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Abstract. We study some properties of generalized reduced Verma modules over Z-graded
modular Lie superalgebras. Some properties of the generalized reduced Verma modules
and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced
Verma modules are considered. In particular, for Z-graded modular Lie superalgebras of
Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed
products of modules.
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1. Introduction

Verma modules proposed by Verma in [20] and Bernshtein, Gel’fand and Gel’fand

in [1] are important objects in the representation theory of Lie algebras and super-

algebras. The main results on the structure of Verma modules were obtained in [2],

[6], [20]. As a natural generalization of Verma modules, generalized Verma modules

are modules induced from a parabolic subalgebra and a complex semisimple Lie al-

gebra (see [3], [5], [12], [13]). The theory of generalized Verma modules is rather

similar to that of Verma modules. Some results of Verma modules were extended to

certain class of generalized Verma modules in [9], [11], [14].

In 1990, Farnsteiner in [7] constructed generalized reduced Verma modules over

modular Lie algebras. Hereafter, some properties of these generalized reduced Verma
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modules were obtained in [4], [8]. Since generalized reduced Verma modules are

closely related to mixed products of modules, the structure of mixed products seems

to be important and interesting. In [17], [18], [19], Shen classified Z-graded irre-

ducible representations of graded Lie algebras of Cartan type. His approach rests on

the notion of the mixed product. In [4], graded modules of graded Cartan type Lie

algebras which possess nondegenerate invariant form were determined by Chiu. In

the case of modular Lie superalgebras of Cartan type, Z-graded modules of Lie super-

algebras W (n) and S(n), H(n), mixed products of modules of infinite-dimensional

Lie superalgebras and Z-graded modules of finite-dimensional Hamiltonian Lie su-

peralgebras were obtained in [22], [23], [25], [26], respectively.

In this paper, we generalize some beautiful results about generalized reduced

Verma modules over modular Lie algebras in [4], [7], [8]. In Section 2, we review

some necessary notions. In Section 3, some relations between generalized reduced

Verma modules and coinduced modules are given. In Section 4, invariant forms on

generalized reduced Verma modules are considered. In Section 5, we prove that gen-

eralized reduced Verma modules are isomorphic to mixed products for modules of

Z-graded modular Lie superalgebras of Cartan type.

All Lie superalgebras and modules treated in the present paper are assumed to

be finite dimensional. All notations and notions of Lie superalgebras and modular

representations are the same as in papers [10], [16], [24], readers can find the precise

definitions in the corresponding references.

2. Preliminaries

Throughout this paper we assume that F is a field of prime characteristic and

Z2 = {0̄, 1̄} is the residue class ring mod 2. Let L = L0̄ ⊕ L1̄ be a Lie superalgebra

over F. Then F has a trivial structure of a Z2-graded L-module: F0̄ = F, F1̄ = 0.

Furthermore, we always assume that the representation of L in F is equal to zero.

The standard notation Z, N and N0 are used for the set of integers, the set of

positive integers and the set of nonnegative integers, respectively. Denote by Nk0 the

k-tuples with nonnegative integers as entries. For any Lie superalgebra L over F,

let U(L) denote the universal enveloping algebra of L. If L =
⊕

i∈Z

Li is a Z-graded

Lie superalgebra over F, we customarily put L+ =
⊕

i>0

Li and L
− =

⊕

i<0

Li. Then

L = L+ ⊕ L0 ⊕ L− and U(L) = U(L+)U(L0)U(L−).

Without explicitly mentioning, if d(x) (zd(x)) occurs in some expression in this

paper, then x is assumed to be a Z2-homogeneous (Z-homogeneous) element and

d(x) (zd(x)) is the Z2-degree (Z-degree) of x.
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Definition 1 ([21]). Let V and W be L-modules and suppose that f is a Z2-

homogeneous element of HomF(V,W ). The mapping f is called a homomorphism

of L-modules if (x · f)(v) = (−1)d(x)d(f)f(x · v) for all x ∈ L and v ∈ V . The

mapping f is said to be an isomorphism of L-modules if f is a homomorphism and

if, furthermore, f is a bijection.

Let V be an L-module. The vector space V ∗ := HomF(V,F) obtains the structure

of an L-module by means of (x · f)(v) = −(−1)d(x)d(f)f(x · v), where x ∈ L, v ∈ V ,

f ∈ V ∗. Clearly, d(x · f) = d(x) + d(f).

