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Abstract. Let G be a finite group. LetX1(G) be the first column of the ordinary character
table of G. We will show that if X1(G) = X1(PGU3(q

2)), then G ∼= PGU3(q
2). As

a consequence, we show that the projective general unitary groups PGU3(q
2) are uniquely

determined by the structure of their complex group algebras.
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1. Introduction

All groups in this paper are finite and all characters are complex characters. Let G

be a group and Irr(G) the set of all irreducible characters of G. Denote by cd(G)

the set of all irreducible character degrees of G without multiplicities. Let X1(G)

be the first column of the ordinary character table of G. Note that this means that

X1(G) is the set of all irreducible character degrees of G counting multiplicities.

Let CG denote the group algebra of G over C, the field of complex numbers. By

Wedderburn’s theorem, CG ∼=
n⊕

i=1

Mni
(C) where the dimensions ni, 1 6 i 6 n, are

exactly the degrees of irreducible characters of G. Therefore, the study of complex

group algebras and the relations to their base groups plays an important role in

group representation theory.

In [3], Problem 2*, Brauer asked whether two groups G and H are isomorphic

given that two group algebras FG and FH are isomorphic for all fields F. Kimmerle

proved in [9] that if G is a finite group and S is a nonabelian simple group such that

FG ∼= FS for all fields F, then G ∼= S. Inspired by [9], Tong-Viet proved in [20],
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[22], and [21] that all nonabelian simple groups are determined up to isomorphism

by their complex group algebras. Also he posed the following question:

Question. Which groups can be uniquely determined by the structure of their

complex group algebras?

Recall that a group G is called quasi-simple if G is a perfect group such that

its inner automorphisms group Inn(G) is a nonabelian simple group. It was shown

in [2], [15], and [16] that all quasi-simple groups are uniquely determined by their

complex group algebras. In [19], Tong-Viet proved that the symmetric groups are

determined up to isomorphism by their complex group algebras. Independently,

this result was also proved by Nagl in [14]. Also projective general linear groups of

dimension two were shown in [7] to be uniquely determined by their complex group

algebras. In [17], the authors proved that projective general linear groups PGLn(q),

n > 3, are determined up to isomorphism by their complex group algebras, provided

that q − 1 divides neither n nor n − 1. One of the natural groups to be considered

next are almost simple unitary groups. For this purpose, one needs to establish

some arithmetic properties of character degrees of simple unitary groups together

with determining the behavior of the irreducible characters under the action of outer

automorphisms. For unitary groups of dimension 3, the character tables and all

conjugacy classes of SU3(q
2) and PSU3(q

2) have been given in [18]. This together

with the results of [8] and [23] enables us to settle the above question for a family of

almost simple unitary groups of dimension 3, namely the projective general unitary

groups PGU3(q
2).

The main result of this paper is the following theorem:

Theorem 1.1. Let q = pf be a prime power and let G be a finite group such that

X1(G) = X1(PGU3(q
2)). Then G ∼= PGU3(q

2).

By Molien’s theorem (see [1], Theorem 2.13) we know that the structure of the

group algebra CG is equivalent to knowing the first column of the ordinary character

table of G. Therefore, according to Theorems 1.1, we have the following corollary:

Corollary 1.2. Let q = pf be a prime power and let G be a finite group such

that CG = CPGU3(q
2). Then G ∼= PGU3(q

2).

Note that if gcd(3, q+1) = 1, then PGU3(q
2) = PSU3(q

2). Suppose that X1(G) =

X1(PGU3(q
2)), where gcd(3, q + 1) = 1. In these cases, the result of Theorem 1.1

follows from [21], Theorem 1.1. Therefore, it remains to consider the cases in which

gcd(3, q + 1) 6= 1 to complete the proof of Theorem 1.1.
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Theorem 1.3. Let q = pf be a prime power and let G be a finite group such that

X1(G) = X1(PGU3(q
2)), where q ≡ −1 (mod 3). Then G ∼= PGU3(q

2).

