated
DEA, the cross-efficiency DEA has at least the following three advantages. First, the
cross-efficiency DEA can produce a total ranking of all DMUs in most scenarios [18].
Second, the cross-efficiency DEA can eliminate unreasonable weight schemes without
any a priori assumptions on weight restrictions [44]. Third, the cross-efficiency DEA is
more effective in the distinction of good and poor performers among DMUs [38]. Due
to these advantages, the cross-efficiency DEA is widely used for measuring of nursing
houses’ performance [36], ranking and selecting R&D projects [21], judging suitable
computer control machines [40], performance evaluation and ranking in Olympic Games
[47], supplier selection in public procurement [20], allocation of emission permits in paper
mills [39], measuring airlines’ energy efficiency [15] etc.

Although the cross-efficiency DEA has several advantages, and is widely used in
various fields, it also has two main drawbacks. One is that the cross-efficiency method
has the non-uniqueness problem of optimal weights [36]. In details, since the optimal
weights derived by the conventional DEA models are generally not unique, the cross-
efficiency scores are somewhat arbitrarily generated [16]. As suggested by Sexton et al.
[36], this problem can be solved by integrating secondary goals into the cross-efficiency
DEA framework. Based on this idea, numerous secondary goal cross-efficiency DEA
models were developed. For instance, Wu et al. [50] proposed a secondary goal that
optimizes the ranking position of the DMU under evaluation. Lim [29] suggested the
minimization (or maximization) of the best (or worst) cross-efficiency scores of peer
DMUs as the secondary goal. Maddahi et al. [32] used the optimization of proportional
weights as the secondary goal. Among secondary goal cross-efficiency DEA models, the
most commonly used ones are the benevolent and aggressive models developed by Doyle
and Green [17]. The main idea of the benevolent (respectively, aggressive) model is to
select for each DMU a set of optimal weights that makes all the other DMUs’ cross-
efficiency scores as large (respectively, small) as possible, keeping its own score optimal.
Doyle and Green’s [17] model was then extended by Liang et al. [26] with a variety of
secondary objective functions being integrated into the cross-efficiency DEA framework.
Apart from using secondary goal cross-efficiency DEA models to deal with the non-
uniqueness problem, there are also several other methods. For example, Cook and Zhu
[11] developed a units-invariant multiplicative DEA model to compute cross-efficiency
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scores. The main advantage of the model is that it can generate cross-efficiency scores
directly, without the need to identify each DMU’s unique set of optimal weights.

The other main drawback of the cross-efficiency DEA is that derived cross-efficiency
scores are in general not Pareto optimal [27]. To deal with this problem, Liang et
al. [27] extended the classical cross-efficiency DEA model into a game-efficiency DEA
model. They showed that the cross-efficiency scores derived by their game-efficiency
DEA model constitute a Nash equilibrium for all DMUs. Since no DMU can gain
anything by deviating from the Nash equilibrium alone, the evaluation results derived
by their method are acceptable. There are also some attempts to overcome this drawback
by selecting a set of common weights to compute cross-efficiency scores. For example,
by integrating a cooperative game into the DEA framework, Wu et al. [48] obtained a
set of common weights associated with the Shapley value vector.

Based on the literature review presented above, most cross efficiency models only
focus on how to increase or decrease efficiency of other DMUs. In other words, these
studies only care about DMUs’ efficiency, ignoring their weight assignment [22]. This
may generate assignment results with extreme weights. Specifically, the DEA often
assigns weights to a few inputs and outputs in the process of evaluation, ignoring the
remaining inputs and outputs by assigning them very small (or even zero) weights [33].
With this scenario, in the configurations of weighted inputs and outputs, some input
or output variables with zero weights do not contribute to the efficiency of evaluated
DMUs. The input or output variables with large weights may play decisive roles, which
is inconsistent with the production process or prior knowledge [35]. In actual production
processes, each variable (either input or output) is of critical importance, and none of
them can be ignored. Accordingly, in the cross efficiency model, any weighted input
or output value can be neither too large nor too small. Otherwise, the main credit for
efficiency is assigned to an input or output variable whose weight is too large, and there
is no credit assigned to others [49].

