Czechoslovak Mathematical Journal

Xiaoqi Wei; Yan Gu
Depth and Stanley depth of the facet ideals of some classes of simplicial complexes

Czechoslovak Mathematical Journal, Vol. 67 (2017), No. 3, 753-766

Persistent URL: http://dml.cz/dmlcz/146857

Terms of use:

© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

DEPTH AND STANLEY DEPTH OF THE FACET IDEALS OF SOME CLASSES OF SIMPLICIAL COMPLEXES

Xiaoqi Wei, Yan Gu, Suzhou

Received April 7, 2016. First published August 8, 2017.

Abstract

Let $\Delta_{n, d}$ (resp. $\Delta_{n, d}^{\prime}$) be the simplicial complex and the facet ideal $I_{n, d}=$ $\left(x_{1} \ldots x_{d}, x_{d-k+1} \ldots x_{2 d-k}, \ldots, x_{n-d+1} \ldots x_{n}\right)\left(\right.$ resp. $J_{n, d}=\left(x_{1} \ldots x_{d}, x_{d-k+1} \ldots x_{2 d-k}\right.$, $\left.\left.\ldots, x_{n-2 d+2 k+1} \ldots x_{n-d+2 k}, x_{n-d+k+1} \ldots x_{n} x_{1} \ldots x_{k}\right)\right)$. When $d \geqslant 2 k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S / J_{n, d}$ and $S / I_{n, d}^{t}$ for all $t \geqslant 1$. When $d=2 k$, we compute the depth and Stanley depth of quotient rings $S / J_{n, d}$ and $S / I_{n, d}$, and give lower bounds for the depth and Stanley depth of quotient rings $S / I_{n, d}^{t}$ for all $t \geqslant 1$.

Keywords: monomial ideal; facet ideal; depth; Stanley depth
MSC 2010: 13C15, 13P10, 13F20, 13F55

1. Introduction

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over K in n variables. Let M be a finitely generated \mathbb{Z}^{n}-graded S-module. A Stanley decomposition \mathcal{D} of M is a finite direct sum of K-vector spaces

$$
\mathcal{D}: M=\bigoplus_{i=1}^{r} u_{i} K\left[Z_{i}\right],
$$

where $u_{i} \in M$ is homogeneous and $Z_{i} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}, i=1, \ldots, r$, and its Stanley depth, $\operatorname{sdepth}(\mathcal{D})$, is defined as $\min \left\{\left|Z_{i}\right|: i=1, \ldots, r\right\}$. The number

$$
\operatorname{sdepth}(M)=\max \{\operatorname{sdepth}(\mathcal{D}): \mathcal{D} \text { is a Stanley decomposition of } M\}
$$

is called the Stanley depth of M.
This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20140300), the National Natural Science Foundation of China (No. 11501397 and No. 11471234) and the Jiangsu Government Scholarship for Overseas Studies.

Stanley conjectured in [13] that $\operatorname{sdepth}(M) \geqslant \operatorname{depth}(M)$ for any \mathbb{Z}^{n}-graded S module M. There are many researches on this conjecture, especially when M has the form S / I or I with I a squarefree monomial ideal of S, e.g., [1], [8], [11], [12]. In [6], Duval et al. constructed an explicit counterexample to disprove the Stanley conjecture for S / I, where I is a monomial ideal of S. Thus the Stanley conjecture is open for monomial ideals $I \subset S$.

Let $\Delta \subset 2^{[n]}$ be a simplicial complex. Each element of Δ is called a face of Δ, and a face F is called a facet if F is a maximal face with respect to inclusion. Let $\mathcal{F}(\Delta)$ denote the set of facets of Δ. If $F \in \mathcal{F}(\Delta)$, we denote $x_{F}=\prod_{j \in F} x_{j}$. Then the facet ideal of Δ is a squarefree monomial ideal $I(\Delta)$ of $S, I(\Delta)=\left(x_{F}: F \in \mathcal{F}(\Delta)\right)$. The facet ideal was studied by Faridi in [7] from the depth perspective. In this paper, we consider depth and Stanley depth of $I(\Delta)$ of some classes of simplicial complexes.

A line graph of length n, denoted by L_{n}, is a graph with the vertex set $V=[n]$ and edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$. The depth and Stanley depth of the edge ideal associated to L_{n} (which is in fact the facet ideal of L_{n}) were computed by Morey in [9] and Ştefan in [14], respectively. A cyclic graph C_{n} is a graph with the vertex set $V=[n]$ and edge set $E \cup\{n, 1\}$. The depth and Stanley depth of the edge ideal associated to C_{n} were computed by Cimpoeaş in [5].

Let $\Delta_{n, d}$ be the simplicial complex with the set of facets $\mathcal{F}\left(\Delta_{n, d}\right)=\{\{1,2, \ldots, d\}$, $\{d-k+1, d-k+2, \ldots, 2 d-k\}, \ldots,\{n-2 d+k+1, n-2 d+k+2, \ldots, n-$ $d+k\},\{n-d+1, n-d+2, \ldots, n\}\}$, where $n \geqslant d>k \geqslant 1$. It is easy to see that $d-k \mid n-k$. We denote the facet ideal $I\left(\Delta_{n, d}\right)$ of $\Delta_{n, d}$ by $I_{n, d}$, where $I_{n, d}=\left(x_{1} \ldots x_{d}, x_{d-k+1} \ldots x_{2 d-k}, \ldots, x_{n-d+1} \ldots x_{n}\right)$. When $d=2$ and $k=1$, then $I_{n, d}=I\left(L_{n}\right)$.

Let $\Delta_{n, d}^{\prime}$ be the simplicial complex with the set of facets $\mathcal{F}\left(\Delta_{n, d}^{\prime}\right)=\{\{1,2, \ldots, d\}$, $\{d-k+1, d-k+2, \ldots, 2 d-k\}, \ldots,\{n-2 d+2 k+1, n-2 d+2 k+2, \ldots, n-d+2 k\}$, $\{n-d+k+1, \ldots, n, 1, \ldots, k\}\}$, where $d \geqslant 2 k \geqslant 2$ and $n \geqslant 3 d-3 k$. It is easy to see that $d-k \mid n$. We denote the facet ideal $I\left(\Delta_{n, d}^{\prime}\right)$ of $\Delta_{n, d}^{\prime}$ by $J_{n, d}$, where $J_{n, d}=$ $\left(x_{1} \ldots x_{d}, x_{d-k+1} \ldots x_{2 d-k}, \ldots, x_{n-2 d+2 k+1} \ldots x_{n-d+2 k}, x_{n-d+k+1} \ldots x_{n} x_{1} \ldots x_{k}\right)$. If $d=2$ and $k=1$, then $J_{n, d}=I\left(C_{n}\right)$.

The followings are our main results, which generalize some results of [5], [9], [14].

Theorem 1.1. Let $d \geqslant 2 k+1$. Then
(1) $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right)=\operatorname{depth}\left(S / I_{n, d}^{t}\right)=n-\frac{n-k}{d-k}$ for all $t \geqslant 1$,
(2) $\operatorname{sdepth}\left(S / J_{n, d}\right)=\operatorname{depth}\left(S / J_{n, d}\right)=n-\frac{n}{d-k}$.

Theorem 1.2. Let $d=2 k$. Then
(1) $\operatorname{sdepth}\left(S / I_{n, d}\right)=\operatorname{depth}\left(S / I_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$,
(2) $\operatorname{depth}\left(S / I_{n, d}^{t}\right) \geqslant \max \left\{1, \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil\right\}$ for all $t \geqslant 1, \operatorname{sdepth}\left(S / I_{n, d}^{t}\right) \geqslant$ $\max \left\{1, \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil\right\}$ for all $t \geqslant 1$,
(3) $\operatorname{depth}\left(S / J_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$, $\operatorname{sdepth}\left(S / J_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$ for $\frac{n}{k} \equiv 0(\bmod 3)$ and $\frac{n}{k} \equiv 2(\bmod 3)$, $\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil \leqslant \operatorname{sdepth}\left(S / J_{n, d}\right) \leqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$ for $\frac{n}{k} \equiv 1(\bmod 3)$.

