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Abstract. Let ∆n,d (resp. ∆
′

n,d) be the simplicial complex and the facet ideal In,d =
(x1 . . . xd, xd−k+1 . . . x2d−k, . . . , xn−d+1 . . . xn) (resp. Jn,d = (x1 . . . xd, xd−k+1 . . . x2d−k,
. . . , xn−2d+2k+1 . . . xn−d+2k, xn−d+k+1 . . . xnx1 . . . xk)). When d > 2k + 1, we give the

exact formulas to compute the depth and Stanley depth of quotient rings S/Jn,d and S/I
t
n,d

for all t > 1. When d = 2k, we compute the depth and Stanley depth of quotient rings
S/Jn,d and S/In,d, and give lower bounds for the depth and Stanley depth of quotient rings

S/Itn,d for all t > 1.
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1. Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K in n variables.

Let M be a finitely generated Zn-graded S-module. A Stanley decomposition D of

M is a finite direct sum of K-vector spaces

D : M =
r

⊕

i=1

uiK[Zi],

where ui ∈ M is homogeneous and Zi ⊆ {x1, . . . , xn}, i = 1, . . . , r, and its Stanley

depth, sdepth(D), is defined as min{|Zi| : i = 1, . . . , r}. The number

sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}

is called the Stanley depth of M .
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Stanley conjectured in [13] that sdepth(M) > depth(M) for any Zn-graded S-

module M . There are many researches on this conjecture, especially when M has

the form S/I or I with I a squarefree monomial ideal of S, e.g., [1], [8], [11], [12].

In [6], Duval et al. constructed an explicit counterexample to disprove the Stanley

conjecture for S/I, where I is a monomial ideal of S. Thus the Stanley conjecture

is open for monomial ideals I ⊂ S.

Let ∆ ⊂ 2[n] be a simplicial complex. Each element of ∆ is called a face of ∆, and

a face F is called a facet if F is a maximal face with respect to inclusion. Let F(∆)

denote the set of facets of ∆. If F ∈ F(∆), we denote xF =
∏

j∈F

xj . Then the facet

ideal of ∆ is a squarefree monomial ideal I(∆) of S, I(∆) = (xF : F ∈ F(∆)). The

facet ideal was studied by Faridi in [7] from the depth perspective. In this paper, we

consider depth and Stanley depth of I(∆) of some classes of simplicial complexes.

A line graph of length n, denoted by Ln, is a graph with the vertex set V = [n]

and edge set E = {{1, 2}, {2, 3}, . . . , {n−1, n}}. The depth and Stanley depth of the

edge ideal associated to Ln (which is in fact the facet ideal of Ln) were computed

by Morey in [9] and Ştefan in [14], respectively. A cyclic graph Cn is a graph with

the vertex set V = [n] and edge set E ∪ {n, 1}. The depth and Stanley depth of the

edge ideal associated to Cn were computed by Cimpoeaş in [5].

Let ∆n,d be the simplicial complex with the set of facets F(∆n,d) = {{1, 2, . . . , d},

{d − k + 1, d − k + 2, . . . , 2d − k}, . . . , {n − 2d + k + 1, n − 2d + k + 2, . . . , n −

d + k}, {n − d + 1, n − d + 2, . . . , n}}, where n > d > k > 1. It is easy to see

that d − k | n − k. We denote the facet ideal I(∆n,d) of ∆n,d by In,d, where

In,d = (x1 . . . xd, xd−k+1 . . . x2d−k, . . . , xn−d+1 . . . xn). When d = 2 and k = 1, then

In,d = I(Ln).

Let ∆′

n,d be the simplicial complex with the set of facets F(∆′

n,d) = {{1, 2, . . . , d},

{d−k+1, d−k+2, . . . , 2d−k}, . . . , {n−2d+2k+1, n−2d+2k+2, . . . , n−d+ 2k},

{n − d + k + 1, . . . , n, 1, . . . , k}}, where d > 2k > 2 and n > 3d − 3k. It is easy to

see that d− k | n. We denote the facet ideal I(∆′

n,d) of ∆
′

n,d by Jn,d, where Jn,d =

(x1 . . . xd, xd−k+1 . . . x2d−k, . . . , xn−2d+2k+1 . . . xn−d+2k, xn−d+k+1 . . . xnx1 . . . xk). If

d = 2 and k = 1, then Jn,d = I(Cn).

The followings are our main results, which generalize some results of [5], [9], [14].

Theorem 1.1. Let d > 2k + 1. Then

(1) sdepth(S/Itn,d) = depth(S/Itn,d) = n− n−k
d−k for all t > 1,

(2) sdepth(S/Jn,d) = depth(S/Jn,d) = n− n
d−k .