The purpose of this paper is to present a weight-optimized DEA model to solve the
irrational weight problem of DEA models. The weight-optimized model is also further
extended to a cross-efficiency model. Compared to existing DEA models, there are three
major advantages of the proposed models. First, the proposed cross efficiency model can
reduce differences among weighted inputs and outputs while guaranteeing the maximum
self-assessment efficiency of DMUs under evaluation. Second, zero weights of inputs and
outputs can be effectively avoided. That is to say, each input or output in the proposed
models can be used as much as possible during the evaluation process. Third, taking into
account issues similar to those considered in our study, Ramn et al. [33, 34] proposed
a multiplier bound approach for assessment of efficiency without slacks. Different from
their study, our models choose profiles with similar weighted inputs and outputs, not
weight. In addition, their model is a nonlinear programming problem, which makes
calculations more difficult. Since our models are built upon the classical cross-efficiency
DEA framework and the concept of an ideal DMU, we consider only the CRS condition in
this research. Specifically, there are two reasons making it unreasonable to consider the
case of the VRS in our research scenario. First, integrating the concept of the VRS into
the classical cross-efficiency DEA framework may yield negative cross-efficiency scores
[12, 31]. To the best of our knowledge, only two types of methods were proposed to deal
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with this problem. One is to add an exogenous constraint restricting cross-efficiency
scores from being negative [47], the other is to make suitable data transformation [30].
Unfortunately, neither of these two methods is appropriate in our research scenario.
Second, considering the VRS with an ideal DMU is difficult [42]. In fact, when using an
ideal DMU in the cross-efficiency DEA, the number of extreme efficient DMUs (for the
definition of an extreme efficient DMU, please see [4]) degenerates to one [46]. And it is
unreasonable to build a VRS frontier with only one extreme efficient DMU.

The rest of this paper is organized as follows. Section 2 presents a brief introduction
of the DEA and cross-efficiency evaluation method. Section 3 provides a detailed process
and analysis of the new proposed models. A case study is presented in Section 4, and
conclusion is made in Section 5.

2. THE TRADITIONAL DEA MODEL AND CROSS-EFFICIENCY EVALUATION
METHOD

Data envelopment analysis (DEA), first developed by Charnes et al. [6], is a non-
parametric programming tool for assessing efficiency of a set of homogenous decision
making units (DMUs). It was proved to be an effective approach for assessing and
ranking DMUs, and was extensively applied in fields of engineering and management.

Using the traditional notation, assume that there is a set of n DMUs. Each DMUj

(j = 1, 2, . . . , n) produces s different outputs using m different inputs, which are denoted
as yrj > 0 (r = 1, 2, . . . , s) and xij > 0 (i = 1, 2, . . . ,m), respectively. If the multipliers
or prices ur, vr are associated with yrj and xij , respectively, then the efficiency of
DMUj can be expressed as the ratio of the weighted outputs to weighted inputs (e. g.∑

r uryrj/
∑

i vrxij) according to conventional benefit/cost theory. This benefit/cost
ratio is derived from the standard engineering ratio of productivity.

In the case of a known multiplier, Charnes et al. [6] proposed to derive appropriate
multipliers for a given DMU by solving a particular programming problem shown in (1).
Specifically, for any evaluated DMUd (d = 1, 2, . . . , n), the efficiency score Edd can be
calculated using the following CCR model.

max
s∑

r=1

µrdyrd = Edd

s.t.

m∑
i=1

ωidxij −
s∑

r=1

µrdyrj ≥ 0, j = 1, 2, . . . , n,

m∑
i=1

ωidxid = 1,

ωid ≥ ε, i = 1, 2, . . . ,m,
µrd ≥ ε, r = 1, 2, . . . , s.