2. Depth and Stanley depth of the facet ideals

First, we recall a well-known result, referred to as the Depth lemma, that will be heavily used in the proofs in this article. Two different versions of the lemma will be used in this article, so both are stated here for ease of reference.

Lemma 2.1 (Depth lemma). Let S be a local ring or a Noetherian graded ring with S_{0} local. If

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is a short exact sequence of finitely generated S-modules, where the maps are all homogeneous, then ([15], Lemma 1.3.9):
a) If $\operatorname{depth}(B)<\operatorname{depth}(C)$, then $\operatorname{depth}(A)=\operatorname{depth}(B)$.
b) If $\operatorname{depth}(B)=\operatorname{depth}(C)$, then $\operatorname{depth}(A) \geqslant \operatorname{depth}(B)$.
c) If $\operatorname{depth}(B)>\operatorname{depth}(C)$, then $\operatorname{depth}(A)=\operatorname{depth}(C)+1$.

Also (see [3], Proposition 1.2.9):
d) $\operatorname{depth}(A) \geqslant \min \{\operatorname{depth}(B), \operatorname{depth}(C)+1\}$.
e) $\operatorname{depth}(B) \geqslant \min \{\operatorname{depth}(A), \operatorname{depth}(C)\}$.
f) $\operatorname{depth}(C) \geqslant \min \{\operatorname{depth}(A)-1, \operatorname{depth}(B)\}$.

In [12], Rauf proved the analog of Lemma 2.1 (e) for sdepth:
Lemma 2.2. Let $0 \rightarrow U \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of finitely generated \mathbb{Z}^{n}-graded S-modules. Then

$$
\operatorname{sdepth}(M) \geqslant \min \{\operatorname{sdepth}(U), \operatorname{sdepth}(N)\}
$$

Next, we will discuss our main results in two cases.
2.1. The case $d \geqslant 2 k+1$. Let $I \subset S$ be a monomial ideal. The big height of I, denoted by $\operatorname{bight}(I)$, is the maximum height of the minimal prime ideals of I. The arithmetical rank of I, denoted by ara (I), is the minimum number r of elements of S such that the ideal $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ has the same radical as I. It is well-known that

$$
\operatorname{ht}(I) \leqslant \operatorname{bight}(I) \leqslant \operatorname{pd}(S / I) \leqslant \operatorname{ara}(I) \leqslant|G(I)|,
$$

where $\operatorname{pd}(S / I)$ denotes the projective dimension of S / I and $G(I)$ denotes the set of minimal monomial generators of I. We see that $\left|G\left(I_{n, d}\right)\right|=\frac{n-k}{d-k}$ and $\left|G\left(J_{n, d}\right)\right|=\frac{n}{d-k}$.

A prime ideal P is associated to I if $P=(I: c)$ for some monomial $c \in S$. The set of prime ideals associated to I will be denoted by $\operatorname{Ass}(S / I)$. The associated prime ideals of a monomial ideal are monomial prime ideals. The set $\operatorname{Min}(S / I)$ consists of all prime ideals that are minimal over I with respect to inclusion. It is known that $\operatorname{Min}(S / I) \subset \operatorname{Ass}(S / I)$. When I is squarefree, $\operatorname{Ass}(S / I)=\operatorname{Min}(S / I)$.

Our proofs of the main results make heavy use of the following lemma.
Lemma 2.3. $P=\left(x_{k+1}, x_{k+1+(d-k)}, x_{k+1+2(d-k)}, \ldots, x_{n-d+k+1}\right) \in \operatorname{Min}\left(S / I_{n, d}\right)$, and $P^{\prime}=\left(x_{k+1}, x_{k+1+(d-k)}, x_{k+1+2(d-k)}, \ldots, x_{n-d+2 k+1}\right) \in \operatorname{Min}\left(S / J_{n, d}\right)$.

Proof. Let we have $a_{i}=x_{1+(i-1)(d-k)} x_{2+(i-1)(d-k)} \ldots x_{d+(i-1)(d-k)}$ and $b_{j}=$ $x_{k+1+(j-1)(d-k)}$, where $i, j=1,2, \ldots, \frac{n-k}{d-k}$. Then $I_{n, d}=\left(a_{1}, a_{2}, \ldots, a_{(n-k) /(d-k)}\right)$ and $P=\left(b_{1}, b_{2}, \ldots, b_{(n-k) /(d-k)}\right)$. It is easy to see that b_{j} divides a_{i} if and only if $i=j$, so $I_{n, d} \subset P$. We assume that P is not minimal over $I_{n, d}$. Let $P_{0} \subsetneq P$ be a minimal prime ideal of $I_{n, d}$. Since $I_{n, d}$ is squarefree, $P_{0} \subsetneq P$ is a monomial prime ideal, and there exists a_{i} such that none of $G\left(P_{0}\right)$ divides a_{i}. Hence $I_{n, d} \nsubseteq P_{0}$, a contradiction. Similarly, P^{\prime} is a minimal prime ideal of $S / J_{n, d}$.

Proposition 2.4. $\operatorname{bight}\left(I_{n, d}\right)=\operatorname{pd}\left(S / I_{n, d}\right)=\operatorname{ara}\left(I_{n, d}\right)=\left|G\left(I_{n, d}\right)\right|=\frac{n-k}{d-k}$.
Proof. Let we have $P=\left(x_{k+1}, x_{k+1+(d-k)}, x_{k+1+2(d-k)}, \ldots, x_{n-d+k+1}\right) \in$ $\operatorname{Min}\left(S / I_{n, d}\right)$ and $\operatorname{ht}(P)=\frac{n-k}{d-k}$ by Lemma 2.3. Then $\frac{n-k}{d-k} \leqslant \operatorname{bight}\left(I_{n, d}\right) \leqslant$ $\operatorname{pd}\left(S / I_{n, d}\right) \leqslant \operatorname{ara}\left(I_{n, d}\right) \leqslant\left|G\left(I_{n, d}\right)\right|=\frac{n-k}{d-k}$. Now the result is clear.

Now, we give the exact formulas for $\operatorname{sdepth}\left(S / I_{n, d}\right)$ and $\operatorname{depth}\left(S / I_{n, d}\right)$.
Theorem 2.5. $\operatorname{sdepth}\left(S / I_{n, d}\right)=\operatorname{depth}\left(S / I_{n, d}\right)=n-\frac{n-k}{d-k}$.
Proof. Since $\left|G\left(I_{n, d}\right)\right|=\frac{n-k}{d-k}$, by [4], Proposition 1.2, we have sdepth $\left(S / I_{n, d}\right) \geqslant$ $n-\frac{n-k}{d-k}$. On the other hand, there exists a prime ideal $P \in \operatorname{Ass}\left(S / I_{n, d}\right)$ such that $\operatorname{ht}(P)=\frac{n-k}{d-k}$ by Lemma 2.3. Then $\operatorname{sdepth}\left(S / I_{n, d}\right) \leqslant n-\frac{n-k}{d-k}$ by [8], Proposition 1.3. By the Auslander-Buchsbaum formula and Proposition 2.4, we get $\operatorname{depth}\left(S / I_{n, d}\right)=$ $n-\operatorname{pd}\left(S / I_{n, d}\right)=n-\frac{n-k}{d-k}$.