Theorem 1.2. Let d = 2k. Then

(1) sdepth(S/In,d) = depth(S/In,d) =
(d−2)n

d + ⌈ 2n
3d ⌉,
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(2) depth(S/Itn,d) > max
{

1, (d−2)n
d + ⌈ 2n−dt+d

3d ⌉
}

for all t > 1, sdepth(S/Itn,d) >

max
{

1, (d−2)n
d + ⌈ 2n−dt+d

3d ⌉
}

for all t > 1,

(3) depth(S/Jn,d) =
(d−2)n

d + ⌈ 2n−d
3d ⌉,

sdepth(S/Jn,d) = (d−2)n
d + ⌈ 2n−d

3d ⌉ for n
k ≡ 0 (mod 3) and n

k ≡ 2 (mod 3),
(d−2)n

d + ⌈ 2n−d
3d ⌉ 6 sdepth(S/Jn,d) 6

(d−2)n
d + ⌈ 2n

3d ⌉ for
n
k ≡ 1 (mod 3).

2. Depth and Stanley depth of the facet ideals

First, we recall a well-known result, referred to as the Depth lemma, that will be

heavily used in the proofs in this article. Two different versions of the lemma will

be used in this article, so both are stated here for ease of reference.

Lemma 2.1 (Depth lemma). Let S be a local ring or a Noetherian graded ring

with S0 local. If

0 → A → B → C → 0

is a short exact sequence of finitely generated S-modules, where the maps are all

homogeneous, then ([15], Lemma 1.3.9):

a) If depth(B) < depth(C), then depth(A) = depth(B).

b) If depth(B) = depth(C), then depth(A) > depth(B).

c) If depth(B) > depth(C), then depth(A) = depth(C) + 1.

Also (see [3], Proposition 1.2.9):

d) depth(A) > min{depth(B), depth(C) + 1}.

e) depth(B) > min{depth(A), depth(C)}.

f) depth(C) > min{depth(A)− 1, depth(B)}.

In [12], Rauf proved the analog of Lemma 2.1 (e) for sdepth:

Lemma 2.2. Let 0 → U → M → N → 0 be a short exact sequence of finitely

generated Zn-graded S-modules. Then

sdepth(M) > min{sdepth(U), sdepth(N)}.

Next, we will discuss our main results in two cases.

2.1. The case d > 2k + 1. Let I ⊂ S be a monomial ideal. The big height of I,

denoted by bight(I), is the maximum height of the minimal prime ideals of I. The

arithmetical rank of I, denoted by ara(I), is the minimum number r of elements of

S such that the ideal (a1, a2, . . . , ar) has the same radical as I. It is well-known that

ht(I) 6 bight(I) 6 pd(S/I) 6 ara(I) 6 |G(I)|,
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where pd(S/I) denotes the projective dimension of S/I and G(I) denotes the set of

minimal monomial generators of I. We see that |G(In,d)| =
n−k
d−k and |G(Jn,d)| =

n
d−k .

A prime ideal P is associated to I if P = (I : c) for some monomial c ∈ S. The set

of prime ideals associated to I will be denoted by Ass(S/I). The associated prime

ideals of a monomial ideal are monomial prime ideals. The set Min(S/I) consists of

all prime ideals that are minimal over I with respect to inclusion. It is known that

Min(S/I) ⊂ Ass(S/I). When I is squarefree, Ass(S/I) = Min(S/I).

Our proofs of the main results make heavy use of the following lemma.

Lemma 2.3. P = (xk+1, xk+1+(d−k), xk+1+2(d−k), . . . , xn−d+k+1) ∈ Min(S/In,d),

and P ′ = (xk+1, xk+1+(d−k), xk+1+2(d−k), . . . , xn−d+2k+1) ∈ Min(S/Jn,d).

P r o o f. Let we have ai = x1+(i−1)(d−k)x2+(i−1)(d−k) . . . xd+(i−1)(d−k) and bj =

xk+1+(j−1)(d−k), where i, j = 1, 2, . . . , n−k
d−k . Then In,d = (a1, a2, . . . , a(n−k)/(d−k))

and P = (b1, b2, . . . , b(n−k)/(d−k)). It is easy to see that bj divides ai if and only

if i = j, so In,d ⊂ P . We assume that P is not minimal over In,d. Let P0 ( P

be a minimal prime ideal of In,d. Since In,d is squarefree, P0 ( P is a monomial

prime ideal, and there exists ai such that none of G(P0) divides ai. Hence In,d * P0,

a contradiction. Similarly, P ′ is a minimal prime ideal of S/Jn,d. �

Proposition 2.4. bight(In,d) = pd(S/In,d) = ara(In,d) = |G(In,d)| =
n−k
d−k .

P r o o f. Let we have P = (xk+1, xk+1+(d−k), xk+1+2(d−k), . . . , xn−d+k+1) ∈

Min(S/In,d) and ht(P ) = n−k
d−k by Lemma 2.3. Then n−k

d−k 6 bight(In,d) 6

pd(S/In,d) 6 ara(In,d) 6 |G(In,d)| =
n−k
d−k . Now the result is clear. �

Now, we give the exact formulas for sdepth(S/In,d) and depth(S/In,d).

Theorem 2.5. sdepth(S/In,d) = depth(S/In,d) = n− n−k
d−k .