We consider the subalgebra K := L0 ⊕ L+ of a Z-graded Lie superalgebra

L =
⊕

i∈Z

Li. Let {e1, . . . , ek} be a basis of L− ∩ L0̄ and {ξ1, . . . , ξl} be a basis of

L−∩L1̄. As L
−∩L0̄ operates on L by nilpotent transformation, there exist mi ∈ N0,

1 6 i 6 k such that

zi := ep
mi

i ∈ U(L−) ∩ Z(U(L)), 1 6 i 6 k,

where Z(U(L)) is the center of U(L). In particular, {zi : 1 6 i 6 k} are homoge-

neous elements relative to the Z-gradation inherited by U(L0̄). An application of the

Poincaré-Birkhoff-Witt theorem (PBW theorem), (see [15]), reveals that the subal-

gebra θ(L,K) of U(L), which is generated by K and {z1, . . . , zk}, is isomorphic to

F[z1, . . . , zk]
⊗

F

U(K), where F[z1, . . . , zk] is a polynomial ring in k indeterminates.

Then θ(L,K) is a Z-graded subalgebra of U(L).

Given α = (α1, . . . , αk) ∈ N
k
0 , we put |α| :=

m
∑

i=1

αi, e
α := eα1

1 eα2
2 . . . eαk

k and

π := (π1, . . . , πk) = (pm1 − 1, . . . , pmk − 1). Set

Bs := {〈i1, i2, . . . , is〉 : 1 6 i1 < i2 < . . . < is 6 l}

and B :=
l
⋃

s=0
Bs, where B0 := ∅ and l ∈ N. For u = 〈i1, i2, . . . , is〉 ∈ Bs, set |u| := s,

|∅| := 0, ξ∅ := 1, ξu := ξi1ξi2 . . . ξis and ξ
E := ξ1ξ2 . . . ξl, u is also used to stand

for the index set {i1, i2, . . . , is}. Then U(L) is a Z-graded θ(L,K)-module with the

basis

{eαξu : 0 6 α 6 π, u ∈ B}.

AnyK-module V obtains the structure of a θ(L,K)-module by letting F[z1, . . . , zk]

act via its canonical supplementation which sends zi to 0. Henceforth, K-module will

be regarded as θ(L,K)-module in this fashion. Let ̺ be the natural representation

of K in L/K. Then there exists a unique homomorphism σ : U(K) → F of F-

superalgebra such that σ(x) = str(̺(x)), where x is an arbitrary element of K and
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str(̺(x)) is the supertrace of ̺(x), see [10], [16]. We introduce a twisted action on

K-module V by setting

x ◦ v = x · v + σ(x)v, x ∈ K, v ∈ V.

Note that σ(x) = 0 for x ∈ K1̄, then

[x, y] ◦ v = [x, y] · v + σ([x, y])v

= x · (y · v)− (−1)d(x)d(y)y · (x · v) + σ(x)σ(y)v − (−1)d(x)d(y)σ(y)σ(x)v

= x · (y · v) + σ(y)x · v + σ(x)y · v + σ(x)σ(y)v

− (−1)d(x)d(y)y · (x · v)− (−1)d(x)d(y)σ(y)x · v

− (−1)d(x)d(y)σ(x)y · v − (−1)d(x)d(y)σ(y)σ(x)v

= x · (y ◦ v) + σ(y)(x ◦ v)− (−1)d(x)d(y)y · (x ◦ v)− (−1)d(x)d(y)σ(y)(x ◦ v)

= x ◦ (y ◦ v)− (−1)d(x)d(y)y ◦ (x ◦ v),

i.e. V is a new K-module by the twisted action. The new K-module will be denoted

by Vσ. If V is an L0-module, then we can extend the operations on V to K by letting

L+ act trivially and regard it as a K-module.

3. Generalized reduced Verma modules and coinduced modules

Let L be a Z-graded Lie superalgebra over F and V be a K-module. Following [7],

we give a definition

Definition 2. The induced module IndK(V ) := U(L)
⊗

θ(L,K)

V is called a gen-

eralized reduced Verma module. The coinduced module Homθ(L,K)(U(L), V ) will be

denoted by CoindK(V ).

This definition shows that the modules IndK(V ) and CoindK(V ) are annihilated

by zi.

Consider CoindK(V ) with U(L)-action given via

(y · f)(x) := (−1)d(y)(d(f)+d(x))f(xy), x, y ∈ U(L).