(1)

Model (1) is referred to as the CCR (Charnes, Cooper and Rhodes) model, and works
for constant returns to scale (CRS). In model (1), DMUd is under evaluation, and ωid

and µrd are the weights assigned to the inputs and outputs, respectively. By duality,
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model (1) is equivalent to the linear programming model (2).

min θ − ε(
m∑

i=1

s−i +
s∑

r=1

s−r )

s.t.

n∑
j=1

λjxij + s−i = θxid, i = 1, 2, . . . ,m,

n∑
j=1

λjyrj + s−r ≥ yrd, r = 1, 2, . . . , s,

λj ≥ 0, j = 1, 2, . . . , n.

(2)

Figure 1 provides a geometric interpretation of the CRS model (1). Here both Fig-
ure 1 and Table 1 are sourced from Cook and Seiford [9]. This figure provides an
illustration of seven DMUs with two inputs [9], and a single common output for all
DMUs. By solving model (1) or (2), four DMUs (A, B, C and D) are efficient, i. e.
θA = θB = θC = θD = 1. For DMU E, the efficiency is 0.833, and its projected score
in the frontier is θ∗ExE (DMU B). Therefore, DMU B is considered as a benchmark for
DMU E. For DMU G, its projected point in the frontier is point K, then DMUs B and
C can provide a benchmark for DMU G.

A B C D E F G
X1 3 5 8 12 6 8 10
X2 90 70 55 50 84 80 60

Tab. 1. Input data of seven DMUs.

Fig. 1. Two input illustration of the DEA.
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From this example, it can be seen that the traditional DEA model only classifies
DMUs into two groups, namely, efficient and inefficient DMUs. Efficient DMUs (the
efficiency is one) cannot be distinguished any further. To increase the power of dis-
crimination of efficient DMUs, the cross-efficiency evaluation method was developed as
a DEA extension technique [36].

For eachDMUd (d = 1, 2, . . . , n), we can obtain a group of optimal weights ω∗1d, . . . , ω
∗
md,

µ∗1d, . . . , µ
∗
sd by solving the above model (2), and the cross-efficiency of each DMUj using

the weights of DMUd, namely Edj , can be calculated as follows:

Edj =

s∑
r=1

µ∗rdyrj

m∑
i=1

ω∗idxij

, d, j = 1, 2, . . . , n. (3)

For each DMUj (j = 1, 2, . . . , n), the average of all Edj (d = 1, 2, . . . , n), namely,
Ej = 1

n

∑n
d=1Edj (j = 1, 2, . . . , n), can be treated as a new efficiency measure, namely,

the cross-efficiency score of DMUj .

3. THE PROPOSED DEA MODEL

3.1. The weight-optimized DEA model based on the ideal DMU

The traditional DEA model above allows each DMU to measure efficiency using its
favorable weights in order to obtain maximum efficiency. This may lead to a major
problem. Very small (or even zero) weights are assigned to some inputs or outputs,
and very large weights to other inputs or outputs. To address this problem, we propose
the weight-optimized DEA model based on the optimal solution. The proposed model
includes two steps. In the first step, a weight restriction of the virtual positive ideal
DMU is obtained. In the second step, the weight restriction is incorporated into the
DEA model for each DMU. The positive ideal DMU is defined as follows.

Definition 3.1. The positive ideal DMU is defined as DMUI = (xi,min, yr,max), where
xi,min = min{xij |j = 1, 2, . . . , n} (i =, 1, 2, . . . ,m), and yr,max = max{yrj |j = 1, 2, . . . , n}
(r =, 1, 2, . . . , s). The smallest data in each row of the input matrix is selected to be the
input of the virtual positive ideal DMU, and the largest data in each row of the output
matrix is selected to be the output of the virtual positive ideal DMU.

Based on this definition, the weight restriction of the positive ideal DMU is obtained
by the following model.
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min β

s.t.

m∑
i=1

ωixij −
s∑

r=1

µryrj ≥ 0, j = 1, 2, . . . , n,

m∑
i=1

ωixi,min = 1,

s∑
r=1

µryr,max = 1,

|µryr,max − 1/s| ≤ β, r = 1, 2, . . . , s,
|ωixi,min − 1/m| ≤ β, i = 1, 2, . . . ,m,
ωi ≥ ε, i = 1, 2, . . . ,m,
µr ≥ ε, r = 1, 2, . . . , s.