P r o o f. Since |G(In,d)| =
n−k
d−k , by [4], Proposition 1.2, we have sdepth(S/In,d) >

n − n−k
d−k . On the other hand, there exists a prime ideal P ∈ Ass(S/In,d) such that

ht(P ) = n−k
d−k by Lemma 2.3. Then sdepth(S/In,d) 6 n− n−k

d−k by [8], Proposition 1.3.

By the Auslander-Buchsbaum formula and Proposition 2.4, we get depth(S/In,d) =

n− pd(S/In,d) = n− n−k
d−k . �

The following corollary states that the Stanley inequality holds for In,d.

Corollary 2.6. sdepth(In,d) > n− ⌊ n−k
2(d−k)⌋ > depth(In,d).

P r o o f. Since |G(In,d)| = n−k
d−k , it follows that sdepth(In,d) > max{1, n −

⌊ 1
2 |G(In,d)|⌋} = n−⌊ n−k

2(d−k)⌋ > n− n−k
d−k +1 = depth(In,d) by [10], Theorem 2.3, and

Theorem 2.5. �
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Next, we present a main result.

Theorem 2.7. For all t > 1, sdepth(S/Itn,d) = depth(S/Itn,d) = n− n−k
d−k .

P r o o f. We use induction on n and t. If n = d, then Itn,d = (xt
1 . . . x

t
d) is principal.

It follows that sdepth(S/Itn,d) = depth(S/Itn,d) = d − 1 = d − d−k
d−k for all t > 1.

Assume that n > 2d− k in the following.

If t = 1, the result holds for all n by Theorem 2.5. Now let t > 2. We denote

u := xn−d+1 . . . xn−d+k, v := xn−d+k+1 . . . xn and consider the short exact sequence

0 →
S

(Itn,d : uv)
→

S

(Itn,d : v)
→

S

((Itn,d : v), u)
→ 0.

Let G(In,d) = {a1, a2, . . . , a(n−k)/(d−k)}, the same as in the proof of Lemma 2.3,

and w ∈ G(Itn,d). If a(n−k)/(d−k) | w, then w
a(n−k)/(d−k)

∈ G(Itn,d : uv) ∩ It−1
n,d . If

a(n−k)/(d−k) ∤ w and a(n−d)/(d−k) | w, then w
u ∈ G(Itn,d : uv) and w

a(n−d)/(d−k)
| w

u ,

where w
a(n−d)/(d−k)

∈ It−1
n,d . If a(n−k)/(d−k) ∤ w and a(n−d)/(d−k) ∤ w, then

w
1 ∈ G(Itn,d :

uv) and w must be divisible by some element of It−1
n,d . Hence (I

t
n,d : uv) ⊆ It−1

n,d . It

follows that (Itn,d : uv) = It−1
n,d .

We get sdepth(S/(Itn,d : uv)) = sdepth(S/It−1
n,d ) = n− n−k

d−k by induction hypothesis

on t. Similarly, we prove that depth(S/(Itn,d : uv)) = n− n−k
d−k .

Since u divides any element of G(Itn,d) which is divided by a(n−k)/(d−k) or

a(n−d)/(d−k), we get ((Itn,d : v), u) = (Itn−2d+2k,dS, u). Notice that u is regular

on S/Itn−2d+2k,dS, hence the induction hypothesis on n and [8], Lemma 3.6, imply

that

sdepthS(S/((I
t
n,d : v), u)) = sdepthSn−2d+2k

( Sn−2d+2k

Itn−2d+2k,d

)

+ (2d− 2k)− 1

= (n− 2d+ 2k)−
(n− 2d+ 2k)− k

d− k
+ 2d− 2k − 1

= n−
n− k

d− k
+ 1,

where Sn−2d+2k = K[x1, . . . , xn−2d+2k]. Similarly, depth(S/((I
t
n,d : v), u)) = n −

n−k
d−k + 1. Then we have sdepth(S/(Itn,d : v)) > n − n−k

d−k and depth(S/(I
t
n,d : v)) =

n− n−k
d−k by Lemma 2.1 and Lemma 2.2.

Since v divides any element of G(Itn,d) which is divided by a(n−k)/(d−k), (I
t
n,d, v) =

(Itn−d+k,dS, v). Noting that v is regular on S/Itn−d+k,dS, by induction hypothesis
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on n and [8], Lemma 3.6, we get

sdepthS(S/(I
t
n,d, v)) = sdepthSn−d+k

( Sn−d+k

Itn−d+k,d

)

+ (d− k)− 1

= (n− d+ k)−
(n− d+ k)− k

d− k
+ d− k − 1

= n−
n− k

d− k
,

where Sn−d+k = K[x1, . . . , xn−d+k]. Similarly, we get depth(S/(I
t
n,d, v)) = n− n−k

d−k .

By applying Lemmas 2.1 and 2.2 to the short exact sequence

0 →
S

(Itn,d : v)
→

S

Itn,d
→

S

(Itn,d, v)
→ 0,

we obtain sdepth(S/Itn,d) > n− n−k
d−k and depth(S/I

t
n,d) = n− n−k

d−k .