The following corollary states that the Stanley inequality holds for $I_{n, d}$.
Corollary 2.6. sdepth $\left(I_{n, d}\right) \geqslant n-\left\lfloor\frac{n-k}{2(d-k)}\right\rfloor \geqslant \operatorname{depth}\left(I_{n, d}\right)$.
Proof. Since $\left|G\left(I_{n, d}\right)\right|=\frac{n-k}{d-k}$, it follows that $\operatorname{sdepth}\left(I_{n, d}\right) \geqslant \max \{1, n-$ $\left.\left\lfloor\frac{1}{2}\left|G\left(I_{n, d}\right)\right|\right\rfloor\right\}=n-\left\lfloor\frac{n-k}{2(d-k)}\right\rfloor \geqslant n-\frac{n-k}{d-k}+1=\operatorname{depth}\left(I_{n, d}\right)$ by [10], Theorem 2.3, and Theorem 2.5.

Next, we present a main result.

Theorem 2.7. For all $t \geqslant 1, \operatorname{sdepth}\left(S / I_{n, d}^{t}\right)=\operatorname{depth}\left(S / I_{n, d}^{t}\right)=n-\frac{n-k}{d-k}$.
Proof. We use induction on n and t. If $n=d$, then $I_{n, d}^{t}=\left(x_{1}^{t} \ldots x_{d}^{t}\right)$ is principal. It follows that $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right)=\operatorname{depth}\left(S / I_{n, d}^{t}\right)=d-1=d-\frac{d-k}{d-k}$ for all $t \geqslant 1$. Assume that $n \geqslant 2 d-k$ in the following.

If $t=1$, the result holds for all n by Theorem 2.5. Now let $t \geqslant 2$. We denote $u:=x_{n-d+1} \ldots x_{n-d+k}, v:=x_{n-d+k+1} \ldots x_{n}$ and consider the short exact sequence

$$
0 \rightarrow \frac{S}{\left(I_{n, d}^{t}: u v\right)} \rightarrow \frac{S}{\left(I_{n, d}^{t}: v\right)} \rightarrow \frac{S}{\left(\left(I_{n, d}^{t}: v\right), u\right)} \rightarrow 0
$$

Let $G\left(I_{n, d}\right)=\left\{a_{1}, a_{2}, \ldots, a_{(n-k) /(d-k)}\right\}$, the same as in the proof of Lemma 2.3,
 $a_{(n-k) /(d-k)} \nmid w$ and $a_{(n-d) /(d-k)} \mid w$, then $\frac{w}{u} \in G\left(I_{n, d}^{t}: u v\right)$ and $\left.\frac{w}{a_{(n-d) /(d-k)}} \right\rvert\, \frac{w}{u}$, where $\frac{w}{a_{(n-d) /(d-k)}} \in I_{n, d}^{t-1}$. If $a_{(n-k) /(d-k)} \nmid w$ and $a_{(n-d) /(d-k)} \nmid w$, then $\frac{w}{1} \in G\left(I_{n, d}^{t}\right.$: $u v)$ and w must be divisible by some element of $I_{n, d}^{t-1}$. Hence $\left(I_{n, d}^{t}: u v\right) \subseteq I_{n, d}^{t-1}$. It follows that $\left(I_{n, d}^{t}: u v\right)=I_{n, d}^{t-1}$.

We get $\operatorname{sdepth}\left(S /\left(I_{n, d}^{t}: u v\right)\right)=\operatorname{sdepth}\left(S / I_{n, d}^{t-1}\right)=n-\frac{n-k}{d-k}$ by induction hypothesis on t. Similarly, we prove that $\operatorname{depth}\left(S /\left(I_{n, d}^{t}: u v\right)\right)=n-\frac{n-k}{d-k}$.

Since u divides any element of $G\left(I_{n, d}^{t}\right)$ which is divided by $a_{(n-k) /(d-k)}$ or $a_{(n-d) /(d-k)}$, we get $\left(\left(I_{n, d}^{t}: v\right), u\right)=\left(I_{n-2 d+2 k, d}^{t} S, u\right)$. Notice that u is regular on $S / I_{n-2 d+2 k, d}^{t} S$, hence the induction hypothesis on n and [8], Lemma 3.6, imply that

$$
\begin{aligned}
\operatorname{sdepth}_{S}\left(S /\left(\left(I_{n, d}^{t}: v\right), u\right)\right) & =\operatorname{sdepth}_{S_{n-2 d+2 k}}\left(\frac{S_{n-2 d+2 k}}{I_{n-2 d+2 k, d}^{t}}\right)+(2 d-2 k)-1 \\
& =(n-2 d+2 k)-\frac{(n-2 d+2 k)-k}{d-k}+2 d-2 k-1 \\
& =n-\frac{n-k}{d-k}+1,
\end{aligned}
$$

where $S_{n-2 d+2 k}=K\left[x_{1}, \ldots, x_{n-2 d+2 k}\right]$. Similarly, $\operatorname{depth}\left(S /\left(\left(I_{n, d}^{t}: v\right), u\right)\right)=n-$ $\frac{n-k}{d-k}+1$. Then we have $\operatorname{sdepth}\left(S /\left(I_{n, d}^{t}: v\right)\right) \geqslant n-\frac{n-k}{d-k}$ and $\operatorname{depth}\left(S /\left(I_{n, d}^{t}: v\right)\right)=$ $n-\frac{n-k}{d-k}$ by Lemma 2.1 and Lemma 2.2.

Since v divides any element of $G\left(I_{n, d}^{t}\right)$ which is divided by $a_{(n-k) /(d-k)},\left(I_{n, d}^{t}, v\right)=$ $\left(I_{n-d+k, d}^{t} S, v\right)$. Noting that v is regular on $S / I_{n-d+k, d}^{t} S$, by induction hypothesis
on n and [8], Lemma 3.6, we get

$$
\begin{aligned}
\operatorname{sdepth}_{S}\left(S /\left(I_{n, d}^{t}, v\right)\right) & =\operatorname{sdepth}_{S_{n-d+k}}\left(\frac{S_{n-d+k}}{I_{n-d+k, d}^{t}}\right)+(d-k)-1 \\
& =(n-d+k)-\frac{(n-d+k)-k}{d-k}+d-k-1 \\
& =n-\frac{n-k}{d-k},
\end{aligned}
$$

where $S_{n-d+k}=K\left[x_{1}, \ldots, x_{n-d+k}\right]$. Similarly, we get $\operatorname{depth}\left(S /\left(I_{n, d}^{t}, v\right)\right)=n-\frac{n-k}{d-k}$. By applying Lemmas 2.1 and 2.2 to the short exact sequence

$$
0 \rightarrow \frac{S}{\left(I_{n, d}^{t}: v\right)} \rightarrow \frac{S}{I_{n, d}^{t}} \rightarrow \frac{S}{\left(I_{n, d}^{t}, v\right)} \rightarrow 0
$$

we obtain sdepth $\left(S / I_{n, d}^{t}\right) \geqslant n-\frac{n-k}{d-k}$ and depth $\left(S / I_{n, d}^{t}\right)=n-\frac{n-k}{d-k}$.
From Lemma 2.3, $P=\left(x_{k+1}, x_{k+1+(d-k)}, \ldots, x_{n-d+k+1}\right) \in \operatorname{Min}\left(S / I_{n, d}\right)=$ $\operatorname{Min}\left(S / I_{n, d}^{t}\right) \subseteq \operatorname{Ass}\left(S / I_{n, d}^{t}\right)$ for all $t \geqslant 1$, and $\operatorname{ht}(P)=\frac{n-k}{d-k}$. Then $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right) \leqslant$ $\operatorname{dim}(S / P)=n-\frac{n-k}{d-k}$ by [8], Proposition 1.3. This completes the proof.

