
Czechoslovak Mathematical Journal

Francisco Javier González Vieli
Pointwise Fourier inversion of distributions on spheres

Czechoslovak Mathematical Journal, Vol. 67 (2017), No. 4, 1059–1070

Persistent URL: http://dml.cz/dmlcz/146967

Terms of use:
© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/146967
http://dml.cz


Czechoslovak Mathematical Journal, 67 (142) (2017), 1059–1070

POINTWISE FOURIER INVERSION OF DISTRIBUTIONS

ON SPHERES

Francisco Javier González Vieli, Lausanne

Received July 27, 2016. First published October 6, 2017.

Abstract. Given a distribution T on the sphere we define, in analogy to the work of
 Lojasiewicz, the value of T at a point ξ of the sphere and we show that if T has the value
τ at ξ, then the Fourier-Laplace series of T at ξ is Abel-summable to τ .
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1. Introduction

Consider the periodic distribution T with period 2π defined by

T (ϕ) := lim
ε→0+

∫ 2π−ε

ε

cot(12 t)ϕ(t) dt

for all test functions ϕ (T is the principal value of cot(12 t)). Its Fourier coefficients,

given by FT (k) := T (e−ikt)/2π, are equal to −i for k > 0, 0 for k = 0 and i for

k < 0. Hence, the Fourier series of T ,

∑

k∈Z

FT (k)eikt,

does not converge at any t ∈ [−π, π]; generally, one only reads that it converges

to T in the sense of distributions. In fact it is possible to reconstruct T from FT

using pointwise convergence only (and no test functions); the Fourier series of T is
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Abel-summable to cot(12 t) at every t 6= 0:

lim
r→1

−

∑

k∈Z

r|k|FT (k)eikt = lim
r→1

−

(−i)

∞∑

k=1

(reit)k + i

∞∑

k=1

(re−it)k

= lim
r→1

−

(−i)
reit

1− reit
+ i

re−it

1− re−it

= lim
r→1

−

2r sin t

1 + r2 − 2r cos t

= cot(12 t).

This result is general: Walter [9], page 146, proved that if a periodic distribution T

in one variable has the value τ at a point t (in the sense of  Lojasiewicz), then the

Fourier series of T at t is Cesàro- and hence Abel-summable to τ . A complete

characterization for Fourier series and Fourier integrals on R was given in [8]. Note

that the pointwise convergence or summability of expansions of distributions has

been investigated with respect to other orthogonal systems, such as wavelets (see [5],

[9], [10]).

If we want to generalize Walter’s result to the spheres S
n−1, n > 2, we must

define the notion of value at a point for distributions on the sphere. In Section 2,

after introducing useful notation we give a definition which is analogous to the one

of  Lojasiewicz, but which only uses the Laplace-Beltrami operator and its iterates

instead of more general differential operators. We are then able in Section 3 to show

that if T has the value τ at ξ ∈ S
n−1, then the Fourier-Laplace series of T at ξ is

Abel-summable to τ .

2. Preliminaries

We write S
n−1 for the unit sphere in R

n, n > 2, and σn−1 for the measure on S
n−1

induced by the Lebesgue measure on R
n, so that

ωn−1 :=

∫

Sn−1

dσn−1(η) =
2π

n/2

Γ(n/2)
.

We define a distance d on S
n−1 by d(ζ, η) := 1 − (ζ|η), where (·|·) is the euclidean

scalar product in R
n. A spherical harmonic of degree l on S

n−1, l ∈ N0, is the

restriction to S
n−1 of a polynomial on R

n which is harmonic and homogeneous of

degree l. We write SH l(S
n−1) for the vector space of spherical harmonics of degree l;

its dimension is

dnl := dimC SH l(S
n−1) =

(2l + n− 2)(n+ l− 3)!