From Lemma 2.3, P = (xk+1, xk+1+(d−k), . . . , xn−d+k+1) ∈ Min(S/In,d) =

Min(S/Itn,d) ⊆ Ass(S/I
t
n,d) for all t > 1, and ht(P ) = n−k

d−k . Then sdepth(S/I
t
n,d) 6

dim(S/P ) = n− n−k
d−k by [8], Proposition 1.3. This completes the proof. �

Proposition 2.8. bight(Jn,d) = pd(S/Jn,d) = ara(Jn,d) = |G(Jn,d)| =
n

d−k .

P r o o f. We have P = (xk+1, xk+1+(d−k), xk+1+2(d−k), . . . , xn−d+2k+1) ∈

Min(S/Jn,d) and ht(P ) = n
d−k by Lemma 2.3. Then n

d−k 6 bight(Jn,d) 6

pd(S/Jn,d) 6 ara(Jn,d) 6 |G(Jn,d)| =
n

d−k . The proof is completed. �

Theorem 2.9. sdepth(S/Jn,d) = depth(S/Jn,d) = n− n
d−k .

P r o o f. Since |G(Jn,d)| =
n

d−k , by [4], Proposition 1.2, we have sdepth(S/Jn,d) >

n − n
d−k . On the other hand, there exists a prime ideal P ∈ Ass(S/Jn,d) such that

ht(P ) = n
d−k by Lemma 2.3. Then sdepth(S/Jn,d) 6 n − n

d−k by [8], Proposi-

tion 1.3. By the Auslander-Buchsbaum formula and Proposition 2.8, we obtain

depth(S/Jn,d) = n− pd(S/Jn,d) = n− n
d−k . �

The following corollary implies that the Stanley inequality holds for Jn,d.

Corollary 2.10. sdepth(Jn,d) > n− ⌊ n
2(d−k)⌋ > depth(Jn,d).

P r o o f. Since |G(Jn,d)|=
n

d−k , we have sdepth(Jn,d)>max{1, n−⌊ 1
2 |G(Jn,d)|⌋}=

n−⌊ n
2(d−k)⌋>n− n

d−k +1=depth(Jn,d) by [10], Theorem 2.3, and Theorem 2.9. �
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2.2. The case d = 2k. Let P ⊂ 2[n] be a poset. If F,G ⊂ [n], the interval [F,G]

consists of all subsets X of [n] such that F ⊂ X ⊂ G. Let P : P =
r
⋃

i=1

[Fi, Gi] be

a partition of P , i.e. [Fi, Gi] ∩ [Fj , Gj ] = ∅ for all i 6= j. We denote sdepth(P) =

min
i∈[r]

{|Gi|}. Also, we define the Stanley depth of P to be the number

sdepth(P) = max{sdepth(P) : P is a partition of P}.

For α ∈ N and σ ∈ P , we put

Pα = {τ ∈ P : |τ | = α}, Pα,σ = {τ ∈ Pα : σ ⊂ τ}.

From the proof of [5], Theorem 1.9, we see that if σ ∈ P is such that Pα,σ = ∅,

then sdepth(P) < α. We recall the method of Herzog, Vladoiu and Zheng in [8] for

computing the Stanley depth of S/I and I, where I is a squarefree monomial ideal.

Let G(I) = {u1, . . . , us} be the set of minimal monomial generators of I. We define

the following two posets:

PI =

{

σ ⊂ [n] : ui | xσ =
∏

j∈σ

xj for some i

}

and PS/I = 2[n] \ PI .

From [8], Corollary 2.2, it follows that sdepth(I) = sdepth(PI) and sdepth(S/I) =

sdepth(PS/I).

Now, we give another main result of this article.

Theorem 2.11. sdepth(S/In,d) = depth(S/In,d) =
(d−2)n

d + ⌈ 2n
3d ⌉.

P r o o f. First, we show that sdepth(S/In,d) > depth(S/In,d) =
(d−2)n

d + ⌈ 2n
3d ⌉ by

induction on n. If n = d, then In,d = (x1 . . . xd) is principal. Thus sdepth(S/In,d) =

depth(S/In,d) = d − 1. If n = d + k, we denote u := xk+1 . . . xd and consider the

short exact sequence

0 → S/(In,d : u) → S/In,d → S/(In,d, u) → 0.

Note that (In,d : u) = (x1 . . . xk, xd+1 . . . xd+k), (In,d, u) = (u), and they both are

complete intersections. Thus sdepth(S/(In,d : u)) = depth(S/(In,d : u)) = n − 2

and sdepth(S/(In,d, u)) = depth(S/(In,d, u)) = n− 1. Then we get sdepth(S/In,d) >

depth(S/In,d) = n− 2 by Lemmas 2.1 and 2.2.

Suppose that n > d+ 2k and consider the short exact sequence

0 →
S

(In,d : xn−d+1 . . . xn−d+k)
→

S

In,d
→

S

(In,d, xn−d+1 . . . xn−d+k)
→ 0.
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Then (In,d : xn−d+1 . . . xn−d+k)= (In−3k,dS, xn−3k+1 . . . xn−d, xn−d+k+1 . . . xn) := I ′.