Proposition 2.8. $\operatorname{bight}\left(J_{n, d}\right)=\operatorname{pd}\left(S / J_{n, d}\right)=\operatorname{ara}\left(J_{n, d}\right)=\left|G\left(J_{n, d}\right)\right|=\frac{n}{d-k}$.
Proof. We have $P=\left(x_{k+1}, x_{k+1+(d-k)}, x_{k+1+2(d-k)}, \ldots, x_{n-d+2 k+1}\right) \in$ $\operatorname{Min}\left(S / J_{n, d}\right)$ and $\operatorname{ht}(P)=\frac{n}{d-k}$ by Lemma 2.3. Then $\frac{n}{d-k} \leqslant \operatorname{bight}\left(J_{n, d}\right) \leqslant$ $\operatorname{pd}\left(S / J_{n, d}\right) \leqslant \operatorname{ara}\left(J_{n, d}\right) \leqslant\left|G\left(J_{n, d}\right)\right|=\frac{n}{d-k}$. The proof is completed.

Theorem 2.9. $\operatorname{sdepth}\left(S / J_{n, d}\right)=\operatorname{depth}\left(S / J_{n, d}\right)=n-\frac{n}{d-k}$.
Proof. Since $\left|G\left(J_{n, d}\right)\right|=\frac{n}{d-k}$, by [4], Proposition 1.2, we have $\operatorname{sdepth}\left(S / J_{n, d}\right) \geqslant$ $n-\frac{n}{d-k}$. On the other hand, there exists a prime ideal $P \in \operatorname{Ass}\left(S / J_{n, d}\right)$ such that $\operatorname{ht}(P)=\frac{n}{d-k}$ by Lemma 2.3. Then $\operatorname{sdepth}\left(S / J_{n, d}\right) \leqslant n-\frac{n}{d-k}$ by [8], Proposition 1.3. By the Auslander-Buchsbaum formula and Proposition 2.8, we obtain $\operatorname{depth}\left(S / J_{n, d}\right)=n-\operatorname{pd}\left(S / J_{n, d}\right)=n-\frac{n}{d-k}$.

The following corollary implies that the Stanley inequality holds for $J_{n, d}$.

Corollary 2.10. $\operatorname{sdepth}\left(J_{n, d}\right) \geqslant n-\left\lfloor\frac{n}{2(d-k)}\right\rfloor>\operatorname{depth}\left(J_{n, d}\right)$.
Proof. Since $\left|G\left(J_{n, d}\right)\right|=\frac{n}{d-k}$, we have $\operatorname{sdepth}\left(J_{n, d}\right) \geqslant \max \left\{1, n-\left\lfloor\frac{1}{2}\left|G\left(J_{n, d}\right)\right|\right\rfloor\right\}=$ $n-\left\lfloor\frac{n}{2(d-k)}\right\rfloor>n-\frac{n}{d-k}+1=\operatorname{depth}\left(J_{n, d}\right)$ by [10], Theorem 2.3, and Theorem 2.9.
2.2. The case $d=2 k$. Let $\mathcal{P} \subset 2^{[n]}$ be a poset. If $F, G \subset[n]$, the interval $[F, G]$ consists of all subsets X of $[n]$ such that $F \subset X \subset G$. Let $\mathbf{P}: \mathcal{P}=\bigcup_{i=1}^{r}\left[F_{i}, G_{i}\right]$ be a partition of \mathcal{P}, i.e. $\left[F_{i}, G_{i}\right] \cap\left[F_{j}, G_{j}\right]=\emptyset$ for all $i \neq j$. We denote $\operatorname{sdepth}(\mathbf{P})=$ $\min _{i \in[r]}\left\{\left|G_{i}\right|\right\}$. Also, we define the Stanley depth of \mathcal{P} to be the number

$$
\operatorname{sdepth}(\mathcal{P})=\max \{\operatorname{sdepth}(\mathbf{P}): \mathbf{P} \text { is a partition of } \mathcal{P}\} .
$$

For $\alpha \in \mathbb{N}$ and $\sigma \in \mathcal{P}$, we put

$$
\mathcal{P}_{\alpha}=\{\tau \in \mathcal{P}:|\tau|=\alpha\}, \quad \mathcal{P}_{\alpha, \sigma}=\left\{\tau \in \mathcal{P}_{\alpha}: \sigma \subset \tau\right\} .
$$

From the proof of [5], Theorem 1.9, we see that if $\sigma \in \mathcal{P}$ is such that $\mathcal{P}_{\alpha, \sigma}=\emptyset$, then $\operatorname{sdepth}(\mathcal{P})<\alpha$. We recall the method of Herzog, Vladoiu and Zheng in [8] for computing the Stanley depth of S / I and I, where I is a squarefree monomial ideal. Let $G(I)=\left\{u_{1}, \ldots, u_{s}\right\}$ be the set of minimal monomial generators of I. We define the following two posets:

$$
\mathcal{P}_{I}=\left\{\sigma \subset[n]: u_{i} \mid x_{\sigma}=\prod_{j \in \sigma} x_{j} \text { for some } i\right\} \quad \text { and } \quad \mathcal{P}_{S / I}=2^{[n]} \backslash \mathcal{P}_{I} .
$$

From [8], Corollary 2.2, it follows that $\operatorname{sdepth}(I)=\operatorname{sdepth}\left(\mathcal{P}_{I}\right)$ and $\operatorname{sdepth}(S / I)=$ $\operatorname{sdepth}\left(\mathcal{P}_{S / I}\right)$.

Now, we give another main result of this article.
Theorem 2.11. $\operatorname{sdepth}\left(S / I_{n, d}\right)=\operatorname{depth}\left(S / I_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$.
Proof. First, we show that $\operatorname{sdepth}\left(S / I_{n, d}\right) \geqslant \operatorname{depth}\left(S / I_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$ by induction on n. If $n=d$, then $I_{n, d}=\left(x_{1} \ldots x_{d}\right)$ is principal. Thus $\operatorname{sdepth}\left(S / I_{n, d}\right)=$ $\operatorname{depth}\left(S / I_{n, d}\right)=d-1$. If $n=d+k$, we denote $u:=x_{k+1} \ldots x_{d}$ and consider the short exact sequence

$$
0 \rightarrow S /\left(I_{n, d}: u\right) \rightarrow S / I_{n, d} \rightarrow S /\left(I_{n, d}, u\right) \rightarrow 0
$$

Note that $\left(I_{n, d}: u\right)=\left(x_{1} \ldots x_{k}, x_{d+1} \ldots x_{d+k}\right),\left(I_{n, d}, u\right)=(u)$, and they both are complete intersections. Thus $\operatorname{sdepth}\left(S /\left(I_{n, d}: u\right)\right)=\operatorname{depth}\left(S /\left(I_{n, d}: u\right)\right)=n-2$ and $\operatorname{sdepth}\left(S /\left(I_{n, d}, u\right)\right)=\operatorname{depth}\left(S /\left(I_{n, d}, u\right)\right)=n-1$. Then we get $\operatorname{sdepth}\left(S / I_{n, d}\right) \geqslant$ $\operatorname{depth}\left(S / I_{n, d}\right)=n-2$ by Lemmas 2.1 and 2.2.