(n− 2)! l!
=

2ln−2

(n− 2)!
+O(ln−3).
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Two spherical harmonics of different degrees are orthogonal with respect to the scalar

product (·|·)2 of L2(Sn−1, σn−1). If f ∈ L2(Sn−1) and l ∈ N0, we write Πl(f) for the

orthogonal projection of f onto SH l(S
n−1); the series

∞∑

l=0

Πl(f),

called Fourier-Laplace series of f , converges to f in square mean. Given ζ ∈ S
n−1,

the unique spherical harmonic Zl(ζ, ·) of degree l such that

Πl(f)(ζ) =

∫

Sn−1

Zl(ζ, η)f(η) dσn−1(η)

is the zonal with pole ζ of degree l; it is the reproducing kernel of the Hilbert space

SH l(S
n−1). If f is a function defined on S

n−1, we write f↑ for the homogeneous

function of degree 0 defined on R
n \ {0} by (f↑)(x) := f(x/‖x‖). Conversely, if g

is a function defined on R
n \ {0}, we denote by g↓ its restriction to S

n−1. We say

that a function f on S
n−1 is in Cl(Sn−1) (where l ∈ N0) if f↑ ∈ Cl(Rn \ {0}). When

f ∈ Cl(Sn−1), we can define for every multiindex α ∈ N
n
0 with |α| := α1+. . .+αn 6 l,

Dα
Sf := (Dα(f↑))↓ =

( ∂|α|

∂xα1

1 . . . ∂xαn
n

(f↑)
)
↓.

In this way we can obtain from the Laplacian ∆ on R
n the Laplace-Beltrami operator

on S
n−1, ∆S ; it is self-adjoint with respect to (·|·)2 and SH l(S

n−1) is an eigenspace

associated to the eigenvalue −l(l+ n− 2) (for all this, see [1] and [4]).

We write D(Sn−1) for the space of functions C∞(Sn−1) with the topology given

by the family of seminorms

pm(ϕ) := sup
|α|6m

sup
η∈Sn−1

|Dα
Sϕ(η)|,

where m ∈ N0 (note that ‖ϕ‖∞ = p0(ϕ)). If ϕ ∈ D(Sn−1), its Fourier-Laplace series

converges to ϕ in this topology [2], page 265.

The dual D′(Sn−1) of D(Sn−1) is the space of distributions on S
n−1. The Fourier-

Laplace series of a distribution T on S
n−1 is

∞∑

l=0

Πl(T ),

where for ζ ∈ S
n−1,

Πl(T )(ζ) := T [η 7→ Zl(ζ, η)];

it converges to T in the sense of distributions [2], page 265.
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To find how we can define the value of a distribution T on S
n−1 at a point ζ in S

n−1,

we must consider the original definition on R
n of  Lojasiewicz: a distribution S on R

n

has the value τ at a point x0 in R
n if and only if one of the following equivalent

conditions is satisfied [6] on pages 15, 25, 21:

(a) lim
λ→0+

S(x0 + λx) = τ , distributionally, in a neighbourhood of x0;

(b) lim
λ→0+

S[x 7→ λ−nϕ((x − x0)/λ)] = τ for all ϕ ∈ D(Sn−1) with
∫
R
ϕ(x) dx = 1;

(c) there exist α ∈ N
n
0 and a continuous function F such that S = DαF and

F (x) = τ(x − x0)
α/α! + o(‖x− x0‖

|α|) in a neighbourhood of x0.

Since there is no natural dilation on S
n−1, conditions (a) and (b) are not adequate

here. Condition (c) is more promising. In fact, it is heuristically quite clear: S is on

a neighbourhood of x0 the derivative Dα, up to a “negligible” term, of τ(x−x0)
α/α!

and Dα(τ(x − x0)
α/α!) = τ . However, in saying this we use the fact that the

derivation of distributions on R
n is a generalization of the derivation of functions on

R
n: if Tf is the distribution defined by the function f ∈ Cm(Rn), then DαTf = TDαf

for every α ∈ N
n
0 with |α| 6 m, which is a consequence of the equality

∫

Rn

ϕ(x)Dαψ(x) dx = (−1)|α|
∫

Rn

Dαϕ(x)ψ(x) dx,

true for all ϕ, ψ ∈ D(Rn). Now, such an equality is in general false on S
n−1 for the

differential operators Dα
S : there is no constant c such that

∫

Sn−1

ϕ(η)D
ej
S ψ(η) dσn−1(η) = c

∫

Sn−1

D
ej
S ϕ(η)ψ(η) dσn−1(η)

for all ϕ, ψ ∈ D(Sn−1), where ej is the multiindex given by (ej)l = δjl (take ϕ = 1 and

ψ(ζ) = ζj). Instead of general Dα
S we therefore use the Laplace-Beltrami operator

and its iterates, because these are self-adjoint.