(4)

In model (4), each weighted input or output component is considered as an individual.
What we are concerned with is whether each weighted input or output component makes
a fair contribution to the efficiency of the evaluated DMUd. Accordingly, two ideal
scores (1/s and 1/m) are introduced for each weighted input and output component.
The main idea of model (4) is to minimize the absolute distance between the weighted
input (output) component and ideal score. The absolute distance is defined as βd. The
smaller βd, the less the difference between weighted inputs (or outputs). This means
that all weighted input and output components can make fair contributions to DMUd

in the process of efficiency evaluation.

Theorem 3.2. Model (4) is equivalent to the following model:

min β

s.t.

m∑
i=1

ωixi,min = 1,

s∑
r=1

µryr,max = 1,

|µryr,max − 1/s| ≤ β, r = 1, 2, . . . , s,
|ωixi,min − 1/m| ≤ β, i = 1, 2, . . . ,m,
ωi ≥ ε, i = 1, 2, . . . ,m,
µr ≥ ε, r = 1, 2, . . . , s.

(5)

P r o o f . Assume that (ω∗i , µ
∗
r) is the optimal solution of model (5). From the definition

of the positive ideal DMU, we have yr,max ≥ yrj and xi,min ≤ xij . From the first and
second constraints of model (5), we have µ∗ryr,max ≥ 1 ≥ µ∗ryrj and ω∗i xi,min ≤ 1 ≤ ω∗i xij .
Then, the constraint

∑m
i=1 ωixij −

∑s
r=1 µryrj ≥ 0, (j = 1, 2, . . . , n), can be obtained.

Therefore, models (4) and (5) are equivalent. �
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Model (4) is nonlinear, and hence is difficult to solve. It can be transformed into the
following linear model:

min β

s.t.

m∑
i=1

ωixij −
s∑

r=1

µryrj ≥ 0, j = 1, 2, . . . , n,

m∑
i=1

ωixi,min = 1,

s∑
r=1

µryr,max = 1,

µryr,max − 1/s ≤ β, r = 1, 2, . . . , s,
− µryr,max + 1/s ≤ β, r = 1, 2, . . . , s,
ωixi,min − 1/m ≤ β, i = 1, 2, . . . ,m,
− ωixi,min + 1/m ≤ β, i = 1, 2, . . . ,m,
ωi ≥ ε, i = 1, 2, . . . ,m,
µr ≥ ε, r = 1, 2, . . . , s.

(6)

Let DMUd (d = 1, 2, . . . , n) be the DMU that needs to be evaluated. Then, its efficiency
score can be determined by the following programming problem:

max θd =
s∑

r=1

µrdyrd

s.t.

m∑
i=1

ωidxij −
s∑

r=1

µrdyrj ≥ 0, j = 1, 2, . . . , n,

m∑
i=1

ωidxid = 1,

|µrdyrd −
s∑

r=1

µrdyrd/s| ≤ β∗, r = 1, 2, . . . , s,

|ωidxid − 1/m| ≤ β∗, i = 1, 2, . . . ,m,
ωi ≥ ε, i = 1, 2, . . . ,m,
µr ≥ ε, r = 1, 2, . . . , s.

(7)

In model (7), β∗ is obtained from model (4). Compared to the traditional DEA
model, model (7) incorporates the third and fourth constraints into the formulation.
As a consequence, with this model, each DMUd is assessed with the constraint that
weighted inputs or outputs cannot be much different. Model (7) is also nonlinear, but
it is not difficult to transform it into a linear model.
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3.2. Cross efficiency evaluation method based on the weight-optimized
DEA model

In model (7), each DMU is evaluated in the self-evaluation mode, and chooses its fa-
vorable weights. However, Doyle and Green [17] pointed out that the peer-evaluation
mode is also important and common, and proposed the cross-efficiency evaluation model.
The main idea of the cross-efficiency evaluation is to use the DEA in the peer evalua-
tion mode instead of the self-evaluation mode. There are at least three advantages of
cross-efficiency evaluation, such as ranking DMUs in a unique order [36], eliminating
unrealistic weight schemes [36], and effectively differentiating between good and poor
performers [5]. These advantages make the method widely applied for evaluating DMUs.