Suppose that $n \geqslant d+2 k$ and consider the short exact sequence

$$
0 \rightarrow \frac{S}{\left(I_{n, d}: x_{n-d+1} \ldots x_{n-d+k}\right)} \rightarrow \frac{S}{I_{n, d}} \rightarrow \frac{S}{\left(I_{n, d}, x_{n-d+1} \ldots x_{n-d+k}\right)} \rightarrow 0
$$

Then $\left(I_{n, d}: x_{n-d+1} \ldots x_{n-d+k}\right)=\left(I_{n-3 k, d} S, x_{n-3 k+1} \ldots x_{n-d}, x_{n-d+k+1} \ldots x_{n}\right):=I^{\prime}$. Since $x_{n-3 k+1} \ldots x_{n-d}, x_{n-d+k+1} \ldots x_{n}$ is a regular sequence on $S / I_{n-3 k, d} S$, by induction hypothesis and [8], Lemma 3.6 we get

$$
\begin{aligned}
\operatorname{depth}_{S}\left(S / I^{\prime}\right) & =\operatorname{depth}_{S_{n-3 k}}\left(S_{n-3 k} / I_{n-3 k, d}\right)+3 k-2 \\
& =\frac{(d-2)(n-3 k)}{d}+\left\lceil\frac{2(n-3 k)}{3 d}\right\rceil+3 k-2 \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil,
\end{aligned}
$$

where $S_{n-3 k}=K\left[x_{1}, \ldots, x_{n-3 k}\right]$. Similarly, $\operatorname{sdepth}\left(S / I^{\prime}\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$.
Also, we have $\left(I_{n, d}, x_{n-d+1} \ldots x_{n-d+k}\right)=\left(I_{n-d, d} S, x_{n-d+1} \ldots x_{n-d+k}\right):=I^{\prime \prime}$, and $x_{n-d+1} \ldots x_{n-d+k}$ is regular on $S / I_{n-d, d} S$. We deduce that

$$
\begin{aligned}
\operatorname{depth}_{S}\left(S / I^{\prime \prime}\right) & =\operatorname{depth}_{S_{n-d}}\left(S_{n-d} / I_{n-d, d}\right)+d-1 \\
& =\frac{(d-2)(n-d)}{d}+\left\lceil\frac{2(n-d)}{3 d}\right\rceil+d-1 \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n+d}{3 d}\right\rceil
\end{aligned}
$$

by induction hypothesis and [8], Lemma 3.6, where $S_{n-d}=K\left[x_{1}, \ldots, x_{n-d}\right]$. Similarly, $\operatorname{sdepth}\left(S / I^{\prime \prime}\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n+d}{3 d}\right\rceil$. Then $\operatorname{sdepth}\left(S / I_{n, d}\right) \geqslant \operatorname{depth}\left(S / I_{n, d}\right)=$ $\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$ by Lemmas 2.1 and 2.2 .

Next we only need to show that $\operatorname{sdepth}\left(S / I_{n, d}\right) \leqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$.
Let $\mathcal{P}=\mathcal{P}_{S / I_{n, d}}, t=\left\lceil\frac{n}{3 k}\right\rceil$ and $\alpha=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$. We consider the following two cases.

1. If $\frac{n}{k} \equiv 1(\bmod 3)$ and $\sigma=\{k+1, \ldots, 2 k, k+1+3 k, \ldots, 2 k+3 k, \ldots, k+1+$ $(t-2) 3 k, \ldots, 2 k+(t-2) 3 k, k+1+(t-2) 3 k+2 k, \ldots, 2 k+(t-2) 3 k+2 k\}$, then $\mathcal{P}_{\alpha+1, \sigma}=\emptyset$. Thus $\operatorname{sdepth}\left(S / I_{n, d}\right)=\operatorname{sdepth}(\mathcal{P}) \leqslant \alpha$.
2. If $\frac{n}{k} \equiv 0(\bmod 3)$ or $\frac{n}{k} \equiv 2(\bmod 3)$, and $\sigma=\{k+1, \ldots, 2 k, k+1+3 k, \ldots, 2 k+$ $3 k, \ldots, k+1+(t-1) 3 k, \ldots, 2 k+(t-1) 3 k\}$, then $\mathcal{P}_{\alpha+1, \sigma}=\emptyset$. Thus $\operatorname{sdepth}\left(S / I_{n, d}\right)=$ $\operatorname{sdepth}(\mathcal{P}) \leqslant \alpha$.

It follows that $\operatorname{sdepth}\left(S / I_{n, d}\right) \leqslant \alpha=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$.
Remark 2.12. Set $d=2, k=1$ in Theorem 2.11. Then we get $\operatorname{depth}\left(S / I_{n, 2}\right)=$ $\operatorname{sdepth}\left(S / I_{n, 2}\right)=\left\lceil\frac{1}{3} n\right\rceil$, so our results generalize [9], Lemma 2.8, and [14], Lemma 4. On the other hand, by the Auslander-Buchsbaum formula, we have $\operatorname{pd}\left(S / I_{n, 2}\right)=$ $n-\left\lceil\frac{1}{3} n\right\rceil$, which coincides with [2], Proposition 3.1.1 (1).

As a consequence of Theorem 2.11, we get the following corollary.
Corollary 2.13. $\operatorname{sdepth}\left(I_{n, d}\right) \geqslant n-\left\lfloor\frac{n-k}{2 k}\right\rfloor \geqslant \operatorname{depth}\left(I_{n, d}\right)$.

Proof. Note that $\left|G\left(I_{n, d}\right)\right|=\frac{n}{k}-1$, which implies that $\operatorname{sdepth}\left(I_{n, d}\right) \geqslant$ $\max \left\{1, n-\left\lfloor\frac{1}{2}\left|G\left(I_{n, d}\right)\right|\right\rfloor\right\}=n-\left\lfloor\frac{n-k}{2 k}\right\rfloor \geqslant \operatorname{depth}\left(I_{n, d}\right)$ by [10], Theorem 2.3 and Theorem 2.11.

The following proposition generalizes [9], Proposition 3.2, (where $d=2$).
Proposition 2.14. $\operatorname{depth}\left(S / I_{n, d}^{t}\right) \geqslant \max \left\{1, \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil\right\}$ for all $t \geqslant 1$, and $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right) \geqslant \max \left\{1, \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil\right\}$ for all $t \geqslant 1$.

Proof. Notice that $\left(x_{1}, \ldots, x_{n}\right) \notin \operatorname{Ass}\left(S / I_{n, d}^{t}\right)$, hence depth $\left(S / I_{n, d}^{t}\right) \geqslant 1$ for all $t \geqslant 1$. By [4], Theorem 2.1, we also get $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right) \geqslant 1$ for all $t \geqslant 1$. Then it remains to show that $\operatorname{depth}\left(S / I_{n, d}^{t}\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil$ and $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right) \geqslant$ $\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil$.

The proof is by induction on n and t. If $n=d$, then $I_{n, d}^{t}=\left(x_{1}^{t} \ldots x_{d}^{t}\right)$ is principal. Thus $\operatorname{sdepth}\left(S / I_{n, d}^{t}\right)=\operatorname{depth}\left(S / I_{n, d}^{t}\right)=d-1 \geqslant \frac{(d-2) d}{d}+\left\lceil\frac{2 d-d t+d}{3 d}\right\rceil$ for all $t \geqslant 1$. If $n=d+k$, then $I_{n, d}=\left(x_{1} \ldots x_{d}, x_{k+1} \ldots x_{3 k}\right)$. Next we use induction on j to show that $\operatorname{depth}\left(S / I_{n, d}^{j}\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ and $\operatorname{sdepth}\left(S / I_{n, d}^{j}\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ for all $j \geqslant 1$.