The rest of this paper is devoted to proving Theorem 1.3. Note that for q = 2,

PGU3(2
2) is a solvable group, and for q > 2, PGU3(q

2) is nonsolvable. We

now outline our argument for the proof of Theorem 1.3. Assume that X1(G) =

X1(PGU3(q
2)), where q ≡ −1 (mod 3). For q > 2, we prove in Section 3 the

following steps:

1. G′ = G′′.

2. If G′/M is a chief factor of G, then G′/M ∼= PSU3(q
2).

3. M = 1 and so G′ ∼= PSU3(q
2).

4. G/CG(G
′) ∼= PGU3(q

2).

Then the result follows since |G| = |PGU3(q
2)|. This is a modified version of

the method used to verify Huppert’s conjecture which states that nonabelian simple

groups are determined by their sets of character degrees, see [8]. The solvable case,

where X1(G) = X1(PGU3(2
2)), is investigated using the degree graph in Section 4.

2. Character degrees of PGU3(q
2)

In this section, we present and also prove some lemmas concerning the character

degrees of PGU3(q
2), q ≡ −1 (mod 3). Using the data in [11], the character degrees

of PGU3(q
2), q ≡ −1 (mod 3), with their multiplicities are given in Table 1.

Degrees Multiplicity

1 3

q(q − 1) 3

q2 − q + 1 q − 2

(q − 1)(q2 − q + 1) 1
6q

2 − 1
6q +

2
3

q(q2 − q + 1) q − 2

q3 3

(q + 1)(q2 − q + 1) 1
2 (q + 1)(q − 2)

(q − 1)(q + 1)2 1
3 (q + 1)(q − 2)

Table 1. Character degrees of PGU3(q
2), q ≡ −1 (mod 3).

Note that gcd(q− 1, q+1) = 2 if q is odd, and gcd(q2 − q+1, q+1) = 3 if q ≡ −1

(mod 3). All the other factors of character degrees given in Table 1 are pairwise

relatively prime.

821



Remark 2.1. Compairing the data given in [11] and [18], Table 2, we obtain

that cd(PGU3(q
2)) ⊂ cd(PSU3(q

2)), where q > 2. In particular, cd(PSU3(q
2)) =

cd(PGU3(q
2)) ∪ { 1

3 (q − 1)(q2 − q + 1)}, where q > 2 and q ≡ −1 (mod 3).

The following lemmas use the Deligne-Lusztig theory of complex characters of

finite groups of Lie type, cf. [4]. If G is a simple algebraic group, let π1(G) denote

the fundamental group of G.

Lemma 2.2 ([5], Lemma 2.5). Let G be a simple algebraic group in characteris-

tic p, F a Frobenius map on G, and let G := GF . Let the pair (G∗, F ∗) be dual to

(G, F ) and G∗ := G∗F∗

. Assume s ∈ G∗ is a semisimple element of order r which is

coprime to both |π1(G
∗)| and |Z(G)|.

(a) Then G has an irreducible character χs of degree [G
∗ : CG∗(s)]p′ which is trivial

at Z(G).

(b) Let σ and σ∗ be automorphisms of (abstract) groups G and G∗, respectively,

induced by a field automorphism x 7→ xq for some power q of p and such that

σ ◦F = F ◦σ. Assume in addition that r ∤ |(G∗)σ
∗

|. Then χs is not σ-invariant.

Lemma 2.3. For q = pf > 2, the group PGU3(q
2) has a so-called semisimple

irreducible character χs of degree (q− 1)(q+1)2, where s ∈ SU3(q
2) is a semisimple

element. Moreover, χs restricts irreducibly to PSU3(q
2).

P r o o f. Let G∗ := SL3(Fp). It is known, cf. [12], Example 21.2, that (G
∗)F

∗

=

SU3(q
2) for the Frobenius map F ∗ given by (aij) 7→ (aij

q)−tr. Since q > 2, by

a classical result of Zsigmondy, see [24], there exists a primitive prime divisor r of

p6f − 1 = q6−1; that is, a prime divisor of p6f−1 which does not divide
6f−1∏

i=1

(pi − 1).