The purpose of this section is to extend the weight-optimized DEA model to the
cross-efficiency evaluation model. The proposed model can not only reduce differences
in weighted inputs and outputs during the evaluation process, but also rank DMUs in the
peer-evaluation mode. The proposed cross-efficiency evaluation model can be written as
follows:

max
n∑

j=1

s∑
r=1

µrjyrj −
n∑

j=1

m∑
i=1

ωijxij

s.t.

m∑
i=1

ωidxij −
s∑

r=1

µrdyrj ≥ 0, j = 1, 2, . . . , n,

θ∗d

m∑
i=1

ωidxid −
s∑

r=1

µrdyrd = 0,

|µrdyrd −
s∑

r=1

µrdyrd/s| ≤ β∗, r = 1, 2, . . . , s,

|ωidxid − 1/m| ≤ β∗, i = 1, 2, . . . ,m,
ωi ≥ ε, i = 1, 2, . . . ,m,
µr ≥ ε, r = 1, 2, . . . , s,

(8)

where θ∗d obtained from model (7) is the self-evaluation efficiency of DMUd, β∗ is the
weight restriction obtained by model (4), and ω1d, . . . , ωmd, µ1d, . . . , µsd are the variables
for which the problem needs to be solved. The model (8) needs to be solved n times,
i. e. for each DMU.

The DEA method mainly has two orientation modes, which are the input and output
orientation (10). In the envelope model, the input orientation mode is to appropriately
adjust inputs under fixed outputs. In the multiplier model, the input orientation mode
is expressed as maximizing the ratio of the DMU’s sum of weighted outputs to its sum
of weighted inputs [8, 14]. According to the definition, it is clear that the proposed
weight-optimized DEA models are input orientation modes.

If we denote the optimal solution of model (7) by (ω∗1d, . . . , ω
∗
md, µ

∗
1d, . . . , µ

∗
sd) for the

corresponding DMUd, then the cross-efficiency of a given DMUj with the profile of
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weights provided by DMUd can be obtained as follows:

Edj =

s∑
r=1

µ∗rdyrj

m∑
i=1

ω∗idxij

. (9)

Therefore, the cross-efficiency score of DMUj is the average of these cross-efficiencies

Ej =
1
n

j∑
d=1

E∗
dj , j = 1, 2, . . . , n. (10)

This measures the average efficiency according to all DMUs.

4. ILLUSTRATIONS

To illustrate the proposed methods, we consider an Advanced Manufacturing Technology
(AMT) example with data presented in Table 2 (Table 2-5 are all contained in the
appendix). The data is from Khouja [25]. In this example, there are 27 industrial
robots that need to be evaluated and selected. The inputs are the cost (in $10,000) and
repeatability (in millimeters). The outputs include the load capacity (in kilograms) and
velocity (in meters per second).

We evaluate and rank the DMUs using models (1), (7) and (8). In order to compare
with other models, the slacks-based measure (SBM) and super DEA models, the two
most commonly used models, are also employed to evaluate these DMUs. The SBM
model was proposed by Tone [41], and the super DEA model was proposed by Andersen
and Petersen [2]. The results of the SBM and super DEA models are listed in the
third and fourth columns. By comparing the results, several findings can be identified.
First, the CCR efficiency scores show that nine DMUs are identified to be efficient,
which cannot be discriminated any further. Second, comparing the results of the CCR
and SBM models, it is noted that the efficiency scores obtained by the SBM model are
smaller than those obtained by the CCR model, but there are all nine efficient DMUs.
These two findings indicate that the traditional CCR and SBM models fail to completely
discriminate all DMUs. Third, from the data of the fourth column, it is noted that the
super efficiency of all DMUs can be completely ranked. However, according to Table 5,
we find that the super model still has unreasonable extreme weight results. Fourth, the
fourth and sixth columns list the efficiency scores of models (7) and (8), respectively, in
which only one DMU is efficient. Other DMUs are all inefficient. This indicates that all
DMUs can be fully discriminated. Fifth, comparing to the traditional models, ranking
results obtained from the proposed models are significantly different. The reason is that
each input or output is given a non-zero weight, so that it can be used as much as
possible in efficiency evaluation. Finally, the difference in results between model (7) and
(8) is that ranks of some DMUs are changed. This difference results from the evaluation
mode. Model (7) is the self-evaluation mode, and model (8) is the peer-evaluation mode.