If $j=1$, then the results hold by Theorem 2.11. Let $j \geqslant 2$. We denote $w_{1}:=$ $x_{k+1} \ldots x_{d}, w_{2}:=x_{d+1} \ldots x_{3 k}$ and consider the short exact sequence

$$
0 \rightarrow \frac{S}{\left(I_{n, d}^{j}: w_{1} w_{2}\right)} \rightarrow \frac{S}{\left(I_{n, d}^{j}: w_{2}\right)} \rightarrow \frac{S}{\left(\left(I_{n, d}^{j}: w_{2}\right), w_{1}\right)} \rightarrow 0
$$

Note that $\left(I_{n, d}^{j}: w_{1} w_{2}\right)=I_{n, d}^{j-1}$ from the proof of Theorem 2.7. We get $\operatorname{depth}\left(S /\left(I_{n, d}^{j}:\right.\right.$ $\left.\left.w_{1} w_{2}\right)\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ and $\operatorname{sdepth}\left(S /\left(I_{n, d}^{j}: w_{1} w_{2}\right)\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ by induction hypothesis. Also, $\left(\left(I_{n, d}^{j}: w_{2}\right), w_{1}\right)=\left(w_{1}\right)$ is principal. Thus depth $\left(S /\left(\left(I_{n, d}^{j}\right.\right.\right.$: $\left.\left.\left.w_{2}\right), w_{1}\right)\right)=\operatorname{sdepth}\left(S /\left(\left(I_{n, d}^{j}: w_{2}\right), w_{1}\right)\right)=3 k-1$. Then $\operatorname{depth}\left(S /\left(I_{n, d}^{j}: w_{2}\right)\right) \geqslant$ $3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ and $\operatorname{sdepth}\left(S /\left(I_{n, d}^{j}: w_{2}\right)\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ by Lemmas 2.1 and 2.2. We consider another short exact sequence

$$
0 \rightarrow \frac{S}{\left(I_{n, d}^{j}: w_{2}\right)} \rightarrow \frac{S}{I_{n, d}^{j}} \rightarrow \frac{S}{\left(I_{n, d}^{j}, w_{2}\right)} \rightarrow 0
$$

Since $\left(I_{n, d}^{j}, w_{2}\right)=\left(x_{1}^{j} \ldots x_{d}^{j}, w_{2}\right)$ is a complete intersection, $\operatorname{depth}\left(S /\left(I_{n, d}^{j}, w_{2}\right)\right)=$ $\operatorname{sdepth}\left(S /\left(I_{n, d}^{j}, w_{2}\right)\right)=3 k-2$. Then we get $\operatorname{depth}\left(S / I_{n, d}^{j}\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ and $\operatorname{sdepth}\left(S / I_{n, d}^{j}\right) \geqslant 3(k-1)+\left\lceil\frac{4-j}{3}\right\rceil$ by Lemmas 2.1 and 2.2.

Assume that $n \geqslant d+2 k$. If $t=1$, by Theorem 2.11 the results hold for all n. Now let $t \geqslant 2$. We denote $u:=x_{n-d+1} \ldots x_{n-d+k}, v:=x_{n-d+k+1} \ldots x_{n}$ and consider the short exact sequence

$$
\begin{equation*}
0 \rightarrow \frac{S}{\left(I_{n, d}^{t}: u v\right)} \rightarrow \frac{S}{\left(I_{n, d}^{t}: u\right)} \rightarrow \frac{S}{\left(\left(I_{n, d}^{t}: u\right), v\right)} \rightarrow 0 \tag{*}
\end{equation*}
$$

Let $G\left(I_{n, d}\right)=\left\{a_{1}, a_{2}, \ldots, a_{(n-k) /(d-k)}\right\}$, the same as in the proof of Lemma 2.3. Note that $\left(I_{n, d}^{t}: u v\right)=I_{n, d}^{t-1}$ from the proof of Theorem 2.7. By induction hypothesis on t,

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I_{n, d}^{t}: u v\right)\right) & =\operatorname{depth}\left(S / I_{n, d}^{t-1}\right) \\
& \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d(t-1)+d}{3 d}\right\rceil \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+2 d}{3 d}\right\rceil .
\end{aligned}
$$

Similarly, $\operatorname{sdepth}\left(S /\left(I_{n, d}^{t}: u v\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+2 d}{3 d}\right\rceil$.
Since v divides any element of $G\left(I_{n, d}^{t}\right)$ which is divided by $a_{(n-k) /(d-k)}$, we have $\left(\left(I_{n, d}^{t}: u\right), v\right)=\left(\left(I_{n-k, d}^{t} S: u\right), v\right)$. Noting that v is regular on $S /\left(I_{n-k, d}^{t} S: u\right)$, by [8], Lemma 3.6, we get depth $\operatorname{dep}_{S}\left(\left(\left(I_{n, d}^{t}: u\right), v\right)\right)=\operatorname{depth}_{S_{n-k}}\left(S_{n-k} /\left(I_{n-k, d}^{t}: u\right)\right)+k-1$ and $\operatorname{sdepth}_{S}\left(S /\left(\left(I_{n, d}^{t}: u\right), v\right)\right)=\operatorname{sdepth}_{S_{n-k}}\left(S_{n-k} /\left(I_{n-k, d}^{t}: u\right)\right)+k-1$, where $S_{n-k}=K\left[x_{1}, \ldots, x_{n-k}\right]$. We denote $w:=x_{n-3 k+1} \ldots x_{n-d}$ and consider another short exact sequence

$$
0 \rightarrow \frac{S_{n-k}}{\left(I_{n-k, d}^{t}: w u\right)} \rightarrow \frac{S_{n-k}}{\left(I_{n-k, d}^{t}: u\right)} \rightarrow \frac{S_{n-k}}{\left(\left(I_{n-k, d}^{t}: u\right), w\right)} \rightarrow 0
$$

From the proof of Theorem 2.7, $\left(I_{n-k, d}^{t}: w u\right)=I_{n-k, d}^{t-1}$. By induction hypothesis,

$$
\begin{aligned}
\operatorname{depth}\left(S_{n-k} /\left(I_{n-k, d}^{t}: w u\right)\right) & =\operatorname{depth}\left(S_{n-k} / I_{n-k, d}^{t-1}\right) \\
& \geqslant \frac{(d-2)(n-k)}{d}+\left\lceil\frac{2(n-k)-d(t-1)+d}{3 d}\right\rceil \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil-(k-1) .
\end{aligned}
$$

Similarly, $\operatorname{sdepth}\left(S_{n-k} /\left(I_{n-k, d}^{t}: w u\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil-(k-1)$.
We see that $\left(\left(I_{n-k, d}^{t}: u\right), w\right)=\left(I_{n-3 k, d}^{t} S_{n-k}, w\right):=I^{\prime}$, since w divides any element of $G\left(I_{n-k, d}^{t}\right)$ which is divided by $a_{(n-d) /(d-k)}$ or $a_{(n-3 k) /(d-k)}$. Noticing that w is regular on $S_{n-k} / I_{n-3 k, d}^{t} S_{n-k}$, by induction hypothesis on n and [8], Lemma 3.6, we get

$$
\begin{aligned}
\operatorname{depth}_{S_{n-k}}\left(S_{n-k} / I^{\prime}\right) & =\operatorname{depth}_{S_{n-3 k}}\left(S_{n-3 k} / I_{n-3 k, d}^{t}\right)+2 k-1 \\
& \geqslant \frac{(d-2)(n-3 k)}{d}+\left\lceil\frac{2(n-3 k)-d t+d}{3 d}\right\rceil+2 k-1 \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil-(k-1),
\end{aligned}
$$

where $S_{n-3 k}=K\left[x_{1}, \ldots, x_{n-3 k}\right]$. Similarly, $\operatorname{sdepth}\left(S_{n-k} / I^{\prime}\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil-$ $(k-1)$. Thus we have $\operatorname{depth}\left(S_{n-k} /\left(I_{n-k, d}^{t}: u\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil-(k-1)$ and
$\operatorname{sdepth}\left(S_{n-k} /\left(I_{n-k, d}^{t}: u\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil-(k-1)$ by Lemmas 2.1 and 2.2. It follows that depth $\left(S /\left(\left(I_{n, d}^{t}: u\right), v\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil$ and

$$
\operatorname{sdepth}\left(S /\left(\left(I_{n, d}^{t}: u\right), v\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil .
$$

By applying Lemmas 2.1 and 2.2 to the sequence $(*)$, we get $\operatorname{depth}\left(S /\left(I_{n, d}^{t}: u\right)\right) \geqslant$ $\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil$ and $\operatorname{sdepth}\left(S /\left(I_{n, d}^{t}: u\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil$.