For v ∈ V , 0 6 β 6 π and u, t ∈ B, let χ
(β,t)
v be the element of CoindK(V ) which

sends eαξu onto (−1)d(χ
(β,t)
v )d(ξu)δ(α, β)δ(u, t)v, where δ(i, j) is Kronecker delta. It

suffices to verify that

(3.1) χ(β,t)
v (eβξtϑ) = (−1)d(ϑ)(d(χ

(β,t)
v )+d(ξt))+d(χ(β,t)

v )d(ξt)ϑ ◦ v

and d(χ
(β,t)
v ) = d(ξt) + d(v) for all ϑ ∈ θ(L,K) and v ∈ Vσ.
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Lemma 1. There is a natural isomorphism of functors

Φ: IndK(Vσ) → CoindK(V )

such that Φ(y ⊗ v) = (−1)d(y)d(Φ)y · χ
(π,E)
v , where y ∈ U(L) and v ∈ Vσ.

P r o o f. Assume that the bilinear mapping ψ : U(L) × Vσ → HomF(U(L), V ) is

defined by ψ(y, v) = (−1)d(y)d(ψ)y · χ
(π,E)
v . Let ϑ ∈ θ(L,K) and u′ ∈ U(L). Then

equation (3.1) and d(χ
(π,E)
v ) = d(ψ) + d(v) imply that

ψ(yϑ, v)(u′) = (−1)(d(y)+d(ϑ))d(ψ)yϑ · χ(π,E)
v (u′)

= (−1)(d(y)+d(ϑ))(d(v)+d(u
′))χ(π,E)

v (u′yϑ)

= (−1)d(y)(d(v)+d(ϑ)+d(u
′))+d(ϑ)d(ψ)+(d(ψ)+d(v))(d(u′)+d(y))ϑ ◦ v

= (−1)d(y)(d(v)+d(ϑ)+d(u
′))+(d(ϑ)+d(ψ)+d(v))(d(u′)+d(y))ϑ ◦ v

= (−1)d(y)(d(v)+d(ϑ)+d(u
′))χ

(π,E)
ϑ◦v (u′y)

= (−1)d(y)d(ψ)y · χ
(π,E)
ϑ◦v (u′)

= ψ(y, ϑ ◦ v)(u′).

Consequently, ψ is θ(L,K)-balanced and induces a mapping

Φ: U(L)
⊗

θ(L,K)

Vσ → HomF(U(L), V ).

The verification of the inclusion imψ ⊆ Homθ(L,K)(U(L), V ) is routine.

For any x, y ∈ U(L) and v ∈ Vσ we have

(x · Φ)(y ⊗ v) = (−1)d(y)d(Φ)((xy) · χ(π,E)
v ) = (−1)d(x)d(Φ)Φ(x · (y ⊗ v)).

Hence, Φ is a homomorphism of U(L)-modules.

For any f ∈ CoindK(V ) there exists eαξu ∈ U(L) such that

f =
∑

α,u

(−1)d(f)d(ξ
u)χ

(α,u)
f(eαξu),

where 0 6 α 6 π and u ∈ B. Then Φ
(

∑

α,u

(−1)d(f)d(ξ
u)y ⊗ f(eαξu)

)

= f , i.e. Φ is

a surjection.

If 0 = y ·X
(π,E)
v ∈ CoindK(V ) and y = eαξu ∈ U(L), then there exists u′ = eβξt ∈

U(L) such that α+ β = π and u+ t = E. It follows that

0 = y · χ(π,E)
v (u′) = (−1)d(y)(d(u

′)+d(χ(π,E)
v ))+d(χ(π,E)

v )(d(u′)+d(y))v.

Therefore, y ⊗ v = 0, i.e., Φ is an injection.
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Now we show that Φ is a natural homomorphism. If W is a K-module and

ϕ : V → W is a homomorphism of K-module, then ϕ is also a homomorphism

between Vσ and Wσ. We claim that the following diagram is commutative.

IndK(Vσ)
Φ

//

id⊗ϕ

��

CoindK(V )

ϕ∗

��

IndK(Wσ)
Φ′

// CoindK(W )

Note that ϕ∗ and id⊗ϕ are homomorphisms of U(L)-modules, the assertion follows

from the ensuing calculation:

ϕ∗ ◦ Φ(1⊗ v)(u′) = χ
(π,E)
ϕ(v) (u′) = (Φ′ ◦ (id⊗ ϕ))(1 ⊗ v)(u′), u′ ∈ U(L).

In conclusion, the proof is completed. �

Remark 1. (1) If the above result is applied to the module V−σ, then we obtain

natural isomorphism IndK(V ) ∼= CoindK(V−σ).

(2) Suppose that K acts nilpotently on L/K or (̺(K))(1) = ̺(K). Then σ = 0

and every K-module V gives an isomorphism IndK(V ) ∼= CoindK(V ).

