Xiaoying Du On the exponential diophantine equation  $x^y + y^x = z^z$ 

Czechoslovak Mathematical Journal, Vol. 67 (2017), No. 3, 645-653

Persistent URL: http://dml.cz/dmlcz/146851

# Terms of use:

© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

# ON THE EXPONENTIAL DIOPHANTINE EQUATION $x^y + y^x = z^z$

XIAOYING DU, Jinzhong

Received November 28, 2015. First published July 11, 2017.

Abstract. For any positive integer D which is not a square, let  $(u_1, v_1)$  be the least positive integer solution of the Pell equation  $u^2 - Dv^2 = 1$ , and let h(4D) denote the class number of binary quadratic primitive forms of discriminant 4D. If D satisfies  $2 \nmid D$  and  $v_1h(4D) \equiv 0 \pmod{D}$ , then D is called a singular number. In this paper, we prove that if (x, y, z) is a positive integer solution of the equation  $x^y + y^x = z^z$  with  $2 \mid z$ , then maximum  $\max\{x, y, z\} < 480000$  and both x, y are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions (x, y, z).

Keywords: exponential diophantine equation; upper bound for solutions; singular number  $MSC \ 2010$ : 11D61

#### 1. INTRODUCTION

Let  $\mathbb{Z}$ ,  $\mathbb{N}$  be the sets of all integers and positive integers, respectively. In recent years, the solutions of circulant exponential diophantine equations have been investigated in many papers (see [7], [8], [9], [14], [15], [16]). In 2013, using upper bounds of linear forms in *p*-adic logarithms, Zhang, Luo and Yuan in [15] proved that the equation

(1.1) 
$$x^y + y^x = z^z, \quad x, y, z \in \mathbb{N},$$

has only finitely many solutions (x, y, z), and all solutions (x, y, z) of (1.1) satisfy  $z < 2.8 \times 10^9$ . In addition, they proposed the following conjecture:

**Conjecture.** The equation (1.1) has no solution (x, y, z).

This work is supported by the P.S.F. (2016JQ1040) and N.S.F. (11526162) of P. R. China.

Obviously, the upper bound given in [15] is far too large for any practical purpose. In 2014, Deng and Zhang in [5] proved that (1.1) has no solutions (x, y, z) with x and y being odd primes. Very recently, Wu in [13] proved that (1.1) has no solutions (x, y, z) with  $2 \nmid z$ . His proof relied upon a deep result concerning the existence of primitive divisors of Lucas and Lehmer numbers due to Bilu, Hanrot and Voutier, see [1].

In this paper we shall discuss the solutions of (1.1) with 2 | z. This is the remaining and the more difficult part of (1.1). First we give a better upper bound for the solutions of (1.1) as follows:

**Theorem 1.1.** All solutions (x, y, z) of (1.1) with  $2 \mid z$  satisfy  $\max\{x, y, z\} < 480000$ .

Let D be a positive integer which is not a square. It is well known that the Pell equation

$$(1.2) u^2 - Dv^2 = 1, \quad u, v \in \mathbb{Z}.$$

has positive integer solutions (u, v). Further, let  $(u_1, v_1)$  be the least positive integer solution of (1.2), and let h(4D) denote the class number of binary quadratic primitive forms of discriminant 4D. If D satisfies

(1.3) 
$$2 \nmid D, \quad v_1h(4D) \equiv 0 \pmod{D},$$

then D is called a singular number. We give a relationship between the solutions of (1.1) and singular numbers as follows:

**Theorem 1.2.** If (x, y, z) is a solution of (1.1) with 2 | z, then both x and y are singular numbers.

Thus, combining the computational results of h(4D) and  $v_1$  (see [3], [10], [12]) with our theorems, one can possibly verify the above mentioned conjecture.

### 2. Proof of Theorem 1.1

**Lemma 2.1.** Let  $a_1$ ,  $a_2$  be coprime nonzero integers with  $a_1 \equiv a_2 \equiv 1 \pmod{4}$ , and let  $b_1$ ,  $b_2$  be positive integers. Further, let  $\Lambda = a_1^{b_1} - a_2^{b_2}$ , and let  $v_2(\Lambda)$  denote the degree of 2 in  $\Lambda$ . If  $\min\{|a_1|, |a_2|\} > 3$ , then we have

$$\begin{aligned} w_2(\Lambda) < 19.5540(\log|a_1|)(\log|a_2|) \\ & \times \left( \max\left\{ 12\log 2, 0.4 + \log(2\log 2) + \log\left(\frac{b_1}{\log|a_2|} + \frac{b_2}{\log|a_1|}\right) \right\} \right)^2. \end{aligned}$$