Finally, we consider the following short exact sequence

$$
0 \rightarrow \frac{S}{\left(I_{n, d}^{t}: u\right)} \rightarrow \frac{S}{I_{n, d}^{t}} \rightarrow \frac{S}{\left(I_{n, d}^{t}, u\right)} \rightarrow 0 .
$$

Since u divides any element of $G\left(I_{n, d}^{t}\right)$ which is divided by element $a_{(n-k) /(d-k)}$ or $a_{(n-d) /(d-k)}$, we get $\left(I_{n, d}^{t}, u\right)=\left(I_{n-d, d}^{t} S, u\right)$. Noting that u is regular on $S / I_{n-d, d}^{t} S$, by induction hypothesis on n and [8], Lemma 3.6, we obtain

$$
\begin{aligned}
\operatorname{depth}_{S}\left(S /\left(I_{n, d}^{t}, u\right)\right) & =\operatorname{depth}_{S_{n-d}}\left(S_{n-d} / I_{n-d, d}^{t}\right)+d-1 \\
& \geqslant \frac{(d-2)(n-d)}{d}+\left\lceil\frac{2(n-d)-d t+d}{3 d}\right\rceil+d-1 \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+2 d}{3 d}\right\rceil,
\end{aligned}
$$

where $S_{n-d}=K\left[x_{1}, \ldots, x_{n-d}\right]$. Similarly, $\operatorname{sdepth}\left(S /\left(I_{n, d}^{t}, u\right)\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+2 d}{3 d}\right\rceil$. Now the results follow from Lemmas 2.1 and 2.2.

Example 2.15. Let $\Delta_{6,4}$ be the simplicial complex with the set of facets $\mathcal{F}\left(\Delta_{6,4}\right)=\{\{1,2,3,4\},\{3,4,5,6\}\}$. Then $I_{6,4}=\left(x_{1} x_{2} x_{3} x_{4}, x_{3} x_{4} x_{5} x_{6}\right)$ and we compute that $\operatorname{depth}\left(S / I_{6,4}^{4}\right)=4$, while in this case $\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d t+d}{3 d}\right\rceil=3$. So the bound for the depth given by Proposition 2.14 is not necessarily sharp.

Now we consider the depth and Stanley depth of $S / J_{n, d}$. The next proposition generalizes [5], Propositions 1.3 and 1.8 (where $d=2, k=1$).

Proposition 2.16. $\operatorname{sdepth}\left(S / J_{n, d}\right) \geqslant \operatorname{depth}\left(S / J_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$.
Proof. We use induction on n. If $n=3 k$, then we have $J_{n, d}=\left(x_{1} \ldots x_{2 k}\right.$, $\left.x_{k+1} \ldots x_{3 k}, x_{2 k+1} \ldots x_{3 k} x_{1} \ldots x_{k}\right)$. We denote $u:=x_{2 k+1} \ldots x_{3 k}$ and consider the short exact sequence

$$
0 \rightarrow S /\left(J_{n, d}: u\right) \rightarrow S / J_{n, d} \rightarrow S /\left(J_{n, d}, u\right) \rightarrow 0 .
$$

Note that $\left(J_{n, d}: u\right)=\left(x_{1} \ldots x_{k}, x_{k+1} \ldots x_{2 k}\right),\left(J_{n, d}, u\right)=\left(x_{1} \ldots x_{2 k}, u\right)$ and they are both complete intersections. Thus $\operatorname{sdepth}\left(S /\left(J_{n, d}: u\right)\right)=\operatorname{depth}\left(S /\left(J_{n, d}: u\right)\right)=$
$3 k-2$ and $\operatorname{sdepth}\left(S /\left(J_{n, d}, u\right)\right)=\operatorname{depth}\left(S /\left(J_{n, d}, u\right)\right)=3 k-2$. Hence $\operatorname{sdepth}\left(S / J_{n, d}\right) \geqslant$ $\operatorname{depth}\left(S / J_{n, d}\right)=3 k-2$ by Lemmas 2.1 and 2.2.

Suppose that $n \geqslant 4 k$ and consider the short exact sequence

$$
0 \rightarrow \frac{S}{\left(J_{n, d}: x_{n-k+1} \ldots x_{n}\right)} \rightarrow \frac{S}{J_{n, d}} \rightarrow \frac{S}{\left(J_{n, d}, x_{n-k+1} \ldots x_{n}\right)} \rightarrow 0 .
$$

We denote $w:=x_{n-k+1} \ldots x_{n}$. Then $\left(J_{n, d}: w\right)=\left(x_{1} \ldots x_{k}, x_{n-2 k+1} \ldots x_{n-k}, I^{\prime} S\right)$, where $I^{\prime}:=\left(x_{k+1} \ldots x_{3 k}, \ldots, x_{n-4 k+1} \ldots x_{n-2 k}\right) \subset S^{\prime}:=K\left[x_{k+1}, \ldots, x_{n-2 k}\right]$, and $x_{1} \ldots x_{k}, x_{n-2 k+1} \ldots x_{n-k}$ is a regular sequence on $S / I^{\prime} S$. By [8], Lemma 3.6, and Theorem 2.11, we have

$$
\begin{aligned}
\operatorname{depth}_{S}\left(S /\left(J_{n, d}: w\right)\right) & =\operatorname{depth}_{S^{\prime}}\left(S^{\prime} / I^{\prime}\right)+3 k-2 \\
& =\operatorname{depth}_{S_{n-3 k}}\left(S_{n-3 k} / I_{n-3 k, d}\right)+3 k-2 \\
& =\frac{(d-2)(n-3 k)}{d}+\left\lceil\frac{2(n-3 k)}{3 d}\right\rceil+3 k-2 \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil,
\end{aligned}
$$

where $S_{n-3 k}=K\left[x_{1}, \ldots, x_{n-3 k}\right]$. Similarly, $\operatorname{sdepth}\left(S /\left(J_{n, d}: w\right)\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil \geqslant$ $\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$.

Also, $\left(J_{n, d}, w\right)=\left(I_{n-k, d} S, w\right)$ and w is regular on $S / I_{n-k, d} S$. By [8], Lemma 3.6, and Theorem 2.11, we get

$$
\begin{aligned}
\operatorname{depth}_{S}\left(S /\left(J_{n, d}, w\right)\right) & =\operatorname{depth}_{S_{n-k}}\left(S_{n-k} / I_{n-k, d}\right)+k-1 \\
& =\frac{(d-2)(n-k)}{d}+\left\lceil\frac{2(n-k)}{3 d}\right\rceil+k-1 \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil,
\end{aligned}
$$

where $S_{n-k}=K\left[x_{1}, \ldots, x_{n-k}\right]$. Similarly, $\operatorname{sdepth}\left(S /\left(J_{n, d}, w\right)\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$, thus $\operatorname{sdepth}\left(S / J_{n, d}\right) \geqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$ by Lemma 2.2.