Tables 4 and 5 provide the results for weights of inputs and outputs using different
models. In Table 4, the weights are obtained using the traditional CCR and super DEA
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models. It is noted that there are many zero weights. For example, DMU2 has a very
small weight under the CCR or super DEA model, but its CCR or super DEA efficiency
is 0.9038. This shows that this DMU allocate unreasonable weights to itself in order to
pursue maximum efficiency. Similar situations can also be seen for DMU5, DMU6, and
DMU22. In Table 5, we see that there are no zero weights. This guarantees that each
input or output makes an important contribution to the process of efficiency evaluation.

From Table 3, we can find that there are several special DMUs, such as DMU4 and
DMU20. These two DMUs are efficient in the traditional CCR model, but they are
almost the worst units in model (8). This is because the self-evaluation CCR model
allows each DMU to rate its efficiency using the most favorable weights, generating
unrealistic weights. For example, under the self-evaluation CCR model, the weights
of DMU20 are 6.1477, 0.0082, 0.0235 and 1.2059. Then, the results for the weighted
inputs and outputs of DMU20 are 0.9836, 0.0164, 0.03525 and 0.9647. This indicates
that only input 1 and output 2 play major roles in the efficiency, while input 2 and
output 1 made little contribution to the efficiency. The results for the weighted inputs
and outputs of DMU20 are 0.5, 0.5, 0.0945 and 0.09452, using the weights obtained by
model (8). The results show that the contribution of each input (or output) variable
is equivalent. Similar findings can also be obtained by DMU4. These findings indicate
that the optimized DEA models proposed in this paper ensure that each weighted input
and output component is given power as much as possible to make equally important
contributions to the efficiency. Thus, weighted inputs and outputs are more balanced.

5. CONCLUSIONS

As an effective method of evaluation and ranking of DMUs, the DEA and its extended
cross-efficiency evaluation are applied in a wide variety of fields. However, the unrea-
sonable weight problem reduces the usefulness of the cross-efficiency evaluation method.
Due to the weight flexibility problem of the traditional DEA, zero weights are usually
assigned to some inputs or outputs. This may lead to that the efficiency scores of some
DMUs do not use all inputs or outputs. The purpose of this paper is to solve this
problem. Two new models are proposed. From the results of an AMT example, the
models show superiority in effectively avoiding unreasonable weights, and also offer a
unique ranking of all AMTs. Therefore, the models proposed in this paper can be seen
as improvements and extensions of traditional DEA models, making them meaningful
contributions to the DEA research.

The proposed models have at least four advantages. First, the proposed models do
not need any prior information on weight restrictions from application area experts,
avoiding the impact of subjective factors on the results of evaluation. Second, the
proposed cross efficiency models can not only guarantee self-assessment efficiency of
DMUs under evaluation, but also reduce differences in weighted inputs and outputs
during the evaluation process. Third, the proposed models can effectively reduce the
number of zero weights of inputs and outputs. In other words, all inputs and outputs
in this newly proposed model have played contributions in the process of efficiency
evaluation can be used as much as possible. Finally, the results of an AMT example
show that our weight-optimized DEA models have strong power in discriminating among
DMUs, and also show strong applicability, which provides more choices for decision-
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makers.
This work can be extended along at least two directions. On one hand, our models

do not consider the situation when input and/or output data is stochastic, which may
often be seen in real-world applications. Further research may consider this problem,
and propose new DEA methods according to the stochastic or fuzzy theory. On the
other hand, the model proposed in this paper can also be extended for other application
fields, such as supplier selection, investment selection and so on.

