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Abstract. Consider Tn(F )—the ring of all n× n upper triangular matrices defined over
some field F . A map ϕ is called a zero product preserver on Tn(F ) in both directions if
for all x, y ∈ Tn(F ) the condition xy = 0 is satisfied if and only if ϕ(x)ϕ(y) = 0. In the
present paper such maps are investigated. The full description of bijective zero product
preservers is given. Namely, on the set of the matrices that are invertible, the map ϕ may
act in any bijective way, whereas for the zero divisors and zero matrix one can write ϕ as
a composition of three types of maps. The first of them is a conjugacy, the second one
is an automorphism induced by some field automorphism, and the third one transforms
every matrix x into a matrix x′ such that {y ∈ Tn(F ) : xy = 0} = {y ∈ Tn(F ) : x′y = 0},
{y ∈ Tn(F ) : yx = 0} = {y ∈ Tn(F ) : yx′ = 0}.
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1. Stating the results

Let A be an algebra or simply a ring. If ϕ : A → A satisfies condition

(1.1) xy = 0 ⇒ ϕ(x)ϕ(y) = 0 ∀x, y ∈ A,

then we say that ϕ preserves zero products.

If ϕ : A → A fulfills the condition

xy = 0 ⇔ ϕ(x)ϕ(y) = 0 ∀x, y ∈ A,

then we say that ϕ preserves zero products in both directions.

Problem of describing maps satisfying (1.1) was considered first by Wong in [15] for

the case when A is a finite-dimensional simple associative algebra and ϕ is semilinear.
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Similar but a bit different result was obtained in [3], where the maps preserving the

nilpotent matrices were described. In this paper the considered algebra consists of

matrices with trace 0. Such matrices were also investigated in [12], where the linear

maps preserving square-zero matrices were studied. This was extended in [6] to

the matrices over commutative rings. Quite a lot of authors studied zero product

preservers on Banach algebras, see [1], [5], but also on some Hilbert spaces, see [9],

or topological spaces, see [7].

The notion of a zero-divisor graph was introduced by Beck in [2]. If R is a ring,

then we identify it with a simple graph such that its vertices are elements of R and

two distinct x, y ∈ R are adjacent if and only if xy = 0.

The properties of the zero-divisor graphs of the full matrix rings were studied in [4]

and the zero-divisor graphs of Tn(F )-upper triangular matrices in [10], [11], [8].

One can see that if we know the form of all automorphisms of a zero-divisor graph

of some ring R, then we know the form all the bijective maps that preserve zero

products on R. Therefore such automorphisms are of our interest. In [16] we can

find how the automorphisms of the zero divisor graph of Tn(F ) act on rank one

triangular matrices. Using the main theorem of the latter paper and some other

arguments, Wang in [14] described all the automorphisms of the zero divisor graphs

of Tn(F ). The results from [16] and [14] are valid when F is a finite field. In this

article we will show how we can easily extend them to the case when F is infinite

and, thanks to it, obtain the description of all the maps preserving zero products

on Tn(F ).

Before presenting the result, let us mention that by ZD(R) we will denote the set

of zero divisors of R.

Moreover, below we introduce the maps that will appear in our theorem.

⊲ For any invertible t ∈ Tn(F ) the map ϕ : Tn(F )→ Tn(F ) such that ϕ(x) = t−1xt

will be denoted by Innt. This is simply an inner automorphism of the ring Tn(F ).

⊲ If σ is an automorphism of a field F , then we will write σ for the map on Tn(F )

such that (σ(x))ij = σ(xij). We will call σ a field automorphism.

⊲ Let x ∈ Tn(F ). Let us introduce the following sets:

−→
N Tn(F )(x) = {y ∈ Tn(F ) : xy = 0}

←−
N Tn(F )(x) = {y ∈ Tn(F ) : yx = 0}.

If for some x1, x2 we have
−→
N Tn(F )(x1) =

−→
N Tn(F )(x2) and

←−
N Tn(F )(x1) =

←−
N Tn(F )(x2), then we will say that x1, x2 are twin matrices (in [14] analogous

vertices of the zero divisor graphs are called twin points). If a map ϕ on Tn(F )

acts in such a way that ϕ(x) = y implies that x, y are twin matrices, then we call

it a regular automorphism.
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Now we can present our main result.

Theorem 1.1. Let F be any field and n ∈ N. The bijective map ϕ : Tn(F ) →

Tn(F ) preserves zero products in both directions if and only if the two conditions

below are fulfilled.