Now we consider the depth. If $\frac{n}{k} \equiv 0(\bmod 3)$ or $\frac{n}{k} \equiv 2(\bmod 3)$, then $\frac{(d-2) n}{d}+$ $\left\lceil\frac{2 n}{3 d}\right\rceil=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$, so $\operatorname{depth}\left(S / J_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$ by Lemma 2.1.
Assume that $\frac{n}{k} \equiv 1(\bmod 3)$. We have

$$
\begin{gathered}
\frac{\left(J_{n, d}: x_{n-k+1} \ldots x_{n}\right)}{J_{n, d}} \cong x_{n-2 k+1} \ldots x_{n-k}(R / Q)\left[x_{n-2 k+1}, \ldots, x_{n-k}\right] \\
\bigoplus_{i=1}^{k} x_{1} \ldots x_{k} \cdot x_{n-k+2-i} \ldots x_{n-k}\left(R_{i} / Q_{1}\right)\left[x_{1}, \ldots, x_{k}, x_{n-k+2-i}, \ldots, x_{n-k}\right]
\end{gathered}
$$

where $R=K\left[x_{1}, \ldots, x_{n-2 k}, x_{n-k+1}, \ldots, x_{n}\right], Q=\left(x_{n-3 k+1} \ldots x_{n-2 k}, x_{n-k+1} \ldots x_{n}\right.$, $\left.I_{n-3 k, d} S\right), R_{i}=K\left[x_{k+1}, \ldots, x_{n-2 k}, x_{n-2 k+1}, \ldots, x_{n-k-i}, x_{n-k+1}, \ldots, x_{n}\right], 1 \leqslant i \leqslant k$, and $Q_{1}=\left(x_{k+1} \ldots x_{2 k}, x_{n-k+1} \ldots x_{n}, x_{2 k+1} \ldots x_{4 k}, \ldots, x_{n-4 k+1} \ldots x_{n-2 k}\right)$. Using the isomorphism and Theorem 2.11, we obtain that

$$
\begin{aligned}
\operatorname{depth}\left(\frac{\left(J_{n, d}: w\right)}{J_{n, d}}\right) & =\min _{i}\left\{\operatorname{depth}_{R}(R / Q)+k, \operatorname{depth}_{R_{i}}\left(R_{i} / Q_{1}\right)+(k+i-1)\right\} \\
& =\frac{(d-2)(n-4 k)}{d}+\left\lceil\frac{2(n-4 k)}{3 d}\right\rceil+(3 k-i-2)+(k+i-1) \\
& =\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil .
\end{aligned}
$$

Now, applying Lemma 2.1 to the short exact sequence

$$
0 \rightarrow \frac{\left(J_{n, d}: w\right)}{J_{n, d}} \rightarrow \frac{S}{J_{n, d}} \rightarrow \frac{S}{\left(J_{n, d}: w\right)} \rightarrow 0
$$

the proof is completed.
Corollary 2.17. $\operatorname{sdepth}\left(J_{n, d}\right) \geqslant n-\left\lfloor\frac{n}{2 k}\right\rfloor \geqslant \operatorname{depth}\left(J_{n, d}\right)$.
Proof. Since $\left|G\left(J_{n, d}\right)\right|=\frac{n}{k}$, we have $\operatorname{sdepth}\left(J_{n, d}\right) \geqslant \max \left\{1, n-\left\lfloor\frac{1}{2}\left|G\left(J_{n, d}\right)\right|\right\rfloor\right\}=$ $n-\left\lfloor\frac{n}{2 k}\right\rfloor \geqslant \operatorname{depth}\left(J_{n, d}\right)$ by [10], Theorem 2.3, and Proposition 2.16.

The next theorem generalizes [5], Theorem 1.9.
Theorem 2.18. (1) $\operatorname{sdepth}\left(S / J_{n, d}\right)=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$ for $\frac{n}{k} \equiv 0(\bmod 3)$ and $\frac{n}{k} \equiv 2(\bmod 3) .(2) \operatorname{sdepth}\left(S / J_{n, d}\right) \leqslant \frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$ for $\frac{n}{k} \equiv 1(\bmod 3)$.

Proof. Let $\mathcal{P}=\mathcal{P}_{S / J_{n, d}}, t=\left\lceil\frac{n}{3 k}\right\rceil$ and $\alpha=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$. We consider the following two cases.

1. If $\frac{n}{k} \equiv 0(\bmod 3)$ or $\frac{n}{k} \equiv 2(\bmod 3)$, and $\sigma=\{1, \ldots, k, 1+3 k, \ldots, k+3 k, \ldots, 1+$ $(t-1) 3 k, \ldots, k+(t-1) 3 k\}$, then $\mathcal{P}_{\alpha+1, \sigma}=\emptyset$. Thus $\operatorname{sdepth}\left(S / J_{n, d}\right)=\operatorname{sdepth}(\mathcal{P}) \leqslant$ $\alpha=\frac{(d-2) n}{d}+\left\lceil\frac{2 n-d}{3 d}\right\rceil$.
2. If $\frac{n}{k} \equiv 1(\bmod 3)$ and $\sigma=\{1, \ldots, k, 1+3 k, \ldots, k+3 k, \ldots, 1+(t-2) 3 k, \ldots, k+$ $(t-2) 3 k, 1+(t-2) 3 k+2 k, \ldots, k+(t-2) 3 k+2 k\}$, then $\mathcal{P}_{\alpha+2, \sigma}=\emptyset$. Thus $\operatorname{sdepth}\left(S / J_{n, d}\right)=\operatorname{sdepth}(\mathcal{P}) \leqslant \alpha+1=\frac{(d-2) n}{d}+\left\lceil\frac{2 n+2 d}{3 d}\right\rceil=\frac{(d-2) n}{d}+\left\lceil\frac{2 n}{3 d}\right\rceil$.

Then the results follow from Proposition 2.16.
Acknowledgement. The authors thank the referee for his or her carefully reading this manuscript. Also we would like to thank Professor Zhongming Tang and Dr. Cheng Gong for their helpful discussions.

References

[1] I. Anwar, D. Popescu: Stanley conjecture in small embedding dimension. J. Algebra 318 (2007), 1027-1031.

Zbl MR doi
[2] R. R. Bouchat: Free resolutions of some edge ideals of simple graphs. J. Commut. Algebra 2 (2010), 1-35.
zbl MR doi
[3] W. Bruns, J. Herzog: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.
zbl MR doi
[4] M. Cimpoeaş: Stanley depth of monomial ideals with small number of generators. Cent. Eur. J. Math. 7 (2009), 629-634.
zbl MR doi
[5] M. Cimpoeaş: On the Stanley depth of edge ideals of line and cyclic graphs. Rom. J. Math. Comput. Sci. 5 (2015), 70-75.
zbl MR
[6] A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martin: A non-partitionable CohenMacaulay simplicial complex. Adv. Math. 299 (2016), 381-395.
zbl MR doi
[7] S. Faridi: The facet ideal of a simplicial complex. Manuscr. Math. 109 (2002), 159-174. zbl MR doi
[8] J.Herzog, M. Vladoiu, X. Zheng: How to compute the Stanley depth of a monomial ideal. J. Algebra 322 (2009), 3151-3169.
zbl MR doi
[9] S. Morey: Depths of powers of the edge ideal of a tree. Commun. Algebra 38 (2010), 4042-4055.
zbl MR doi
[10] R. Okazaki: A lower bound of Stanley depth of monomial ideals. J. Commut. Algebra 3 (2011), 83-88.
[11] D. Popescu: Stanley depth of multigraded modules. J. Algebra 321 (2009), 2782-2797. zbl MR doi
[12] A. Rauf: Depth and Stanley depth of multigraded modules. Commun. Algebra 38 (2010), 773-784.
zbl MR doi
[13] R. P. Stanley: Linear Diophantine equations and local cohomology. Invent. Math. 68 (1982), 175-193.
zbl MR doi
[14] A. Ştefan: Stanley depth of powers of the path ideal. Available at arXiv:1409.6072v1 [math.AC] (2014), 6 pages.
[15] R. H. Villarreal: Monomial Algebras. Pure and Applied Mathematics 238, Marcel Dekker, New York, 2001.

Authors' address: Xiaoqi Wei, Yan Gu (corresponding author), School of Mathematical Sciences, Soochow University, No. 1 Shizi Street, Suzhou 215006, Jiangsu, P. R. China, e-mail: weixiaoqi1989@sina.com, guyan@suda.edu.cn.