There is still a point we cannot transpose without modification on S
n−1: in R

n

we have Dα(τ(x − x0)
α/α!) = τ everywhere. On the contrary, there is no function

f ∈ C2(Sn−1) such that ∆Sf = τ if τ ∈ C, τ 6= 0. We are thus led to the following.

Definition 2.1. A distribution T ∈ D′(Sn−1) has the value τ ∈ C in ζ ∈ S
n−1 if

there exist p ∈ N0, F ∈ C(Sn−1) and f ∈ C2p(Sn−1) such that

(1) in the sense of distributions, T = ∆p
SF on a neighbourhood of ζ;

(2) F (η) = f(η) + o[d(ζ, η)p] for η → ζ;

(3) ∆p
Sf(ζ) = τ .

Remark 2.2. It is not difficult, using the criterion (b) above, to show that given

S ∈ D′(Rn), x0 ∈ R
n and τ ∈ C, if there exist p ∈ N0, F ∈ C(Rn) and f ∈ C2p(Rn)

such that S = ∆pF on a neighbourhood of x0, F (x) = f(x)+o(‖x−x0‖
2p) for x→ x0
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and ∆pf(x0) = τ , then S has the value τ in x0 (and this conclusion is no more true

when assuming o(‖x−x0‖
p) instead of o(‖x−x0‖

2p)). The discrepancy between the

exponents in this o(‖x−x0‖
2p) and in o[d(ζ, η)p] of (2) above is only superficial. Take

two points ζ, η ∈ S
n−1 and let ϕ be the angle between ζ and η seen as vectors in R

n.

Then d(ζ, η) = 1 − (ζ|η) = 1 − cos(ϕ) = 2 sin2(ϕ/2) = 2(‖ζ − η‖/2)2 = ‖ζ − η‖2/2

and o[d(ζ, η)p] = o(‖ζ − η‖2p) as η → ζ.

Remark 2.3. It immediately follows from the definition that if T is equal in the

sense of distributions to a continuous function F on a neighbourhood of ζ, then T

has the value F (ζ) in ζ.

3. Fourier inversion on the sphere

Let T ∈ D′(Sn−1). Since S
n−1 is compact, T is of finite order; that is, there exist

C > 0 and m ∈ N0 such that

(3.1) |T (ϕ)| 6 C sup
|α|6m

sup
η∈Sn−1

|Dα
Sϕ(η)|

for all ϕ ∈ D(Sn−1).

Let us now study the derivatives, with respect to η, of

(3.2) Zl(ζ, η) =
dnl
ωn−1

P
(n−2)/2
l ((ζ|η))

for a fixed ζ ∈ S
n−1, where P

(n−2)/2
l are polynomials in one variable (see [7], Theo-

rem 2.14, page 149). We know (see [3], page 762) that if l > 1,

D
ej
S

dnl
ωn−1

P
(n−2)/2
l ((ζ|η)) = 2π

dn+2
l−1

ωn+1
P

n/2
l−1 ((ζ|η))D

ej
S (ζ|η).

We get similarily for every multiindex α 6= 0

(3.3) Dα
S [η 7→ Zl(ζ, η)] =

|α|∑

j=1

(2π)jQj(ζ, η)
dn+2j
l−j

ωn−1+2j
P

(n−2+2j)/2
l−j ((ζ|η)),

where Qj(ζ, η) is a linear combination of products of Dβ
S(ζ|η) (with β 6 α) which

does not depend on l. Now, according to [7], Corollary 2.9, page 144,

|Zl(ζ, η)| 6
dnl
ωn−1
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for any ζ, η ∈ S
n−1. Comparing this with (3.2), we deduce that

|P
(n−2)/2
l ((ζ|η))| 6 1

for any ζ, η ∈ S
n−1. Therefore each term in the sum of (3.3) can be majorized in

absolute value by

Aj

dn+2j
l−j

ωn−1+2j

where Aj > 0 does not depend on l. Moreover dn+2j
l−j 6 Bj l

n+2j−2, where Bj > 0

does not depend on l. Put A0 = B0 := 1. Then for all η ∈ S
n−1 and α ∈ N

n
0 ,

|Dα
SZl(ζ, η)| 6 (|α|+ 1) max

06j6|α|
AjBj l

n+2|α|−2.