Since xn−3k+1 . . . xn−d, xn−d+k+1 . . . xn is a regular sequence on S/In−3k,dS, by in-

duction hypothesis and [8], Lemma 3.6 we get

depthS(S/I
′) = depthSn−3k

(Sn−3k/In−3k,d) + 3k − 2

=
(d− 2)(n− 3k)

d
+
⌈2(n− 3k)

3d

⌉

+ 3k − 2

=
(d− 2)n

d
+
⌈2n

3d

⌉

,

where Sn−3k = K[x1, . . . , xn−3k]. Similarly, sdepth(S/I
′) > (d−2)n

d + ⌈ 2n
3d ⌉.

Also, we have (In,d, xn−d+1 . . . xn−d+k) = (In−d,dS, xn−d+1 . . . xn−d+k) := I
′′

, and

xn−d+1 . . . xn−d+k is regular on S/In−d,dS. We deduce that

depthS(S/I
′′

) = depthSn−d
(Sn−d/In−d,d) + d− 1

=
(d− 2)(n− d)

d
+
⌈2(n− d)

3d

⌉

+ d− 1

=
(d− 2)n

d
+
⌈2n+ d

3d

⌉

by induction hypothesis and [8], Lemma 3.6, where Sn−d = K[x1, . . . , xn−d]. Sim-

ilarly, sdepth(S/I
′′

) >
(d−2)n

d + ⌈ 2n+d
3d ⌉. Then sdepth(S/In,d) > depth(S/In,d) =

(d−2)n
d + ⌈ 2n

3d ⌉ by Lemmas 2.1 and 2.2.

Next we only need to show that sdepth(S/In,d) 6
(d−2)n

d + ⌈ 2n
3d ⌉.

Let P = PS/In,d
, t = ⌈ n

3k ⌉ and α = (d−2)n
d + ⌈ 2n

3d ⌉. We consider the following two

cases.

1. If n
k ≡ 1 (mod 3) and σ = {k + 1, . . . , 2k, k + 1 + 3k, . . . , 2k + 3k, . . . , k + 1 +

(t − 2)3k, . . . , 2k + (t − 2)3k, k + 1 + (t − 2)3k + 2k, . . . , 2k + (t − 2)3k + 2k}, then

Pα+1,σ = ∅. Thus sdepth(S/In,d) = sdepth(P) 6 α.

2. If n
k ≡ 0 (mod 3) or n

k ≡ 2 (mod 3), and σ = {k+1, . . . , 2k, k+1+3k, . . . , 2k+

3k, . . . , k+1+(t−1)3k, . . . , 2k+(t−1)3k}, then Pα+1,σ = ∅. Thus sdepth(S/In,d) =

sdepth(P) 6 α.

It follows that sdepth(S/In,d) 6 α = (d−2)n
d + ⌈ 2n

3d ⌉. �

Remark 2.12. Set d = 2, k = 1 in Theorem 2.11. Then we get depth(S/In,2) =

sdepth(S/In,2) = ⌈ 1
3n⌉, so our results generalize [9], Lemma 2.8, and [14], Lemma 4.

On the other hand, by the Auslander-Buchsbaum formula, we have pd(S/In,2) =

n− ⌈ 1
3n⌉, which coincides with [2], Proposition 3.1.1 (1).

As a consequence of Theorem 2.11, we get the following corollary.

Corollary 2.13. sdepth(In,d) > n− ⌊n−k
2k ⌋ > depth(In,d).
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P r o o f. Note that |G(In,d)| = n
k − 1, which implies that sdepth(In,d) >

max{1, n − ⌊ 1
2 |G(In,d)|⌋} = n − ⌊n−k

2k ⌋ > depth(In,d) by [10], Theorem 2.3 and

Theorem 2.11. �

The following proposition generalizes [9], Proposition 3.2, (where d = 2).

Proposition 2.14. depth(S/Itn,d) > max{1, (d−2)n
d + ⌈ 2n−dt+d

3d ⌉} for all t > 1,

and sdepth(S/Itn,d) > max{1, (d−2)n
d + ⌈ 2n−dt+d

3d ⌉} for all t > 1.

P r o o f. Notice that (x1, . . . , xn) /∈ Ass(S/Itn,d), hence depth(S/I
t
n,d) > 1 for all

t > 1. By [4], Theorem 2.1, we also get sdepth(S/Itn,d) > 1 for all t > 1. Then

it remains to show that depth(S/Itn,d) >
(d−2)n

d + ⌈ 2n−dt+d
3d ⌉ and sdepth(S/Itn,d) >

(d−2)n
d + ⌈ 2n−dt+d

3d ⌉.

The proof is by induction on n and t. If n = d, then Itn,d = (xt
1 . . . x

t
d) is principal.

Thus sdepth(S/Itn,d) = depth(S/I
t
n,d) = d− 1 >

(d−2)d
d + ⌈ 2d−dt+d

3d ⌉ for all t > 1. If

n = d+ k, then In,d = (x1 . . . xd, xk+1 . . . x3k). Next we use induction on j to show

that depth(S/Ijn,d) > 3(k− 1)+ ⌈ 4−j
3 ⌉ and sdepth(S/Ijn,d) > 3(k− 1)+ ⌈ 4−j

3 ⌉ for all

j > 1.