(1) There exist an upper triangular invertible matrix t ∈ Tn(F ), an automor-

phism σ of F , and a regular automorphism ̺ of Tn(F ) such that for every

x ∈ ZD(Tn(F )) ∪ {0} we have

(1.2) ϕ(x) = Innt · σ · ̺(x).

(2) The map ϕ cut to Tn(F ) \ (ZD(Tn(F )) ∪ {0}) is a bijection on this set.

2. Proof

Let us start with a few more remarks about notation. The set F ∗ is meant to be

F \ {0}. By xT we understand the transpose of a matrix x. We will write eij for

the matrix whose (i, j) entry is equal to 1 and all the other entries are zeroes. The

symbol 0n×m will be used for n × m matrix whose all entries are zeroes. We will

denote byMn×m(F ) the set of all n×m matrices over F . We will also write xa for

the element a−1xa.

As we have already mentioned, the proof of our theorem will be based on the

results of Wang in [14] and Wong, Ma and Zhou in [16]. First we cite the theorem

from the former.

Proposition 2.1 ([14], Theorem 1.1). A mapping ϕ on V (T ) is an automorphism

of T if and only if it can be uniquely decomposed into the product of an inner

automorphism, a field automorphism and a regular automorphism.

Let us now explain the notation and assumptions of paper [14].

T is the set of all zero divisors of Tn(F ), i.e. it consists of all noninvertible triagular

matrices. The graph Γ(Tn(F )) is defined as follows: there is an edge between x and

y if and only if xy = 0 and no loops are deleted. (Note that in the definition of the

zero divisor graph it is assumed that it is simple. However, in our case it is even

more convenient to assume that Γ(Tn(F )) contains loops.) The symbol V (T ) stands

for the set of vertices of Γ(Tn(F )). The field F is finite. The proof is based on the

result from [16] in which this assumption appears and on some results of the author

where this assumption is not necessary. Hence, we can make use of Proposition 2.1

on the condition that the result from [16] will hold for any field. Let us cite it.
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Proposition 2.2 ([16], Theorem 3.3). When n > 3, σ is an automorphism of

Rn(q) if and only if σ = σP · σπ , where σP is an inner automorphism of Rn(q) and

σπ is a field automorphism of Rn(q).

When n = 2, σ is an automorphism of Rn(q) if and only if σ = σU · σω , where

ω is a permutation on Fq fixing 0, U is a 2 × 2 unit upper triangular matrix (all

diagonal elements are 1) over Fq.

In [16] Rn(q) is the ring of all n× n upper triangular rank one matrices over the

field of q elements. Clearly, we wish this theorem would hold for any field. Let

us look closer at the proof. The sufficiency follows immediately. The proof of the

necessity is given in 9 steps (claims). When proving claims 3–9, the authors make

use of claims 1, 2 and lemmas in which the finiteness of the field is not demanded.

In the proofs of claims 1, 2 the assumption that the field is finite is used. Therefore

it suffices to prove that these two claims are true when the field is infinite. Let us

then cite and discuss these claims.

Claim 1. Each Σ(s, t) is stabilized by σ for 1 6 s 6 t 6 n.

Claim 2. There is a unit upper triangular matrix U such that σU ·σ fixes each [Est].

The symbol Σ(s, t) denotes here the set of all rank one upper triangular matrices

a satisfying condition

(2.1) ast 6= 0, ∀ l, 1 6 l < t : asl = 0, ∀ k, s < k 6 n : akl = 0.

By [Est] we understand the subspace of Tn(F ) spanned by est.

Thus, it suffices to prove the following.

Proposition 2.3. Let F be any field and n ∈ N, n > 2. If ϕ : Tn(F ) → Tn(F )

is bijective and it preserves zero products, then there exists an invertible t ∈ Tn(F )

such that

(1) for every 1 6 i 6 j 6 n and α ∈ F ∗ there exists α′ ∈ F ∗ such that (ϕ(αeij))
t =

α′eij ,

(2) if x is a rank one matrix satisfying (2.1), then (ϕ(x))t is also a rank one matrix

satisfying (2.1).

Before proving the above proposition we present some lemmas.

Lemma 2.1. Let F be a field, n ∈ N, n > 2. The noninvertible matrix x ∈ Tn(F )

satisfies the conditions
−→
N Tn(F )(x) =

−→
N Tn(F )(x

2) and
←−
N Tn(F )(x) =

←−
N Tn(F )(x

2) if

and only if x is a multiple of some idempotent.
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P r o o f. The inclusions
−→
N Tn(F )(x) ⊆

−→
N Tn(F )(x

2) and
←−
N Tn(F )(x) ⊆

←−
N Tn(F )(x

2)

are obvious. Suppose that
−→
N Tn(F )(x) (

−→
N Tn(F )(x

2). Then there exists y ∈ Tn(F )

such that for every α ∈ F ∗ we have x2y = 0 and αxy 6= 0. This yields (x2−αx)y 6= 0.