We deduce that for 0 6 r < 1 and ζ ∈ S
n−1 fixed the series

∞∑

l=0

rlZl(ζ, η)

converges as a function of η for the semi-norm pm. It follows from (3.1) that

∞∑

l=0

rl Πl(T )(ζ) = lim
L→∞

L∑

l=0

rl Πl(T )(ζ)

= lim
L→∞

L∑

l=0

rl T [η 7→ Zl(ζ, η)]

= lim
L→∞

T

[
η 7→

L∑

l=0

rlZl(ζ, η)

]

exists and is equal to

T

[
η 7→

∞∑

l=0

rlZl(ζ, η)

]
,

that is, by [7], Theorem 2.10, page 145, to

T
[
η 7→

1

ωn−1

1− r2

(1− 2r(ζ|η) + r2)n/2

]
.

We are now ready to state our main result.
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Theorem 3.1. Let T ∈ D′(Sn−1), ξ ∈ S
n−1 and τ ∈ C. If T has the value τ in ξ,

then

lim
r→1

−

∞∑

l=0

rl Πl(T )(ξ) = τ.

P r o o f. We divide it in two parts.

First part. For x ∈ R
n with ‖x‖ < 1 and η ∈ S

n−1 we put

P (x, η) :=
1

ωn−1

1− ‖x‖2

‖x− η‖n
;

this is the well known Poisson kernel ; among its many properties we will use the

following two: if f ∈ C(Sn−1) and ζ ∈ S
n−1,

(3.4) lim
x→ζ,‖x‖<1

∫

Sn−1

f(η)P (x, η) dσn−1(η) = f(ζ)

(see [1], Theorem 1.17 page 13); and for all x ∈ R
n with ‖x‖ < 1,

(3.5)

∫

Sn−1

P (x, η) dσn−1(η) = 1

(see [1], Proposition 1.20, page 14).

If we write x = rζ with 0 6 r < 1 and ζ ∈ S
n−1, we get

‖x− η‖n = (rζ − η|rζ − η)n/2

=
(
(rζ|rζ) − 2(rζ|η) + (η|η)

)n/2

=
(
r2 − 2r(ζ|η) + 1

)n/2
.

Hence,

P (rζ, η) =
1

ωn−1

1− r2

(1− 2r(ζ|η) + r2)n/2

and
∞∑

l=0

rl Πl(T )(ζ) = T [η 7→ P (rζ, η)].

We will calculate Dα
S [η 7→ P (rζ, η)]. Using the equality

∂

∂xj

(
1− 2r(ζ|x)‖x‖−1 + r2

)
= −2r

(
ζj‖x‖

−1 − (ζ|x)xj‖x‖
−3

)
,
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we find that

∂

∂xj
P
(
rζ,

x

‖x‖

)
=

(1− r2)r

ωn−1

n(ζj‖x‖
−1 − (ζ|x)xj‖x‖

−3)

(1 − 2r(ζ|x)‖x‖−1 + r2)1+n/2

and, by induction,

DαP
(
rζ,

x

‖x‖

)
=

|α|∑

j=1

(1− r2)rj

ωn−1

Rα
j (ζ, x, ‖x‖

−1)

(1− 2r(ζ|x)‖x‖−1 + r2)j+n/2
,

where α ∈ N
n
0 , α 6= 0, r > 0, ζ ∈ S

n−1 and Rα
j (ζ, x, ‖x‖

−1) is a polynomial in

ζ1, . . . , ζn, x1, . . . , xn, ‖x‖−1 which does not depend on r. Restricting it to S
n−1 we

deduce that

Dα
S [η 7→ P (rζ, η)] =

|α|∑

j=1

(1− r2)rj

ωn−1

R̃α
j (ζ, η)

(1− 2r(ζ|η) + r2)j+n/2
,

where R̃α
j (ζ, η) is a polynomial in ζ1, . . . , ζn, η1, . . . , ηn which does not depend on r.