If j = 1, then the results hold by Theorem 2.11. Let j > 2. We denote w1 :=

xk+1 . . . xd, w2 := xd+1 . . . x3k and consider the short exact sequence

0 →
S

(Ijn,d : w1w2)
→

S

(Ijn,d : w2)
→

S

((Ijn,d : w2), w1)
→ 0.

Note that (Ijn,d : w1w2)=Ij−1
n,d from the proof of Theorem 2.7. We get depth(S/(I

j
n,d :

w1w2)) > 3(k−1)+ ⌈ 4−j
3 ⌉ and sdepth(S/(Ijn,d : w1w2)) > 3(k−1)+ ⌈ 4−j

3 ⌉ by induc-

tion hypothesis. Also, ((Ijn,d : w2), w1) = (w1) is principal. Thus depth(S/((I
j
n,d :

w2), w1)) = sdepth(S/((Ijn,d : w2), w1)) = 3k − 1. Then depth(S/(Ijn,d : w2)) >

3(k − 1) + ⌈ 4−j
3 ⌉ and sdepth(S/(Ijn,d : w2)) > 3(k − 1) + ⌈ 4−j

3 ⌉ by Lemmas 2.1

and 2.2. We consider another short exact sequence

0 →
S

(Ijn,d : w2)
→

S

Ijn,d
→

S

(Ijn,d, w2)
→ 0.

Since (Ijn,d, w2) = (xj
1 . . . x

j
d, w2) is a complete intersection, depth(S/(I

j
n,d, w2)) =

sdepth(S/(Ijn,d, w2)) = 3k − 2. Then we get depth(S/Ijn,d) > 3(k − 1) + ⌈ 4−j
3 ⌉ and

sdepth(S/Ijn,d) > 3(k − 1) + ⌈ 4−j
3 ⌉ by Lemmas 2.1 and 2.2.

Assume that n > d+2k. If t = 1, by Theorem 2.11 the results hold for all n. Now

let t > 2. We denote u := xn−d+1 . . . xn−d+k, v := xn−d+k+1 . . . xn and consider the

short exact sequence

(∗) 0 →
S

(Itn,d : uv)
→

S

(Itn,d : u)
→

S

((Itn,d : u), v)
→ 0.
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Let G(In,d) = {a1, a2, . . . , a(n−k)/(d−k)}, the same as in the proof of Lemma 2.3.

Note that (Itn,d : uv) = It−1
n,d from the proof of Theorem 2.7. By induction hypothesis

on t,
depth(S/(Itn,d : uv)) = depth(S/It−1

n,d )

>
(d− 2)n

d
+
⌈2n− d(t− 1) + d

3d

⌉

=
(d− 2)n

d
+
⌈2n− dt+ 2d

3d

⌉

.

Similarly, sdepth(S/(Itn,d : uv)) > (d−2)n
d + ⌈ 2n−dt+2d

3d ⌉.

Since v divides any element of G(Itn,d) which is divided by a(n−k)/(d−k), we have

((Itn,d : u), v) = ((Itn−k,dS : u), v). Noting that v is regular on S/(Itn−k,dS : u), by [8],

Lemma 3.6, we get depthS(S/((I
t
n,d : u), v)) = depthSn−k

(Sn−k/(I
t
n−k,d : u)) + k− 1

and sdepthS(S/((I
t
n,d : u), v)) = sdepthSn−k

(Sn−k/(I
t
n−k,d : u)) + k − 1, where

Sn−k = K[x1, . . . , xn−k]. We denote w := xn−3k+1 . . . xn−d and consider another

short exact sequence

0 →
Sn−k

(Itn−k,d : wu)
→

Sn−k

(Itn−k,d : u)
→

Sn−k

((Itn−k,d : u), w)
→ 0.

From the proof of Theorem 2.7, (Itn−k,d : wu) = It−1
n−k,d. By induction hypothesis,

depth(Sn−k/(I
t
n−k,d : wu)) = depth(Sn−k/I

t−1
n−k,d)

>
(d− 2)(n− k)

d
+
⌈2(n− k)− d(t− 1) + d

3d

⌉

=
(d− 2)n

d
+
⌈2n− dt+ d

3d

⌉

− (k − 1).

Similarly, sdepth(Sn−k/(I
t
n−k,d : wu)) > (d−2)n

d + ⌈ 2n−dt+d
3d ⌉ − (k − 1).