Following [18], we refer to a Z-graded L-module V as positively graded if V =
⊕

i>0

Vi and Lj · Vi ⊆ Vi+j . A positively graded module V is said to be transitive if

V0 = {v ∈ V : x · v = 0 for all x ∈ L−}.

Proposition 1. Let P = CoindK(V ) be an L-module and

Pi := {f ∈ P : f(U(L)j) = 0, j 6= −i}.

Then

(1) P is a positively graded L-module;

(2) P0 is isomorphic to V as an L0-module;

(3) P is transitively graded.

P r o o f. (1) Let f be an element of Pi and suppose that y ∈ U(L)q, where i, q ∈ Z.

If x ∈ U(L)j for j 6= −i− q, then xy ∈ U(L)j+q , where j ∈ Z. It follows that

(y · f)(x) = (−1)d(y)(d(f)+d(x))f(xy) = 0.

Consequently, y · f belongs to Pi+q .
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Let {x1, . . . , xn} be a basis of U(L) over θ(L,K) and induced by {e1, . . . , ek}

and {ξ1, . . . , ξl}. In accordance with the basis of U(L), we may assume that xr =

eαξu ∈ U(L)i(r), where i(r) 6 0 and 1 6 r 6 n. Any element of U(L)q is a sum

of elements x =
n
∑

r=1
hrxr, hr ∈ θ(L,K)q−i(r). Given r ∈ {1, 2, . . . , n}, we have

χ
(α,u)
v (x) = (−1)(d(x)+d(v))d(x)hrv. If q 6= i(r), then χ

(α,u)
v (x) = 0. It follows that

χ
(α,u)
v is an element of P−i(r). For every f ∈ P we have f =

∑

α,u

(−1)d(f)d(ξ
u)χ

(α,u)
f(eαξu).

Consequently, P =
n
⊕

r=1
P−i(r) and P is a positively graded module.

(2) We proceed by showing that µ : P0 → V ; µ(f) = f(1) is an isomorphism of

L0-modules. If x ∈ L0, then

µ(x · f) = (x · f)(1) = (−1)d(x)d(f)f(x) = x · f(1) = x · µ(f),

i.e. µ is a homomorphism of L0-modules.

Since 1 := eαξu ∈ U(L)0 is contained in {x1, . . . , xn}, (−1)(d(ξ
u)+d(v))d(ξu)χ

(α,u)
v

is a pre-image of v ∈ V under µ.

Suppose that f ∈ kerµ. Owing to the PBW theorem, for every element x ∈ U(L)0
we may assume that x =

∑

i+j=0

aibj , where ai ∈ U(K)i and bj ∈ U(L−)j . Since ai = 0

for i < 0 and ai ∈ U(L0)U(L+) for i > 0, we obtain

f(x) =
∑

i+j=0

(−1)d(ai)d(f)aif(bj) = (−1)d(a0)d(f)a0f(b0)

= (−1)(d(a0)+d(b0))d(f)a0b0f(1) = 0.

As a result, f = 0 on U(L0) and thereby on all of U(L). Therefore µ is an isomor-

phism of L0-modules.

(3) Suppose that f is an element of P such that x · f = 0 for every x ∈ L−.

Then each Z-homogeneous constituent of f enjoys the same property. Since q ∈ N

and y is an element of U(L)−q, we assume that f ∈ Pq and y =
∑

i+j=−q
aibj, where

ai ∈ U(K)i and bj ∈ U(L−)j . As ai · V = 0 for i > 0, we have

f(y) =
∑

i+j=−q

(−1)d(ai)d(f)aif(bj) = (−1)d(a0)d(f)a0f(b−q).

Then f(y) = (−1)(d(a0)+d(b−q))d(f)a0b−qf(1). Since b−q belongs to U(L−), we obtain

b−q · f = 0. Thus f(y) = 0. Similarly, if q < 0, then f(y) also equals zero. Therefore

f ∈ P0.

Conversely, if f ∈ P0, then f(U(L)i) = 0 for i 6= 0. For any x ∈ L− we have

(x · f)(y) = (−1)d(x)(d(f)+d(y))f(yx) = (−1)d(x)(d(y))y · f(x) = 0, y ∈ U(L)+
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and

(x · f)(y) = (−1)d(x)(d(f)+d(y))f(yx) = 0, y ∈ U(L)− ⊕ U(L)0.

Therefore x · f = 0 for all x ∈ L−. �

For x1, . . . , xn ∈ L set

(x1 . . . xn)
T := (−1)n+

∑n−1
i=1

∑
n
j=i+1 d(xi)d(xj)xn . . . x1.