Let

Mα := max
16j6|α|

sup
ζ,η∈Sn−1

|R̃α
j (ζ, η)|

and observe that

1− 2r(ζ|η) + r2 = (1 − r)2 + 2r(1 − (ζ|η)) > 2r(1 − (ζ|η)) = 2r d(ζ, η).

Therefore

(3.6) |Dα
S [η 7→ P (rζ, η)]| 6

|α|∑

j=1

(1− r2)rj

ωn−1

Mα

[2r d(ζ, η)]j+n/2
.

Similarily, to calculate ∆l
S [η 7→ P (rζ, η)] we use the equalities

n∑

j=1

(
ζj‖x‖

−1 − (ζ|x)xj‖x‖
−3

)2
= ‖x‖−2 − (ζ|x)2‖x‖−4,

∂

∂xj

(
1− (ζ|x)2‖x‖−2

)
= −2(ζ|x)‖x‖−1

(
ζj‖x‖

−1 − (ζ|x)xj‖x‖
−3

)
,

∂

∂xj

(
ζj‖x‖

−1 − (ζ|x)xj‖x‖
−3

)
= −2ζjxj‖x‖

−1 − (ζ|x)‖x‖−3 + 3x2j (ζ|x)‖x‖
−5,

n∑

j=1

(
−2ζjxj‖x‖

−1 − (ζ|x)‖x‖−3 + 3x2j(ζ|x)‖x‖
−5

)
= (1− n)(ζ|x)‖x‖−3,

1066



and find, after tedious but straightforward calculations, that for every l ∈ N,

(3.7) ∆l
S [η 7→ P (rζ, η)] =

2l∑

j=1

(1− r2)rj

ωn−1

Qj((ζ|η))[1 − (ζ|η)2]max(j−l,0)

(1− 2r(ζ|η) + r2)j+n/2

with Qj a polynomial in one variable depending on l but not on r. But since

1− 2r(ζ|η) + r2 > 2r(1− (ζ|η)), we have

0 6
rj [1− (ζ|η)]j

(1 − 2r(ζ|η) + r2)j
6

rj [1− (ζ|η)]j

[2r(1− (ζ|η))]j
6

1

2j
.

Moreover |1± (ζ|η)| 6 2 for any ζ, η ∈ S
n−1. We deduce

d(ζ, η)l|∆l
SP (rζ, η)| = |[1− (ζ|η)]l∆l

SP (rζ, η)|

=

∣∣∣∣
l∑

j=1

1− r2

ωn−1

Qj((ζ|η))[1 − (ζ|η)]l−j

(1 − 2r(ζ|η) + r2)n/2
rj [1− (ζ|η)]j

(1− 2r(ζ|η) + r2)j

+

2l∑

j=l+1

1− r2

ωn−1

Qj((ζ|η))[1 + (ζ|η)]j−l

(1 − 2r(ζ|η) + r2)n/2
rj [1− (ζ|η)]j

(1− 2r(ζ|η) + r2)j

∣∣∣∣

6

( l∑

j=1

‖Qj‖∞2l−j

2j
+

2l∑

j=l+1

‖Qj‖∞2j−l

2j

)
1− r2

ωn−1

1

(1− 2r(ζ|η) + r2)n/2
,

that is

(3.8) d(ζ, η)l|∆l
SP (rζ, η)| 6 ClP (rζ, η)

with Cl > 0 a constant depending only on l. Set C0 := 1, so that (3.8) is true for all

l ∈ N0.

Finally, from

0 6
(1− r2)rj

(1 − 2r(ζ|η) + r2)j+n/2
6

(1− r2)rj

(2r d(ζ, η))j+n/2

it follows by (3.7),

(3.9) lim
r→1

−

∫

η∈Sn−1,d(ζ,η)>δ

|∆l
SP (rζ, η)| dσn−1(η) = 0

if 0 < δ < 2 for all l ∈ N0.
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Second part. Choose ε > 0 arbitrary. By assumption there exist p ∈ N0, F ∈

C(Sn−1) and f ∈ C2p(Sn−1) such that T = ∆p
SF on a neighbourhood of ξ, F (η) =

f(η) + o[d(ξ, η)p] as η → ξ and ∆p
Sf(ξ) = τ .