We see that ((Itn−k,d : u), w) = (Itn−3k,dSn−k, w) := I ′, since w divides any element

of G(Itn−k,d) which is divided by a(n−d)/(d−k) or a(n−3k)/(d−k). Noticing that w is

regular on Sn−k/I
t
n−3k,dSn−k, by induction hypothesis on n and [8], Lemma 3.6, we

get

depthSn−k
(Sn−k/I

′) = depthSn−3k
(Sn−3k/I

t
n−3k,d) + 2k − 1

>
(d− 2)(n− 3k)

d
+
⌈2(n− 3k)− dt+ d

3d

⌉

+ 2k − 1

=
(d− 2)n

d
+
⌈2n− dt+ d

3d

⌉

− (k − 1),

where Sn−3k = K[x1, . . . , xn−3k]. Similarly, sdepth(Sn−k/I
′) > (d−2)n

d +⌈ 2n−dt+d
3d ⌉−

(k− 1). Thus we have depth(Sn−k/(I
t
n−k,d : u)) > (d−2)n

d + ⌈ 2n−dt+d
3d ⌉− (k− 1) and
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sdepth(Sn−k/(I
t
n−k,d : u)) > (d−2)n

d + ⌈ 2n−dt+d
3d ⌉ − (k − 1) by Lemmas 2.1 and 2.2.

It follows that depth(S/((Itn,d : u), v)) > (d−2)n
d + ⌈ 2n−dt+d

3d ⌉ and

sdepth(S/((Itn,d : u), v)) >
(d− 2)n

d
+
⌈2n− dt+ d

3d

⌉

.

By applying Lemmas 2.1 and 2.2 to the sequence (∗), we get depth(S/(Itn,d : u)) >
(d−2)n

d + ⌈ 2n−dt+d
3d ⌉ and sdepth(S/(Itn,d : u)) > (d−2)n

d + ⌈ 2n−dt+d
3d ⌉.

Finally, we consider the following short exact sequence

0 →
S

(Itn,d : u)
→

S

Itn,d
→

S

(Itn,d, u)
→ 0.

Since u divides any element of G(Itn,d) which is divided by element a(n−k)/(d−k) or

a(n−d)/(d−k), we get (I
t
n,d, u) = (Itn−d,dS, u). Noting that u is regular on S/Itn−d,dS,

by induction hypothesis on n and [8], Lemma 3.6, we obtain

depthS(S/(I
t
n,d, u)) = depthSn−d

(Sn−d/I
t
n−d,d) + d− 1

>
(d− 2)(n− d)

d
+
⌈2(n− d)− dt+ d

3d

⌉

+ d− 1

=
(d− 2)n

d
+
⌈2n− dt+ 2d

3d

⌉

,

where Sn−d = K[x1, . . . , xn−d]. Similarly, sdepth(S/(I
t
n,d, u)) >

(d−2)n
d +⌈ 2n−dt+2d

3d ⌉.

Now the results follow from Lemmas 2.1 and 2.2. �

Example 2.15. Let ∆6,4 be the simplicial complex with the set of facets

F(∆6,4) = {{1, 2, 3, 4}, {3, 4, 5, 6}}. Then I6,4 = (x1x2x3x4, x3x4x5x6) and we com-

pute that depth(S/I46,4) = 4, while in this case (d−2)n
d + ⌈ 2n−dt+d

3d ⌉ = 3. So the

bound for the depth given by Proposition 2.14 is not necessarily sharp.

Now we consider the depth and Stanley depth of S/Jn,d. The next proposition

generalizes [5], Propositions 1.3 and 1.8 (where d = 2, k = 1).

Proposition 2.16. sdepth(S/Jn,d) > depth(S/Jn,d) =
(d−2)n

d + ⌈ 2n−d
3d ⌉.

P r o o f. We use induction on n. If n = 3k, then we have Jn,d = (x1 . . . x2k,

xk+1 . . . x3k, x2k+1 . . . x3kx1 . . . xk). We denote u := x2k+1 . . . x3k and consider the

short exact sequence

0 → S/(Jn,d : u) → S/Jn,d → S/(Jn,d, u) → 0.

Note that (Jn,d : u) = (x1 . . . xk, xk+1 . . . x2k), (Jn,d, u) = (x1 . . . x2k, u) and they

are both complete intersections. Thus sdepth(S/(Jn,d : u)) = depth(S/(Jn,d : u)) =
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3k−2 and sdepth(S/(Jn,d, u))=depth(S/(Jn,d, u)) = 3k−2. Hence sdepth(S/Jn,d)>

depth(S/Jn,d) = 3k − 2 by Lemmas 2.1 and 2.2.

Suppose that n > 4k and consider the short exact sequence

0 →
S

(Jn,d : xn−k+1 . . . xn)
→

S

Jn,d
→

S

(Jn,d, xn−k+1 . . . xn)
→ 0.

We denote w := xn−k+1 . . . xn. Then (Jn,d : w) = (x1 . . . xk, xn−2k+1 . . . xn−k, I
′S),

where I ′ := (xk+1 . . . x3k, . . . , xn−4k+1 . . . xn−2k) ⊂ S′ := K[xk+1, . . . , xn−2k], and

x1 . . . xk, xn−2k+1 . . . xn−k is a regular sequence on S/I ′S. By [8], Lemma 3.6, and

Theorem 2.11, we have

depthS(S/(Jn,d : w)) = depthS′(S′/I ′) + 3k − 2

= depthSn−3k
(Sn−3k/In−3k,d) + 3k − 2

=
(d− 2)(n− 3k)

d
+
⌈2(n− 3k)

3d

⌉

+ 3k − 2

=
(d− 2)n

d
+
⌈2n

3d

⌉

,

where Sn−3k = K[x1, . . . , xn−3k]. Similarly, sdepth(S/(Jn,d : w)) = (d−2)n
d + ⌈ 2n

3d ⌉ >
(d−2)n

d + ⌈ 2n−d
3d ⌉.