A direct verification shows that xTi = −xi and d(xTi ) = d(xi) for i ∈ {1, . . . , n}. Then

the principal anti-automorphism of U(L) is defined by x 7→ xT for all x ∈ U(L).

In the following proposition, the property of adjoint isomorphism will be investi-

gated.

Proposition 2. There is a natural isomorphism

Ψ: (IndK(V ))∗ → CoindK(V ∗),

namely, for ϕ ∈ (IndK(V ))∗, x ∈ U(L) and v ∈ V ,

Ψ: ϕ 7→ Ψ(ϕ), where Ψ(ϕ)(x) : v 7→ ϕ(xT ⊗ v).

P r o o f. Firstly, we prove that Ψ is a homomorphism of U(L)-modules. Let ϕ1

and ϕ2 be elements of (IndK(V ))∗. Then

Ψ(ϕ1 + ϕ2)(x)(v) = (ϕ1 + ϕ2)(x
T ⊗ v)

= (ϕ1)(x
T ⊗ v) + (ϕ2)(x

T ⊗ v)

= Ψ(ϕ1)(x)(v) + Ψ(ϕ2)(x)(v)

= (Ψ(ϕ1) + Ψ(ϕ2))(x)(v),

where x ∈ U(L) and v ∈ V . Therefore Ψ(ϕ1 + ϕ2) = Ψ(ϕ1) + Ψ(ϕ2). For any

x, y ∈ U(L), v ∈ V and ϕ ∈ (IndK(V ))∗ we have

y ·Ψ(ϕ)(x)(v) = (−1)d(y)(d(Ψ)+d(ϕ)+d(x))Ψ(ϕ)(xy)(v)

= (−1)d(y)(d(Ψ)+d(ϕ)+d(x))ϕ((xy)T ⊗ v)

= (−1)d(y)(d(Ψ)+d(ϕ))ϕ(yx⊗ v)

= (−1)d(y)d(Ψ)y · ϕ(xT ⊗ v)

= (−1)d(y)d(Ψ)Ψ(y · ϕ)(x)(v).

Therefore y ·Ψ(ϕ) = (−1)d(y)d(Ψ)Ψ(y · ϕ).
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Next Ψ is injective. In fact, if Ψ(ϕ)(x)(v) = 0, then 0 = Ψ(ϕ)(x)(v) = ϕ(xT ⊗ v)

for all x ∈ U(L) and v ∈ V . Thus ϕ = 0 because it vanishes on every generator of

IndK(V ).

Now we show that Ψ is surjective. Let f ∈ CoindK(V ∗). Define ϕ(x ⊗ v) :=

f(xT)(v) for x ∈ U(L) and v ∈ V . Then Ψ(ϕ) = f .

Since Ψ is a natural homomorphism, the proof is completed. �

Corollary 1. IndK(Vσ) ∼= (IndK(Vσ))
∗ if and only if V ∼= (Vσ)

∗.

P r o o f. If IndK(Vσ) ∼= (IndK(Vσ))
∗, by Lemma 1 and Proposition 2, then

CoindK(V ) ∼= CoindK((Vσ)
∗).

Proposition 1 shows that V ∼= (Vσ)
∗. The sufficiency is obvious. �

4. Invariant forms on generalized reduced Verma modules

The results in this section generalize Chiu’s results in [4] and determine generalized

reduced Verma modules over modular Lie superalgebras which possess a nondegen-

erate super-symmetric or skew super-symmetric invariant bilinear form. Let L be

a Lie superalgebra over F and V be an L-module. A bilinear form λ : V × V → F

is called super-symmetric (skew super-symmetric) if λ(v, w) = (−1)d(v)d(w)λ(w, v)

(λ(v, w) = −(−1)d(v)d(w)λ(w, v)) for all v, w ∈ V . A super-symmetric (or skew

super-symmetric) bilinear form λ : V ×V → F is called invariant on L if λ(x ·v, w) =

−(−1)d(v)d(x)λ(v, x · w) for all x ∈ L and v, w ∈ V . The subspace rad(λ) := {v ∈

V : λ(v, w) = 0 for all w ∈ V } is called the radical of λ. The form λ is nondegenerate

if rad(λ) = 0.

Proposition 3. There exists a nondegenerate super-symmetric (skew super-

symmetric) invariant bilinear form λ on V if and only if there exists an iso-

morphism of L-modules φ : V → V ∗ such that φ(v)(w) = (−1)d(v)d(w)φ(w)(v)

(φ(v)(w) = −(−1)d(v)d(w)φ(w)(v)) for all v, w ∈ V .