Hence y 6= 0 and x2 − αx 6= 0. From the latter we get x2 6= αx, so the equality can

hold only in the case when x2 = αx. The discussion for
←−
N Tn(F )(x) is exactly the

same. This completes our proof. �

From what was proved above we get:

Corollary 2.1. Suppose that F is a field, n ∈ N, n > 2 and that the map

ϕ : Tn(F ) → Tn(F ) is a bijection that preserves zero products. If x is a multiple of

a noninvertible idempotent, then ϕ(x) is also a multiple of a noninvertible idempo-

tent.

We will focus on idempotents for a moment.

Let us note that we have:

Lemma 2.2 ([13], Lemma 2.3). Let F be any field. If x ∈ T∞(F ) is an idempo-

tent, then there exists an invertible matrix t ∈ T∞(F ) such that t−1xt is a diagonal

matrix.

From the above lemma we get immediately:

Corollary 2.1. Let F be any field and n ∈ N. If x ∈ Tn(F ) is an idempotent,

then there exists an invertible matrix t ∈ Tn(F ) such that t−1xt is a diagonal matrix.

Clearly, the same is satisfied for multiples of idempotents.

Now we can prove the following.

Lemma 2.2. Let F be a field, n ∈ N, n > 2. If x ∈ Tn(F ) is a noninvertible

multiple of some idempotent, then there exists another multiple y ∈ Tn(F ) of some

idempotent such that

(1) rank(x) < rank(y),

(2)
−→
N Tn(F )(y) (

−→
N Tn(F )(x),

(3)
←−
N Tn(F )(y) (

←−
N Tn(F )(x).

P r o o f. By Corollary 2.2, x can be diagonalized by some t ∈ Tn(F ). Consider

then xt that is equal to α
∑

i∈I

eii for some α ∈ F ∗ and ∅ ( I ( {1, 2, . . . , n}. Define

yt as
∑

i∈I

eii + ejj , where j is not in I (since I 6= {1, 2, . . . , n}, such j exists). We can

see that for xt, yt all the claims (1), (2), (3) hold, so y is the matrix from the claim

of the lemma. �
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Let us note that we also have:

Lemma 2.4 ([14], Lemma 2.4). Let A ∈ V (T ) be a nonzero zero-divisor of

T (n, q). Then r(A) > 2 if and only if there is certain B ∈ V (T ) such that
−→
N T (A) (

−→
N T (B), where r(A) refers to the rank of A.

From the proof it follows that this lemma is also satisfied for matrices over infinite

fields.

Now we prove a fact about (non)invertible matrices.

Lemma 2.5. Assume F is a field and n ∈ N. The matrix x is in ZD(Tn(F ))∪{0}

if and only if it is noninvertible.

P r o o f. Suppose first that x is invertible. If xy = 0, then we have x−1xy =

y = 0. Since y = 0, x cannot be a zero divisor. Analogously, it can be shown that

yx = 0 implies y = 0.

Let now x be noninvertible. Then rank of x is equal to some k that is less than n.

Let ỹ = (ỹ1, . . . , ỹn)
T ∈ Mn×1(F ). As rank(x) < n, the equation xỹ = 0n×1 has

a nonzero solution ŷ. We define y ∈ Tn(F ) as follows.

yij =

{

ŷi if j = n,

0 otherwise.

Now we see that xy = 0, so x is a zero divisor. �

Using the above results we can prove Proposition 2.3.

P r o o f of Proposition 2.3. The proof will be given in seven steps.

Step 1. For any number 1 6 i 6 n and α ∈ F ∗ there exist a natural number

1 6 π(i, α) 6 n, an element β(i, α) ∈ F ∗ and an invertible matrix ti,α ∈ Tn(F ) such

that

ϕ(αeii) = (β(i, α)eπ(i,α)π(i,α))
ti,α .

From Corollary 2.1 we know that ϕ(αeii) =
(

β
∑

k∈S(i)

ekk

)ti,α

for some ∅ ⊆ S(i) ⊆

{1, 2, . . . , n}, β ∈ F and ti,α ∈ Tn(F ). If |S(i)| > 1, then by Lemma 2.3 we

would have
−→
N Tn(F )(ϕ(αeii)) (

−→
N Tn(F )(a) 6=

−→
N Tn(F )(0) for some multiple of some

idempotent—a contradiction. Since
−→
N Tn(F )(αeii) 6= Tn(F ), we cannot also have

ϕ(αeii) 6= 0. Thus, the claim follows.