Proof. This is a special case of Theorem 2 of [4] for p = 2. Since  $\min\{|a_1|, |a_2|\} > 3$  and  $a_1 \equiv a_2 \equiv 1 \pmod{4}$ , we have  $\min\{|a_1|, |a_2|\} > 3$ . Therefore, we may choose that E = 2, g = 1 and  $\log A_i = \log |a_i|$  for i = 1, 2. Thus, by the theorem, we get

$$v_{2}(\Lambda) \leqslant \frac{36.1g}{E^{3}(\log 2)^{4}} (\log A_{1})(\log A_{2}) \\ \times \left( \max\left\{ 5, 6E \log 2, 0.4 + \log(E \log 2) + \log\left(\frac{b_{1}}{\log A_{2}} + \frac{b_{2}}{\log A_{1}}\right) \right\} \right)^{2} \\ < 19.5540 (\log |a_{1}|) (\log |a_{2}|) \\ \times \left( \max\left\{ 12 \log 2, 0.4 + \log(2 \log 2) + \log\left(\frac{b_{1}}{\log |a_{2}|} + \frac{b_{2}}{\log |a_{1}|}\right) \right\} \right)^{2}.$$

The lemma is proved.

Proof of Theorem 1.1. By [15], if (x, y, z) is a solution of (1.1), then we have

$$(2.1) \qquad \qquad \min\{x, y, z\} > 1$$

and

(2.2) 
$$gcd(x,y) = gcd(x,z) = gcd(y,z) = 1.$$

We now assume that (x, y, z) is a solution of (1.1) with  $2 \mid z$ . By (2.2), we have

Without loss of generality, we may assume that  $x \leq y$ . Then, by [5] and [15], we have

$$(2.4) 3 < x < z < y.$$

Further, since  $z^z > x^y$  by (1.1), we get

$$(2.5) y \log x < z \log z.$$

On the other hand, we see from (1.1) and (2.3) that

(2.6) 
$$0 \equiv z^{z} \equiv x^{y} + y^{x} \equiv x + y \pmod{4}.$$

Let

(2.7) 
$$(a_1, a_2, b_1, b_2) = \begin{cases} (x, -y, y, x) & \text{if } x \equiv 1 \pmod{4}, \\ (y, -x, x, y) & \text{if } x \equiv 3 \pmod{4}. \end{cases}$$

| 041 |
|-----|
|-----|

By (2.6) and (2.7), we have  $a_1 \equiv a_2 \equiv 1 \pmod{4}$ . Further, let  $\Lambda = a_1^{b_1} - a_2^{b_2}$ , and let  $v_2(\Lambda)$  denote the degree of 2 in  $\Lambda$ . By (1.1) and (2.7), we have  $\Lambda = x^y + y^x = z^z$  and  $v_2(\Lambda) \geq z$ . Therefore by (2.4), using Lemma 2.1, we get

(2.8) 
$$z < 19.5540(\log x)(\log y)$$
  
  $\times \left( \max\left\{ 12\log 2, 0.4 + \log(2\log 2) + \log\left(\frac{x}{\log x} + \frac{y}{\log y}\right) \right\} \right)^2$ 

If  $12 \log 2 \ge 0.4 + \log(2 \log 2) + \log(x/\log x + y/\log y)$ , then we have  $2000 > e^{7.591} > y/\log y$  and y < 25000. Therefore, by (2.4), the theorem holds.

If  $12 \log 2 < 0.4 + \log(2 \log 2) + \log(x/\log x + y/\log y)$ , then from (2.8) we get

(2.9) 
$$z < 19.5540(\log x)(\log y)\left(0.7271 + \log\left(\frac{x}{\log x} + \frac{y}{\log y}\right)\right)^2.$$

Notice that  $r/\log r$  is increasing for any real number r with r > e. By (2.4), we have  $x/\log x < y/\log y$ , and by (2.9), we get

(2.10) 
$$z < 19.5540(\log x)(\log y)\left(0.7271 + \log\left(\frac{2y}{\log y}\right)\right)^2.$$

Further, by (2.4), (2.5) and (2.10), we have

$$\begin{split} y &< \frac{z \log z}{\log x} < 19.5540 (\log y) (\log z) \Big( 0.7271 + \log \Big( \frac{2y}{\log y} \Big) \Big)^2 \\ &< 19.5540 (\log y)^2 \Big( 0.7271 + \log \Big( \frac{2y}{\log y} \Big) \Big)^2, \end{split}$$

whence we conclude that y < 480000. Thus, by (2.4), the theorem is proved.