P r o o f. Let λ be a nondegenerate super-symmetric (skew super-symmetric) in-

variant bilinear form on V . Define φ : V → V ∗ such that φ(v)(w) := λ(v, w) for

all v, w ∈ V . Then φ is a linear mapping such that kerφ = rad(λ) = 0 and

φ(v)(w) = (−1)d(v)d(w)φ(w)(v) (φ(v)(w) = −(−1)d(v)d(w)φ(w)(v)). Hence φ is in-
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jective. Since dimV = dim V ∗, φ is bijective. For x ∈ L and v, w ∈ V we have

φ(x · v)(w) = λ(x · v, w) = −(−1)d(x)d(v)λ(v, x · w)

= −(−1)d(x)d(v)φ(v)(x · w) = (−1)d(x)d(v)(x · φ(v))(w).

Thus, φ is the desired isomorphism of L-modules.

Conversely, let φ be an isomorphism of L-modules such that

φ(v)(w) = (−1)d(v)d(w)φ(w)(v)(φ(v)(w) = −(−1)d(v)d(w)φ(w)(v))

for all v, w ∈ V . Put λ(v, w) := φ(v)(w). Thus, λ be a super-symmetric (skew

super-symmetric) bilinear form on V . Since

λ(x · v, w) = φ(x · v)(w) = (−1)d(x)d(φ)(x · φ(v))(w)

= −(−1)d(x)d(v)φ(v)(x · w) = −(−1)d(x)d(v)λ(v, x · w)

for all x ∈ L and v, w ∈ V , λ is invariant. As rad(λ) = kerφ = 0, λ is nondegenerate.

�

Corollary 2. Let V be an irreducible L-module. If V is isomorphic to V ∗ as

L-module, then there exists a nondegenerate invariant bilinear form λ on V which

is either super-symmetric or skew super-symmetric.

Theorem 1. Let L be a Z-graded Lie superalgebra over F and V be an L0-module.

Then the following statements are equivalent.

(1) There exists a nondegenerate super-symmetric or skew super-symmetric invari-

ant bilinear form on IndK(Vσ).

(2) There exists an isomorphism of L0-modules ζ : V → (Vσ)
∗ such that ζ(v)(w) =

(−1)d(v)d(w)ζ(w)(v) or ζ(v)(w) = −(−1)d(v)d(w)ζ(w)(v), v, w ∈ V .

P r o o f. Assume that there exists a nondegenerate super-symmetric or skew

super-symmetric invariant bilinear form on IndK(Vσ). By Proposition 3, there exists

an isomorphism of L-modules φ : IndK(Vσ) → (IndK(Vσ))
∗ such that

(4.1) φ(x1 ⊗ v1)(x2 ⊗ v2) = (−1)(d(x1)+d(v1))(d(x2)+d(v2))φ(x2 ⊗ v2)(x1 ⊗ v1)

or

(4.2) φ(x1 ⊗ v1)(x2 ⊗ v2) = −(−1)(d(x1)+d(v1))(d(x2)+d(v2))φ(x2 ⊗ v2)(x1 ⊗ v1),
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where x1, x2 ∈ U(L) and v1, v2 ∈ V . Corollary 1 shows that there exists an isomor-

phism of L0-modules ζ : V → (Vσ)
∗.

Let x1 = eαξu ∈ U(L−) and x2 = eβξt ∈ U(L−), where 0 6 α 6 π, 0 6 β 6 π and

u, t ∈ B. By the proof of Lemma 1 and Proposition 2, we have

φ(x1 ⊗ v1)(x2 ⊗ v2) = (−1)d(x1)d(x2)+d(x1)d(v1)χ
(π,E)
ζ(v1)

(xT2 x1)(v2)(4.3)

= (−1)d(x1)d(x2)+d(x1)d(v1)+(d(ζ)+d(v1)+d(ξ
E))(d(x1)+d(x2))

× δ(π, α+ β)δ(E, u + t)ζ(v1)(v2)

= (−1)d(x1)d(x2)+d(x2)d(v1)+(d(ζ)+d(ξE))(d(x1)+d(x2))ζ(v1)(v2).

Combining (4.1), (4.2) and (4.3), we have

ζ(v1)(v2) = (−1)d(v1)d(v2)ζ(v2)(v1) or ζ(v1)(v2) = −(−1)d(v1)d(v2)ζ(v2)(v1)

for all v1, v2 ∈ V .