Let ω ∈ Fp be of order r. Let s be a semisimple element of SU3(q
2) with eigenvalues ω,

ωq2 , and ωq4 = ω−q. From the data in [18], Table 1a, we obtain that |CSU3(q2)(s)| =

q2 − q + 1. Therefore, by Lemma 2.2 (a), χs is a semisimple character of G
F =

PGU3(q
2) of degree (q2 − 1)(q3 + 1)/q2 − q + 1. Moreover, χs restricts irreducibly

to PSU3(q
2), since PSU3(q

2) has no irreducible character of degree 1
3 (q− 1)(q+1)2,

see [18], Table 2. �
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3. Proof of Theorem 1.3 for PGU3(q
2), q > 2

In this section, we will prove Theorem 1.3 for the family of groups PGU3(q
2),

q > 2, through verifying steps 1–4. Assume throughout this section that X1(G) =

X1(PGU3(q
2)), where q > 2 and q ≡ −1 (mod 3). Therefore, cd(G) = cd(PGU3(q

2))

and |G| = |PGU3(q
2)|. By Remark 2.1, cd(G) = cd(PSU3(q

2))\{ 1
3 (q−1)(q2−q+1)}.

Hence, arguing as in step 1 in [8], we deduce that G′ = G′′. Let G′/M ∼= S× . . .×S,

the direct product of k copies of a nonabelian simple group S, be a chief factor of G.

Following the arguments in [8] and [23] we show that k = 1 and S ∼= PSU3(q
2).

Lemma 3.1 ([8], Step 2). LetH be a finite group such that cd(H)=cd(PSU3(q
2)),

where 2 < q 6 8. If H ′/M ∼= S×. . .×S, the direct product of k copies of a nonabelian

simple group S, is a chief factor of H , then k = 1 and S ∼= PSU3(q
2).

Lemma 3.2 ([23], Propositions 4.4–4.6 and Section 4.4). Let H be a finite group

such that cd(H) = cd(PSU3(q
2)), where q > 9. If H ′/M ∼= S × . . . × S, the direct

product of k copies of a nonabelian simple group S, is a chief factor of H , then k = 1

and S ∼= PSU3(q
2).

According to the proofs of Lemma 3.1 and Lemma 3.2, the results of these lem-

mas would remain still valid if we assume that H is a nonsolvable group such that

H ′ = H ′′ and cd(H) ⊆ cd(PSU3(q
2)). Since [G : G′] = 3, G′ 6= 1. In addition,

step 1 verifies that G′ = G′′. Also, by Remark 2.1, we have cd(G) ⊆ cd(PSU3(q
2)).

Therefore, arguing exactly as in the proofs of Lemma 3.1 and Lemma 3.2 one could

prove the following result:

Proposition 3.3. Let G be a finite group such that X1(G) = X1(PGU3(q
2)),

where q > 2 and q ≡ −1 (mod 3). Let G′/M ∼= S × . . . × S, the direct product

of k copies of a nonabelian simple group S, be a chief factor of G. Then k = 1 and

S ∼= PSU3(q
2).

Proposition 3.4. In the contex of Proposition 3.3, we have

(a) G′ ∼= PSU3(q
2);

(b) CG(G
′) is abelian.

P r o o f. (a) We have shown in Proposition 3.3 that G′/M ∼= PSU3(q
2). So

|G′| = |M ||PSU3(q
2)| divides |G| = 3|PSU3(q

2)|. Therefore, |M | | 3. If |M | = 3,

then G′ = G, which is impossible since according to Table 1, G has three linear

characters. Hence, M = 1 and G′ ∼= PSU3(q
2).

(b) By (a), G′ is a nonabelian simple group and so Z(G′) = 1. Let x, y ∈ CG(G
′).

Then, xyx−1y−1 ∈ CG(G
′) ∩G′ = Z(G′). So xy = yx. �
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Proposition 3.5. If G is a finite group such that X1(G) = X1(PGU3(q
2)), where

q > 2 and q ≡ −1 (mod 3), then G/CG(G
′) ∼= PGU3(q

2).

P r o o f. By Proposition 3.4, G′ is a nonabelian simple group. Since G′ ∩

CG(G
′) = 1, it follows that G′ ∼= G′CG(G

′)/CG(G
′) D G/CG(G

′) 6 Aut(G′).