Step 2. For all 1 6 i 6 n and α ∈ F ∗ we have π(i, α) = π(i, α′) and ti,α = ti,α′ .

Let us fix i and consider for a moment ϕ′ := Innti,α · ϕ. Then

−→
N Tn(F )(ϕ

′(αeii)) =
{

y ∈ Tn(F ) : j > π(i, α), yπ(i,α)j = 0
}

.
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Hence
−→
N Tn(F )(ϕ

′(α′eii)) =
{

y ∈ Tn(F ) : j > π(i, α), yπ(i,α)j = 0
}

.

However, from the latter it follows that ϕ′(α′eii) = β′eπ(i,α)π(i,α).

Since this moment we will write π(i) instead of π(i, α) and ti instead of ti,α.

Note that as
−→
N Tn(F )(eii) 6=

−→
N Tn(F )(ejj) for i 6= j, π is a permutation of

{1, 2, . . . , n}.

Step 3. There exists an invertible t ∈ Tn(F ) such that for all 1 6 i 6 n and α ∈ F ∗

we have

ϕ(αeii) = (β(i, α)eπ(i)π(i))
t.

We will construct t inductively.

Let us put t(1) = tπ−1(1) and ϕ(1) = Innt(1) · ϕ. We have

ϕ(1)(αeπ−1(1)π−1(1)) = β(π−1(1), α)e11 ∀α ∈ F ∗

and

ϕ(1)(αejj) = (β(j, α)eπ(j)π(j))
t
(1)
j ∀α ∈ F ∗, j 6= π−1(1)

and some t
(1)
j ∈ Tn(F ).

Next we put t(2) = t
(1)
π−1(2) and ϕ(2) = Innt(2) · ϕ(1).

Notice that since e11 ∈
−→
N Tn(F )(ϕ(1)(αejj)) for all j 6= π−1(1), the matrices

ϕ(1)(αejj) satisfy the condition (ϕ(1)(αejj))1k = 0 for k > 1. Thus (t(2))1k = 0

for all k > 1. Hence

ϕ(2)(αeπ−1(1)π−1(1)) = β(π−1(1), α)e11 ∀α ∈ F ∗

ϕ(2)(αeπ−1(2)π−1(2)) = β(π−1(2), α)e22 ∀α ∈ F ∗

and

ϕ(2)(αejj) = (β(π(j), α)eπ(j)π(j))
t
(2)
j ∀α ∈ F ∗, j 6= π−1(1), π−1(2)

and some t
(2)
j ∈ Tn(F ).

Performing this way we find t = t(n−1) ·. . .·t(2) ·t(1) satisfying the desired condition.

Now we will define ϕI as Innt · ϕ and consider ϕI . Obviously, for every α ∈ F ∗

and 1 6 i 6 n we have ϕI(αeii) = β(i, α)eπ(i)π(i).

Step 4. For all 1 6 i < j 6 n and α ∈ F ∗ there exists β(i, j, α) ∈ F ∗ such that

ϕI(αeij) = β(i, j, α)eπ(i)π(j).

1101



This follows from the facts that eij ∈
−→
N Tn(F )(ekk) for all k 6= j and eij ∈

←−
N Tn(F )(ekk) for k 6= i.

Step 5. For all 1 6 i 6 n we have π(i) = i.

Note that for every i 6 j and α ∈ F ∗ the matrix αeπ(i)π(j) is upper triangular.

Hence, from Step 4 we conclude that π(i) < π(j) for i < j. Clearly, there is only one

permutation of {1, 2, . . . , n} satisfying π(1) < π(2) < . . . < π(n) – the identity.

In the above five steps we have proved the first claim of the proposition. In the

next two we will prove the second claim.

Suppose that x is a rank one matrix satysfying (2.1), then ϕI(x) is a rank one

matrix satisfying (2.1).

From Lemma 2.5 we conclude that x ∈ ZD(Tn(F )). Thus, from Lemma 2.4 it

follows that ϕI(x) is a rank one matrix.

Since x satisfies (2.1), we have eii ∈
←−
N Tn(F )(x) for all 1 6 i < s and eii ∈

−→
N Tn(F )(x) for all t < i 6 n. As ϕI(x) = β(i, 1)eii, we get that ϕI(x) satisfies (2.1).