6. APPENDIX

Robots
Inputs Outputs

Cost Repeatability Load capacity Velocity
($10000) (mm) (Kg) (m/s)

1 7.2 0.15 60 1.35
2 4.8 0.05 6 1.1
3 5 1.27 45 1.27
4 7.2 0.025 1.5 0.66
5 9.6 0.25 50 0.05
6 1.07 0.1 1 0.3
7 1.76 0.1 5 1
8 3.2 0.1 15 1
9 6.72 0.2 10 1.11
10 2.4 0.05 6 1
11 2.88 0.5 30 0.9
12 6.9 1 13.6 0.15
13 3.2 0.05 10 1.2
14 4 0.05 30 1.2
15 3.68 1 47 1
16 6.88 1 80 1
17 8 2 15 2
18 6.3 0.2 10 1
19 0.94 0.05 10 0.3
20 0.16 2 1.5 0.8
21 2.81 2 27 1.7
22 3.8 0.05 0.9 1
23 1.25 0.1 2.5 0.5
24 1.37 0.1 2.5 0.5
25 3.63 0.2 10 1
26 5.3 1.27 70 1.25
27 4 2.03 205 0.75

Tab. 2. Data for 27 industrial robots [25].
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Robot CCR efficiency SBM Super Model (7) Rank Model (8) Rank
1 1 1.0000 1.0118 0.6400 3 0.6933 2
2 0.9038 0.3010 0.9038 0.3010 16 0.3697 9
3 0.5289 0.4687 0.5288 0.4661 9 0.2416 19
4 1 1.0000 1.1000 0.1171 22 0.1473 24
5 0.5924 0.0233 0.5924 0.0220 27 0.2921 18
6 0.4824 0.1199 0.4824 0.1158 23 0.2020 22
7 1 1.0000 1.3217 0.3851 11 0.5428 7
8 0.7825 0.5741 0.7825 0.5469 6 0.5308 8
9 0.3814 0.2071 0.3814 0.2071 20 0.2336 20
10 1 1.0000 1.0432 0.4301 10 0.5830 5
11 0.6713 0.6394 0.6713 0.6348 4 0.3624 10
12 0.1024 0.0505 0.1024 0.0505 26 0.0574 27
13 1 1.0000 1.0909 0.5625 5 0.6236 4
14 1 1.0000 1.7692 1 1 0.8781 1
15 0.6125 0.5526 0.6125 0.5227 7 0.2968 17
16 0.6035 0.4407 0.6035 0.3349 13 0.3464 11
17 0.4045 0.1232 0.4045 0.1079 24 0.1243 25
18 0.3652 0.2107 0.3652 0.2107 19 0.2277 21
19 1 1.0000 1.0208 0.7508 2 0.6800 3
20 1 1.0000 8.2647 0.1891 21 0.0800 26
21 0.8515 0.6346 0.8515 0.3035 15 0.1859 23
22 0.8289 0.0594 0.8289 0.0594 25 0.3208 14
23 0.6943 0.3290 0.6943 0.2569 17 0.3309 12
24 0.6361 0.2876 0.6361 0.2375 18 0.3143 16
25 0.5533 0.3219 0.5533 0.3219 14 0.3214 13
26 0.5810 0.5353 0.5810 0.4714 8 0.3158 15
27 1 1.0000 3.8804 0.3604 12 0.5599 6

Tab. 3. Evaluation results for 27 industrial robots.
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Robot Weight of Input1 Weight of Input2 Weight of Output1 Weight of Output2
Model (1) Super Model (1) Super Model (1) Super Model (1) Super