Hence there exists 0 < δ1 < 1 such that T = ∆p
SF on B(ξ, 2δ1) and there exists

0 < δ2 < 2 such that for all η ∈ S
n−1 with d(ξ, η) < δ2 we have

|F (η) − f(η)| < ε
d(ξ, η)p

4Cp
.

Let δ := min(δ1, δ2). Since the support of T −∆p
SF is included in S

n−1 \ B(ξ, 2δ),

there exists a constant C̃ > 0 such that

|(T −∆p
SF )(ϕ)| 6 C̃ sup

|α|6m̃

sup
d(η,ξ)>δ

|Dα
Sϕ(η)|

for all ϕ ∈ D(Sn−1), where m̃ is the order of the distribution T − ∆p
SF . In view

of (3.6), we can then find 0 6 r1 < 1 such that r1 6 r < 1 implies

|(T −∆p
SF )[η 7→ P (rξ, η)]| <

ε

4
.

By (3.9) there exists 0 6 r2 < 1 such that r2 6 r < 1 implies

∫

d(ξ,η)>δ

|∆p
SP (rξ, η)| dσn−1(η) <

ε

4‖F‖∞ + 4‖f‖∞ + 1
.

Finally, since f ∈ C2p(Sn−1), ∆p
Sf ∈ C(Sn−1), by (3.4) we get

lim
x→ξ,‖x‖<1

∫

Sn−1

∆p
Sf(η)P (x, η) dσn−1(η) = ∆p

Sf(ξ) = τ.

Therefore there exists 0 6 r3 < 1 such that r3 6 r < 1 implies

(3.10)

∣∣∣∣
∫

Sn−1

∆p
Sf(η)P (rξ, η) dσn−1(η) − τ

∣∣∣∣ <
ε

4
.

Put r0 := max(r1, r2, r3). For all r0 6 r < 1 we have

∣∣∣∣
∞∑

l=0

rl Πl(T )(ξ)− τ

∣∣∣∣ = |T [η 7→ P (rξ, η)] − τ |

6 |(T −∆p
SF )[η 7→ P (rξ, η)]| + |∆p

SF [η 7→ P (rξ, η)] − τ |
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<
ε

4
+ |F [η 7→ ∆p

SP (rξ, η)] − τ |

<
ε

4
+

∣∣∣∣
∫

Sn−1

F (η)∆p
SP (rξ, η) dσn−1(η)− τ

∣∣∣∣

6
ε

4
+

∣∣∣∣
∫

Sn−1

(F (η)− f(η))∆p
SP (rξ, η) dσn−1(η)

∣∣∣∣

+

∣∣∣∣
∫

Sn−1

f(η)∆p
SP (rξ, η) dσn−1(η)− τ

∣∣∣∣

6
ε

2
+

∫

d(ξ,η)<δ

|F (η)− f(η)||∆p
SP (rξ, η)| dσn−1(η)

+

∫

d(ξ,η)>δ

(|F (η)|+ |f(η)|)|∆p
SP (rξ, η)| dσn−1(η)

6
ε

2
+

∫

d(ξ,η)<δ

( ε

4Cp

)
d(ξ, η)p|∆p

SP (rξ, η)| dσn−1(η)

+

∫

d(ξ,η)>δ

(‖F‖∞ + ‖f‖∞)|∆p
SP (rξ, η)| dσn−1(η)

<
ε

2
+
ε

4
+
ε

4
= ε.

(In the fifth inequality we can use (3.10) because ∆S is self-adjoint; in the last

inequality we use (3.8) and (3.5) to majorize the integral over B(ξ, δ).) �

Remark 3.2. The theorem shows that if the value of T in ξ exists, it is unique.

Remark 3.3. The converse of the theorem is false: take n = 2 and T the principal

value of cot(12 t). Then its Fourier-Laplace series is Abel-summable to 0 at t = 0:

lim
r→1

−

∑

k∈Z

r|k|FT (k)eik0 = lim
r→1

−

2r sin 0

1 + r2 − 2r cos 0
= lim

r→1
−

0 = 0

but T has no value at t = 0.
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