Step 7. Suppose that x is a rank one matrix satysfying (2.1). Then ϕ(x) is a rank

one matrix satysfying (2.1).

Since ϕI = Innt · ϕ, it suffices to show that the sets of matrices satisfying (2.1)

are invariant under conjugation.

Let u ∈ Tn(F ) be invertible. Write x as

(

0(t−1)×(t−1) x′

x′′

)

, where x′ ∈

M(t−1)×(n−t+1)(F ), x′′ ∈ Tn−t+1(F ) and u as

(

u′ u′′

u′′′

)

, where u′ ∈ Tt−1(F ),

u′′ ∈M(t−1)×(n−t+1)(F ), u′′′ ∈ Tn−t+1(F ). Then

(2.2)





0(t−1)×(t−1) (u′)−1x′ − (u′)−1u′′(x′′)u
′′′

(x′′)u
′′′



 .

Analogously, if we write x as

(

x′
1 x′′

1

u′
1 u′′

1

)

, where x′
1 ∈ Tt(F ), x′′

1 ∈ Mt×(n−t)(F )

and u as

(

u′
1 u′′

1

u′′′
1

)

, where u′
1 ∈ Tt(F ), u′′

1 ∈Mt×(n−t)(F ), u′′′
1 ∈ Tn−t(F ), then

(2.3) xu =

(

(x′
1)

u′

1 (u′
1)

−1x′
1u

′′
1

0(n−t)×(n−t)

)

.

From (2.2) and (2.3) we get the claim. �
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Now it is easy to prove Theorem 1.1.

P r o o f of Theorem 1.1. It suffices to prove the necessity.

From Propositions 2.1, 2.2 and 2.3 it follows that for all noninvertible x ∈ Tn(F )

the matrix ϕ(x) is given by formula (1.2). Moreover, as ϕ is a bijection and

Lemma 2.5 is satisfied, we have ϕ(Tn(F ) \ZD(Tn(F ))) = Tn(F ) \ZD(Tn(F )) and ϕ

is a bijection on this set. Clearly, for all the invertible matrices x, condition (1.1) is

satisfied, so we are done. �
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[4] I. Božić, Z. Petrović: Zero-divisor graphs of matrices over commutative rings. Commun.

Algebra 37 (2009), 1186–1192.
[5] M. Burgos, J. Sánchez-Ortega: On mappings preserving zero products. Linear Multilin-

ear Algebra 61 (2013), 323–335.
[6] M. A. Chebotar, W.-F. Ke, P.-H. Lee: On maps preserving square-zero matrices. J. Al-

gebra 289 (2005), 421–445.
[7] M. A. Chebotar, W.-F. Ke, P.-H. Lee, N.-C. Wong: Mappings preserving zero products.

Stud. Math. 155 (2003), 77–94.
[8] T. Fenstermacher, E. Gegner: Zero-divisor graphs of 2×2 upper triangular matrix rings

over Zn. Missouri J. Math. Sci. 26 (2014), 151–167.
[9] J. Hou, L. Zhao: Zero-product preserving additive maps on symmetric operator spaces

and self-adjoint operator spaces. Linear Algebra Appl. 399 (2005), 235–244.
[10] B. Li: Zero-divisor graph of triangular matrix rings over commutative rings. Int. J.

Algebra 5 (2011), 255–260.
[11] A. Li, R. P. Tucci: Zero divisor graphs of upper triangular matrix rings. Comm. Algebra

41 (2013), 4622–4636.
[12] P. Šemrl: Linear mappings preserving square-zero matrices. Bull. Aust. Math. Soc. 48

(1993), 365–370.
[13] R. S lowik: Maps on infinite triangular matrices preserving idempotents. Linear Multi-

linear Algebra 62 (2014), 938–964.
[14] L. Wang: A note on automorphisms of the zero-divisor graph of upper triangular ma-

trices. Linear Algebra Appl. 465 (2015), 214–220.
[15] W. J. Wong: Maps on simple algebras preserving zero products I. The associative case.

Pac. J. Math. 89 (1980), 229–247.
[16] D. Wong, X. Ma, J. Zhou: The group of automorphisms of a zero-divisor graph based

on rank one upper triangular matrices. Linear Algebra Appl. 460 (2014), 242–258.

Author’s address: R o k s a n a S  l o w i k, Silesian University of Technology, Kaszub-
ska 23, 44-100 Gliwice, Poland, e-mail: roksana.slowik@gmail.com.

1103


		webmaster@dml.cz
	2020-07-03T22:58:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