1 0.1056 0.1078 1.5998 1.4904 0.0166 0.0169 0.0026 1E-06
2 0.0088 0.0088 19.1549 19.1550 1E-06 1E-06 0.8216 0.8216
3 0.1726 0.1726 0.1078 0.1078 0.0033 0.0033 0.2978 0.2978
4 0.0034 1E-06 39.0201 39.9997 0.0021 1E-06 1.5103 1.6666
5 0.0770 0.0770 1.0447 1.0447 0.0118 0.0118 1E-06 1E-06
6 0.8811 0.8811 0.5727 0.5727 1E-06 1E-06 1.6079 1.6079
7 0.3380 0.5406 4.0513 0.4854 0.0021 1E-06 0.9896 1.3217
8 0.2650 0.2650 1.5187 1.5187 0.0164 0.0164 0.5362 0.5362
9 0.1098 0.1098 1.3095 1.3095 0.0048 0.0048 0.3002 0.3002
10 0.2960 0.3147 5.7924 4.8920 0.0105 1E-06 0.9371 1.0432
11 0.1898 0.1898 0.9066 0.9066 0.0113 0.0113 0.3681 0.3681
12 0.0497 0.0497 0.6574 0.6574 0.0075 0.0075 0.0065 0.0065
13 0.0822 0.1136 14.7372 12.7264 0.0008 1E-06 0.8271 0.9091
14 0.0068 1E-06 19.4523 19.9999 0.0208 0.0385 0.3145 0.5128
15 0.2323 0.2323 0.1451 0.1451 0.0045 0.0045 0.4008 0.4008
16 0.0497 0.0497 0.6581 0.6581 0.0075 0.0075 0.0065 0.0065
17 0.1081 0.1081 0.0675 0.0675 0.0021 0.0021 0.1866 0.1866
18 0.1151 0.1151 1.3728 1.3728 0.0051 0.0051 0.3147 0.3147
19 0.7949 0.8342 5.0563 4.3162 0.0606 0.0530 1.3119 1.6347
20 6.1477 6.2500 0.0082 1E-06 0.0235 1E-06 1.2059 10.3308
21 0.2463 0.2463 0.1539 0.1539 0.0048 0.0048 0.4251 0.4251
22 0.0089 0.0089 19.3250 19.3251 1E-06 1E-06 0.8289 0.8289
23 0.7619 0.7619 0.4760 0.4760 0.0148 0.0148 1.3147 1.3147
24 0.6981 0.6981 0.4361 0.4361 0.0135 0.0135 1.2046 1.2046
25 0.2094 0.2094 1.1998 1.1998 0.0130 0.0130 0.4236 0.4236
26 0.0880 0.0880 0.4202 0.4202 0.0053 0.0053 0.1706 0.1706
27 0.2461 0.2500 0.0076 1E-06 0.0048 0.0189 0.0273 1E-06

Tab. 4. Weight results for 27 industrial robots from the traditional

DEA model.
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Robot Weight of Input1 Weight of Input2 Weight of Output1 Weight of Output2
1 0.0694 0.3333 0.0533 0.2370
2 0.1042 1.0000 0.2508 0.1368
3 0.1000 0.0394 0.0518 0.1835
4 0.0694 2.0000 0.3904 0.0887
5 0.0521 0.2000 0.0022 0.2204
6 0.4673 0.5000 0.5792 0.1931
7 0.2841 0.5000 0.3851 0.1926
8 0.1563 0.5000 0.1823 0.2734
9 0.0744 0.2500 0.1036 0.0933
10 0.2083 1.0000 0.3584 0.2151
11 0.1736 0.1000 0.1058 0.3527
12 0.0725 0.0500 0.0186 0.1683
13 0.1563 1.0000 0.2812 0.2344
14 0.1250 1.0000 0.1667 0.4167
15 0.1359 0.0500 0.0556 0.2613
16 0.0727 0.0500 0.0209 0.1674
17 0.0625 0.0250 0.0360 0.0270
18 0.0794 0.2500 0.1053 0.1053
19 0.5319 1.0000 0.3754 1.2513
20 3.1250 0.0250 0.6302 0.1182
21 0.1779 0.0250 0.0562 0.0893
22 0.1316 1.0000 0.3302 0.0297
23 0.4000 0.5000 0.5139 0.2569
24 0.3650 0.5000 0.4750 0.2375
25 0.1377 0.2500 0.1609 0.1609
26 0.0943 0.0394 0.0337 0.1886
27 0.1250 0.0246 0.0088 0.2402

Tab. 5. Weight results for 27 industrial robots from the proposed

model (8).
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