The converse also follows from Lemma 1, Corollary 1, Propositions 2 and 3. �

Remark 2. Following the notations in the proof of Theorem 1, we have the

following results:

(1) If d(x1) and d(x2) need not all 1̄, then there exists a nondegenerate super-

symmetric (skew super-symmetric) invariant bilinear form on IndK(Vσ) if and

only if there exists an isomorphism of L0-modules ζ : V → (Vσ)
∗ such that

ζ(v1)(v2) = (−1)d(v1)d(v2)ζ(v2)(v1), (ζ(v1)(v2) = −(−1)d(v1)d(v2)ζ(v2)(v1))

for all v1, v2 ∈ V .

(2) If d(x1) = d(x2) = 1̄, then there exists a nondegenerate super-symmetric

(skew super-symmetric) invariant bilinear form on IndK(Vσ) if and only if there

exists an isomorphism of L0-modules ζ : V → (Vσ)
∗ such that ζ(v1)(v2) =

−(−1)d(v1)d(v2)ζ(v2)(v1) (ζ(v1)(v2) = (−1)d(v1)d(v2)ζ(v2)(v1)) for all v1, v2 ∈ V .

5. Generalized reduced Verma modules and mixed

products of modules

In this section, the relation between generalized reduced Verma modules and mixed

products of modules over Z-graded modular Lie superalgebras of Cartan type will

be discussed.

709



Proposition 4. Let L be a Z-graded Lie superalgebra over F and V =
⊕

i>0

Vi be

a positively and transitively graded L-module such that zi · V = 0, 1 6 i 6 k. Then

the linear mapping ψ : V → CoindK(V0) defined by ψ(v)(x) = (−1)d(x)d(v)pr0(x · v)

for all x ∈ U(L) and v ∈ V is an injective homomorphism of L-modules, where

pr0 : V → V0 denotes the canonical projection. In particular, ψ(V0) = CoindK(V0)0

and zd(ψ) = 0.

P r o o f. Note that pr0 is a homomorphism of θ(L,K)-modules. In fact, for any

hj ∈ θ(L,K)j and vi ∈ Vi we have pr0(hj · vi) = (−1)d(hj)d(pr0)hj · pr0(vi), where

i, j ∈ N0. Since the mapping U(L) → V defined by x 7→ (−1)d(x)d(v)x ·v also satisfies

this property, ψ is well-defined. Moreover, for an arbitrary element l ∈ L we obtain

ψ(l · v)(x) = (−1)d(x)(d(l)+d(v))pr0(x · (l · v))

= (−1)d(l)(d(x)+d(v))ψ(v)(x · l) = (−1)d(l)d(ψ)(l · ψ(v))(x).

Therefore ψ is a homomorphism of L-modules. To prove that ψ is injective, we

assume that kerψ 6= 0. Evidently, zd(ψ) = 0 and thereby kerψ is a Z-homogeneous

subspace of V . Then kerψ 6= 0 leads to the existence of a minimal i > 0 such

that kerψ ∩ Vi 6= 0. Let vi ∈ kerψ ∩ Vi and l ∈ L−j, j > 0. This implies that

x · vi = pr0(x · vi) = (−1)d(x)d(vi)ψ(vi)(x) = 0 for every x ∈ U(L)−i. If q 6= j − i,

then

ψ(l · vi)(x) = (−1)d(x)(d(l)+d(vi))pr0(x · (l · vi)) = 0,

where x ∈ U(L)q. If q = j − i, then xl ∈ U(L)−i and (xl) · vi = 0. Consequently,

l · vi belongs to the trivial subspace kerψ ∩ Vi−j . Since V is transitive, vi ∈ V0

and i = 0. As a result, x · v0 = 0 for all x ∈ U(L)0. It follows from 1 ∈ U(L)0
that v0 = 0. This conclusion refutes the assumption kerψ 6= 0 and thereby ψ is an

injective homomorphism of L-modules.

Let µ : CoindK(V0)0 → V0 such that µ(f) = f(1). Let x be an element of U(L)j .

If j 6= 0, then pr0(x ·f(1)) = 0 and f(x) = 0. In the case of j = 0, the PBW theorem

provides a presentation x =
n
∑

j=1

∑

i>0

aijbij , where aij ∈ U(K)i and bij ∈ U(L−)−i.

Then

f(x) − (−1)d(x)d(f)pr0(x · f(1))

=

n
∑

j=1

∑

i>0

((−1)d(aij)d(f)aijf(bij)− (−1)d(x)d(f)aijpr0(bijf(1)))
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=

n
∑

j=1

((−1)d(a0j)d(f)a0jf(b0j)− (−1)d(x)d(f)a0jpr0(b0jf(1)))

=

n
∑

j=1

(−1)d(x)d(f)(a0jb0jf(1)− a0jb0jf(1)) = 0.