Also, (Jn,d, w) = (In−k,dS,w) and w is regular on S/In−k,dS. By [8], Lemma 3.6,

and Theorem 2.11, we get

depthS(S/(Jn,d, w)) = depthSn−k
(Sn−k/In−k,d) + k − 1

=
(d− 2)(n− k)

d
+
⌈2(n− k)

3d

⌉

+ k − 1

=
(d− 2)n

d
+
⌈2n− d

3d

⌉

,

where Sn−k = K[x1, . . . , xn−k]. Similarly, sdepth(S/(Jn,d, w)) = (d−2)n
d + ⌈ 2n−d

3d ⌉,

thus sdepth(S/Jn,d) >
(d−2)n

d + ⌈ 2n−d
3d ⌉ by Lemma 2.2.

Now we consider the depth. If n
k ≡ 0 (mod 3) or n

k ≡ 2 (mod 3), then (d−2)n
d +

⌈ 2n
3d ⌉ =

(d−2)n
d + ⌈ 2n−d

3d ⌉, so depth(S/Jn,d) =
(d−2)n

d + ⌈ 2n−d
3d ⌉ by Lemma 2.1.

Assume that n
k ≡ 1 (mod 3). We have

(Jn,d : xn−k+1 . . . xn)

Jn,d
∼= xn−2k+1 . . . xn−k(R/Q)[xn−2k+1, . . . , xn−k]

k
⊕

i=1

x1 . . . xk · xn−k+2−i . . . xn−k(Ri/Q1)[x1, . . . , xk, xn−k+2−i, . . . , xn−k],
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where R = K[x1, . . . , xn−2k, xn−k+1, . . . , xn], Q = (xn−3k+1 . . . xn−2k, xn−k+1 . . . xn,

In−3k,dS), Ri = K[xk+1, . . . , xn−2k, xn−2k+1, . . . , xn−k−i, xn−k+1, . . . , xn], 1 6 i 6 k,

and Q1 = (xk+1 . . . x2k, xn−k+1 . . . xn, x2k+1 . . . x4k, . . . , xn−4k+1 . . . xn−2k). Using

the isomorphism and Theorem 2.11, we obtain that

depth
( (Jn,d : w)

Jn,d

)

= min
i
{depthR(R/Q) + k, depthRi(Ri/Q1) + (k + i− 1)}

=
(d− 2)(n− 4k)

d
+
⌈2(n− 4k)

3d

⌉

+ (3k − i− 2) + (k + i− 1)

=
(d− 2)n

d
+
⌈2n− d

3d

⌉

.

Now, applying Lemma 2.1 to the short exact sequence

0 →
(Jn,d : w)

Jn,d
→

S

Jn,d
→

S

(Jn,d : w)
→ 0,

the proof is completed. �

Corollary 2.17. sdepth(Jn,d) > n− ⌊ n
2k⌋ > depth(Jn,d).

P r o o f. Since |G(Jn,d)| =
n
k , we have sdepth(Jn,d) > max{1, n−⌊ 1

2 |G(Jn,d)|⌋} =

n− ⌊ n
2k ⌋ > depth(Jn,d) by [10], Theorem 2.3, and Proposition 2.16. �

The next theorem generalizes [5], Theorem 1.9.

Theorem 2.18. (1) sdepth(S/Jn,d) = (d−2)n
d + ⌈ 2n−d

3d ⌉ for n
k ≡ 0 (mod 3) and

n
k ≡ 2 (mod 3). (2) sdepth(S/Jn,d) 6

(d−2)n
d + ⌈ 2n

3d ⌉ for
n
k ≡ 1 (mod 3).

P r o o f. Let P = PS/Jn,d
, t = ⌈ n

3k ⌉ and α = (d−2)n
d + ⌈ 2n−d

3d ⌉. We consider the

following two cases.

1. If n
k ≡ 0 (mod 3) or n

k ≡ 2 (mod 3), and σ = {1, . . . , k, 1+3k, . . . , k+3k, . . . , 1+

(t− 1)3k, . . . , k + (t− 1)3k}, then Pα+1,σ = ∅. Thus sdepth(S/Jn,d) = sdepth(P) 6

α = (d−2)n
d + ⌈ 2n−d

3d ⌉.

2. If n
k ≡ 1 (mod 3) and σ = {1, . . . , k, 1+3k, . . . , k+3k, . . . , 1+(t−2)3k, . . . , k+

(t − 2)3k, 1 + (t − 2)3k + 2k, . . . , k + (t − 2)3k + 2k}, then Pα+2,σ = ∅. Thus

sdepth(S/Jn,d) = sdepth(P) 6 α+ 1 = (d−2)n
d + ⌈ 2n+2d

3d ⌉ = (d−2)n
d + ⌈ 2n

3d ⌉.

Then the results follow from Proposition 2.16. �
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