# 3. Proof of Theorem 1.2

**Lemma 3.1** ([2]). If X, Y, n are positive integers such that X > Y, gcd(X, Y) = 1 and n > 6, then  $X^n - Y^n$  has a prime divisor p with p > n.

**Lemma 3.2** ([11], Theorem 8.1). Every solution (u, v) of (1.2) can be expressed as

$$u + v\sqrt{D} = \lambda_1 \left( u_1 + \lambda_2 v_1 \sqrt{D} \right)^s, \quad \lambda_1, \lambda_2 \in \{\pm 1\}, \ s \in \mathbb{Z}, \ s \ge 0,$$

where  $(u_1, v_1)$  is the least positive integer solution of (1.2).

**Lemma 3.3** ([6], Theorem 1 and 2). Let D, k be positive integers such that D is not a square, k > 1,  $2 \nmid k$  and gcd(D, k) = 1. Every solution (X, Y, Z) of the equation

$$X^{2} - DY^{2} = k^{Z}, \quad X, Y, Z \in \mathbb{Z}, \ \gcd(X, Y) = 1, \ Z > 0$$

can be expressed as

$$X + Y\sqrt{D} = \left(X_1 + Y_1\sqrt{D}\right)^t \left(u + v\sqrt{D}\right), \quad Z = Z_1t, \ t \in \mathbb{N},$$

where  $X_1, Y_1, Z_1$  are positive integers satisfying

$$X_1^2 - DY_1^2 = k^{Z_1}$$
,  $gcd(X_1, Y_1) = 1$ ,  $h(4D) \equiv 0 \pmod{Z_1}$ ,

(u, v) is a solution of (1.2).

Proof of Theorem 1.2. We now assume that (x, y, z) is a solution of (1.1) with  $2 \mid z$ . If x is a square, then from (2.1) and (2.3) we get  $x = a^2$ , where a is an odd integer with  $a \ge 3$ . Substituting it into (1.1), by (2.2), we have

(3.1) 
$$z^{z/2} + a^y = b^{a^2}, \quad z^{z/2} - a^y = c^{a^2}, \quad y = bc, \ b, c \in \mathbb{N}, \ \gcd(b, c) = 1,$$

whence we get

(3.2) 
$$2a^y = b^{a^2} - c^{a^2}$$

However, since  $a^2 \ge 9$ , by Lemma 3.1,  $b^{a^2} - c^{a^2}$  has a prime divisor p with  $p > a^2$  and (3.2) is false. It implies that x is not a square. Similarly, we can prove that y is not a square.

We see from (1.1) and (2.3) that the equation

(3.3) 
$$X^2 - yY^2 = x^Z, \quad X, Y, Z \in \mathbb{Z}, \ \gcd(X, Y) = 1, \ Z > 0$$

has the solution

(3.4) 
$$(X, Y, Z) = (z^{z/2}, y^{(x-1)/2}, y).$$

Recall that x > 1,  $2 \nmid x$ , gcd(x, y) = 1 and y is not a square. Applying Lemma 3.3 to (3.3) and (3.4), we have

$$(3.5) y = Z_1 t, \quad t \in \mathbb{N},$$

(3.6) 
$$z^{z/2} + y^{(x-1)/2}\sqrt{y} = (X_1 + Y_1\sqrt{y})^t (u + v\sqrt{y}),$$

where  $X_1, Y_1, Z_1$  are positive integers satisfying

(3.7) 
$$X_1^2 - yY_1^2 = x^{Z_1}, \quad \gcd(X_1, Y_1) = 1,$$

$$h(4y) \equiv 0 \pmod{Z_1},$$

(u, v) is a solution of the Pell equation

$$(3.9) u^2 - yv^2 = 1, \quad u, v \in \mathbb{Z}.$$

Since  $z^{z/2} + y^{(x-1)/2}\sqrt{y} > 0$  and  $X_1 + Y_1\sqrt{y} > 0$ , by Lemma 3.2, we get from (3.6) that

(3.10) 
$$u + v\sqrt{y} = (u_1 + \lambda v_1 \sqrt{y})^s, \quad \lambda \in \{\pm 1\}, \ s \in \mathbb{Z}, \ s \ge 0,$$

where  $(u_1, v_1)$  is the least positive integer solution of (3.9). Substituting (3.10) into (3.6), we have

(3.11) 
$$z^{z/2} + y^{(x-1)/2}\sqrt{y} = (X_1 + Y_1\sqrt{y})^t (u_1 + \lambda v_1\sqrt{y})^s.$$