For an arbitrary element x ∈ U(L), f(x) = (−1)d(x)d(f)pr0(x · f(1)). Consequently,

ψ ◦ µ = idCoindK(V0)0 and ψ(V0) = CoindK(V0)0. �

For α = (α1, . . . , αk) ∈ N
k
0 we put |α| :=

k
∑

i=1

αi. Let O(k,m) denote the divided

power algebra over F with an F-basis {x(α) : α ∈ A(k,m)}, where

A(k,m) := {α := (α1, . . . , αk) ∈ N
k
0 : 0 6 αi 6 pmi − 1, i = 1, 2, . . . , k}.

Let Λ(l) be the exterior superalgebra over F in l variables ξ1, ξ2, . . . , ξl. Denote by

O(k, l,m) the tensor product O(k,m)
⊗

F

Λ(l).

Put Y0 := {1, 2, . . . , k} and Y1 := {1, 2, . . . , l}. Suppose that u − 〈j〉 ∈ Bs−1 and

{u − 〈j〉} = {u} \ {j}, when u ∈ Bs, j ∈ {u}. Let u(j) = |{l ∈ {u} : l < j}|. If j ∈

Y1 \ {u}, then we put u(j) = 0 and ξu−〈j〉 = 0. Thus, {x(α)ξu : α ∈ A(k,m), u ∈ B}

constitutes an F-basis of O(k, l,m) and zd(x(α)ξu) = |α|+ |u| > 0.

Let D1, . . . , Dk, d1, . . . , dl be the linear transformations of O(k, l,m) and εi :=

(δ(i, 1), . . . , δ(i, k)) such that

Di(x
(α)ξu) = x(α−εi)ξu, i ∈ Y0,

dj(x
(α)ξu) = (−1)u(j)x(α)ξu−〈j〉, j ∈ Y1.

Modular Lie superalgebras of Cartan type L(k, l,m), L =W,S,H,K, are subalge-

bras of the derivation superalgebras of O(k, l,m). For the precise definitions please

refer to [24]. If L =W,S,H , then {D1, . . . , Dk} is the canonical basis of L(k, l,m)−∩

L(k, l,m)0̄ and {d1, . . . , dl} is the canonical basis of L(k, l,m)− ∩ L(k, l,m)1̄. The

definition of the product in L(k, l,m) (see [24]) entails the vanishing adDpmi

i on

L(k, l,m), so we define zi := Dpmi

i , 1 6 i 6 k.

Theorem 2. Let L(k, l,m), L = W,S,H , denote a Z-graded Lie superalgebra

of Cartan type. If V is an L(k, l,m)0-module, then IndK(Vσ) is isomorphic to the

mixed product O(k, l,m)⊗ V .

P r o o f. Since (O(k, l,m) ⊗ V )k := 〈a ⊗ v : a ∈ O(k, l,m)k, v ∈ V 〉, the mixed

product is a positively graded module. According to the definition of the mixed
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product, see [22], we have

Di(x
(α)ξu ⊗ v) = x(α−εi)ξu ⊗ v, i ∈ Y0,

dj(x
(α)ξu ⊗ v) = (−1)u(j)x(α)ξu−〈j〉 ⊗ v, j ∈ Y1,

where α ∈ A(k,m), u ∈ B and v ∈ V . The first equality shows zi(O(k, l,m)⊗V ) = 0,

1 6 i 6 k. The above equalities also ensure the transitivity of O(k, l,m) ⊗ V .

Proposition 4 furnishes an embedding from O(k, l,m)⊗ V into CoindK(V ). Since

dim(CoindK(V )) = dim(O(k, l,m)⊗ V ) = 2lpm1+...+mk dimV,

the mapping is bijective. Then Lemma 1 gives an isomorphism between IndK(Vσ)

and O(k, l,m)⊗ V . �

Remark 3. Let the notation be as in Theorems 1 and 2. Then the following

statements are equivalent.

(1) There exists a nondegenerate super-symmetric or skew super-symmetric invari-

ant bilinear form on the mixed product O(k, l,m)⊗ V .

(2) There exists an isomorphism of L(k, l,m)0-modules ζ : V → (Vσ)
∗ such that

ζ(v)(w) = (−1)d(v)d(w)ζ(w)(v) or ζ(v)(w) = −(−1)d(v)d(w)ζ(w)(v) for all

v, w ∈ V .
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