Therefore, G/CG(G
′) is an almost simple group and it induces on G′ some outer

automorphism α. Let q = pf . It is well known, cf. [6], Theorem 2.5.12, that

Out(G′) ∼= 〈d〉 : 〈σ〉,

where d is a diagonal automorphism of degree gcd(3, q+1) = 3, σ is the automorphism

of G′ of order 2f induced by the field automorphism x 7→ xp on the finite field Fq2 .

We consider the following cases and show that assuming as in Theorem 1.3, only the

case G/CG(G
′) ∼= PGU3(q

2) may occur, as desired.

Case 1. G/CG(G
′) possesses only inner automorphisms. In this case, G/CG(G

′) ∼=

PSU3(q
2). Therefore 1

3 (q − 1)(q2 − q + 1) ∈ cd(G/CG(G
′)) ⊂ cd(G). This leads to

contradiction since according to Table 1, G has no irreducible character of degree
1
3 (q − 1)(q2 − q + 1).

Case 2. G/CG(G
′) possesses only inner and diagonal automorphisms. In this

case, α = d is a diagonal automorphism of G′ of degree 3, and we have G/CG(G
′) ∼=

PSU3(q
2) : 〈d〉 ∼= PGU3(q

2), as desired.

Case 3. α = daσb where 1 6 a 6 3, 1 6 b 6 2f − 1. By Lemma 2.3,

PGU3(q
2) has a semisimple irreducible character χs of degree (q− 1)(q+1)2, where

s is a semisimple element of SU3(q
2) whose order is a primitive prime divisor of

p6f − 1. So |s| ∤
6f−1∏

i=1

(pi − 1). Moreover, χs restricts irreducibly to PSU3(q
2).

Hence, χs ∈ Irr(PSU3(q
2)). By Table 1, PGU3(q

2) ∼= PSU3(q
2) : 〈d〉 has no degree

which is a proper multiple of (q − 1)(q + 1)2. Therefore, χs is d-invariant. Also,

using Lemma 2.3 (b) we deduce that χs is not σ
b-invariant since |s| does not divide

|SL3(p
b)|. We have shown that χs is not α-invariant. Hence, G has an irreducible

character whose degree is a proper multiple of (q − 1)(q + 1)2, which is impossible

according to Table 1. �

4. Proof of Theorem 1.3 for PGU3(2
2)

In this section, we will prove Theorem 1.3 for the solvable group PGU3(2
2). Our

proof is based on a result in [13] about finite groups whose degree graph is empty.

The degree graph ∆(G) of the group G has a vertex set consisting of the primes that

divide degrees in cd(G); there is an edge between p and q if pq divides some degree

a ∈ cd(G).
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Proposition 4.1. Let G be a finite group such that X1(G) = X1(PGU3(2
2)).

Then G ∼= PGU3(2
2).

P r o o f. Using Table 1, we have cd(G) = cd(PGU3(q
2)) = {1, 2, 3, 8}. Also |G| =

|PGU3(2
2)| = 23 × 33. So by Burnside’s {p, q}-theorem, G is also a solvable group.

The degree graph of both G and PGU3(2
2) is the empty graph with two connected

component, {2}, and {3}. Using [13], Main theorem, and [10], Lemmas 3.2–3.5,

we obtain that both G and PGU3(2
2) are isomorphic to the semidirect product of

a subgroup H acting on a subgroup P , where P is an elementary abelian group of

order 9 and H/CH(P ) ∼= SL2(3), where CH(P ) 6 Z(H) and the action of H on

P is the natural action of SL2(3) on P . The order of this semidirect product is

9|H |, where |SL2(3)| | |H |. Since |G| = |PGU3(2
2)| = 9|SL2(3)|, we must have that

|CH(P )| = 1 and H ∼= SL2(3). Hence, both G and PGU3(2
2) are isomorphic to

the semidirect product of SL2(3) and Z3 ×Z3, with the natural action of SL2(3) on

Z3 × Z3. Therefore, G ∼= PGU3(2
2). �
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