Let  $d = \gcd(s, t)$ . If d > 1, since  $2 \nmid t$  by (2.3) and (3.5), then d has an odd prime divisor p. Further, let

(3.12) 
$$f + g\sqrt{y} = (X_1 + Y_1\sqrt{y})^{t/p}(u_1 + \lambda v_1\sqrt{y})^{s/p}.$$

By Lemmas 3.2 and 3.3, we see from (3.5), (3.7) and (3.12) that f, g are integers satisfying

(3.13) 
$$f^2 - yg^2 = x^{y/p}, \quad \gcd(f,g) = 1.$$

Substituting (3.12) into (3.11), we have

(3.14) 
$$z^{z/2} + y^{(x-1)/2}\sqrt{y} = (f + g\sqrt{y})^p,$$

whence we get

(3.15) 
$$y^{(x-1)/2} = g \sum_{i=0}^{(p-1)/2} {p \choose 2i+1} f^{p-2i-1} (yg^2)^i.$$

When p = 3, by (3.5), we have  $3 \mid y$  and

$$(3.16) y = 3l, \quad l \in \mathbb{N}.$$

Further, by (3.15) and (3.16), we get

(3.17) 
$$3^{(x-3)/2}l^{(x-1)/2} = g(f^2 + lg^2).$$

Since gcd(f, yg) = 1 by (3.13), we have  $gcd(f, lg) = gcd(f^2 + lg^2, l) = 1$ . Hence, by (3.17), we get

(3.18) 
$$f^2 + lg^2 \leqslant 3^{(x-3)/2}, \quad l^{(x-1)/2} \leqslant g.$$

We find from (3.18) that l = 1. Substituting it into (3.17), we have

(3.19) 
$$3^{(x-3)/2} = g(f^2 + g^2).$$

But, since  $f^2 + g^2 > 1$  and  $3 \nmid f^2 + g^2$ , (3.19) is false.

When p > 3, since  $p \mid y$  and gcd(f, y) = 1, we have

(3.20) 
$$\binom{p}{2i+1} f^{p-2i-1} (yg^2)^i \equiv 0 \pmod{p^2}, \quad i = 1, \dots, \frac{p-1}{2},$$

(3.21) 
$$p \parallel \sum_{i=0}^{(p-1)/2} {p \choose 2i+1} f^{p-2i-1} (yg^2)^i$$

and

(3.22) 
$$\gcd\left(y, \frac{1}{p}\sum_{i=0}^{(p-1)/2} {p \choose 2i+1} f^{p-2i-1} (yg^2)^i\right) = 1.$$

Hence, we see from (3.15) and (3.22) that

(3.23) 
$$p = \sum_{i=0}^{(p-1)/2} {p \choose 2i+1} f^{p-2i-1} (yg^2)^i > p,$$

a contradiction. Therefore, we obtain

Let

(3.25) 
$$X + Y\sqrt{y} = (X_1 + Y_1\sqrt{y})^t.$$

| ß | Б | 1 |
|---|---|---|
| υ | J | т |

Since  $2 \nmid t$ , by (3.10) and (3.25), we have

$$(3.26) \ u = \sum_{i=0}^{[s/2]} {\binom{s}{2i}} u_1^{s-2i} (yv_1^2)^i, \qquad v = \lambda v_1 \sum_{i=0}^{[(s-1)/2]} {\binom{s}{2i+1}} u_1^{s-2i-1} (yv_1^2)^i, X = \sum_{i=0}^{(t-1)/2} {\binom{t}{2i}} X_1^{t-2i} (yY_1^2)^i, \quad Y = Y_1 \sum_{i=0}^{[(t-1)/2]} {\binom{t}{2i+1}} X_1^{t-2i-1} (yY_1^2)^i,$$

where [s/2] and [(s-1)/2] are integer parts of s/2 and (s-1)/2, respectively. Substituting (3.25) into (3.6), we have

$$z^{z/2} + y^{(x-1)/2}\sqrt{y} = (X + Y\sqrt{y})(u + v\sqrt{y}),$$

whence we get

(3.27) 
$$y^{(x-1)/2} = Xv + Yu.$$

By (3.26), we have

(3.28) 
$$u \equiv u_1^s \pmod{y}, \quad v \equiv \lambda s u_1^{s-1} v_1 \pmod{y},$$
$$X \equiv X_1^t \pmod{y}, \quad Y \equiv t X_1^{t-1} Y_1 \pmod{y}.$$

Since x > 1, by (3.27) and (3.28), we get

(3.29) 
$$D \equiv y^{(x-1)/2} \equiv Xv + Yu \equiv X_1^t(\lambda s u_1^{s-1} v_1) + t X_1^{t-1} Y_1(u_1^s) \pmod{y}.$$

Further, by (3.7) and (3.9), we have  $gcd(X_1, y) = gcd(u_1, y) = 1$ . We see from (3.29) that

(3.30) 
$$\lambda s X_1 v_1 + t Y_1 u_1 \equiv 0 \pmod{y}.$$

Furthermore, since  $t \mid y$  by (3.5), we obtain from (3.24) and (3.30) that

$$(3.31) v_1 \equiv 0 \pmod{t}.$$

Therefore, the combination of (3.5), (3.8) and (3.31) yields

$$v_1h(4y) \equiv 0 \pmod{y}.$$

It implies that y is a singular number.

By the symmetry of x and y in (1.1), using the same method as above, we can prove that x is a singular number too. Thus, the theorem is proved.

# References

| [1]   | Y. Bilu, G. Hanrot, P. M. Voutier: Existence of primitive divisors of Lucas and Lehmer<br>numbers. J. Reine Angew. Math. 539 (2001), 75–122.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2]   | G. D. Birkhoff, H. S. Vandiver: On the integral divisors of $a^n - b^n$ . Ann. of Math. (2) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | (1904), 173–180. zbl MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [3]   | D. A. Buell: Computer computation of class groups of quadratic number fields. Congr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Numerantium 22 (McCarthy et al., eds.). Conf. Proc. Numerical Mathematics and Com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | puting, Winnipeg 1978, 1979, pp. 3–12. Zbl MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [4]   | Y. Bugeaud: Linear forms in p-adic logarithms and the Diophantine equation $(x^n - 1)/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | $(x-1) = y^q$ . Math. Proc. Camb. Philos. Soc. 127 (1999), 373–381. Zbl MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [5]   | Y. Deng, W. Zhang: On the odd prime solutions of the Diophantine equation $x^y$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| r - 1 | $y^{x} = z^{z}$ . Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages. MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [6]   | <i>M. Le</i> : Some exponential Diophantine equations. I: The equation $D_1 x^2 - D_2 y^2 = \lambda k^z$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [=]   | J. Number Theory 55 (1995), 209–221. $\frac{1}{2}$ D. L. M. L. M. H. H. H. H. H. H. H. |
| [7]   | <i>M. Le</i> : On the Diophantine equation $y^x - x^y = z^2$ . Rocky Mt. J. Math. 37 (2007),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [0]   | 1181–1185. Zbl MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ႞ၜ႞   | Y. N. Liu, X. Y. Guo: A Diophantine equation and its integer solutions. Acta Math. Sin.,<br>Chin. Ser. 53 (2010), 853–856.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [0]   | Chin. Ser. 53 (2010), 853–856. Zbl MR<br>F. Luca, M. Mignotte: On the equation $y^x \pm x^y = z^2$ . Rocky Mt. J. Math. 30 (2000),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | $\begin{array}{c} r. have, m. mighting of the equation g' \pm x' = z'. Rocky Mit. 5. Math. 50 (2000),651–661. Zbl MR doi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [10]  | <i>R. A. Mollin, H. C. Williams</i> : Computation of the class number of a real quadratic field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [10]  | Util. Math. 41 (1992), 259–308.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [11]  | L. J. Mordell: Diophantine Equations. Pure and Applied Mathematics 30, Academic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| []    | Press, London, 1969. Zbl MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [12]  | A. J. van der Poorten, H. J. J. te Riele, H. C. Williams: Computer verification of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Ankeny-Artin-Chowla conjecture for all primes less than 10000000000. Math. Comput.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 70 (2001), 1311–1328; corrig. ibid. 72 (2003), 521–523. zbl MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [13]  | H. Wu: The application of BHV theorem to the Diophantine equation $x^y + y^x = z^z$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Acta Math. Sin., Chin. Ser. 58 (2015), 679–684. Zbl MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [14]  | Z. Zhang, J. Luo, P. Yuan: On the Diophantine equation $x^y - y^x = c^z$ . Colloq. Math.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 128 (2012), 277–285. Zbl MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [15]  | Z. Zhang, J. Luo, P. Yuan: On the Diophantine equation $x^y + y^x = z^z$ . Chin. Ann.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Math., Ser. A $34A$ (2013), 279–284. Zbl MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [16]  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Theory 8 (2012), 813–821. Zbl MR doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Author's address: Xiaoying Du, School of Mathematics, Jinzhong University, Wenhua Street 199, Yuci Qu, Jinzhong 030619, Shanxi, P.R. China, duxiaoying830163.com.