
Applications of Mathematics

Owe Axelsson
Preconditioning of two-by-two block matrix systems with square matrix blocks, with
applications

Applications of Mathematics, Vol. 62 (2017), No. 6, 537–559

Persistent URL: http://dml.cz/dmlcz/146997

Terms of use:
© Institute of Mathematics AS CR, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/146997
http://dml.cz


62 (2017) APPLICATIONS OF MATHEMATICS No. 6, 537–559

PRECONDITIONING OF TWO-BY-TWO BLOCK MATRIX SYSTEMS

WITH SQUARE MATRIX BLOCKS, WITH APPLICATIONS

Owe Axelsson, Ostrava

Received August 16, 2017. First published December 4, 2017.

This paper is dedicated to the memory of Ivo Marek,

who recently unexpectedly deceased.

The author is particularly thankful for his long lasting friendship with Ivo Marek,

which also resulted in establishing important contacts with other

excellent numerical analysts in the Czech Republic.

Abstract. Two-by-two block matrices of special form with square matrix blocks arise in
important applications, such as in optimal control of partial differential equations and in
high order time integration methods.
Two solution methods involving very efficient preconditioned matrices, one based on a

Schur complement reduction of the given system and one based on a transformation matrix
with a perturbation of one of the given matrix blocks are presented. The first method
involves an additional inner solution with the pivot matrix block but gives a very tight
condition number bound when applied for a time integration method. The second method
does not involve this matrix block but only inner solutions with a linear combination of the
pivot block and the off-diagonal matrix blocks.
Both the methods give small condition number bounds that hold uniformly in all pa-

rameters involved in the problem, i.e. are fully robust. The paper presents shorter proofs,
extended and new results compared to earlier publications.

Keywords: preconditioning; Schur complement; transformation; optimal control; implicit
time integration

MSC 2010 : 65F08

This work was supported by The Ministry of Education, Youth and Sports of the
Czech Republic from the National Programme of Sustainability (NPU II), project
“IT4Innovations excellence in science—LQ1602”.

DOI: 10.21136/AM.2017.0222-17 537

http://dx.doi.org/10.21136/AM.2017.0222-17


1. Introduction

Two by two block matrix systems with square matrix blocks arise in several impor-

tant applications such as when solving certain optimal control problems [15], [3], [4],

when solving complex valued systems in real arithmetics [6] and, for instance, in the

two point Radau time-integration method to solve systems of ordinary differential

equations [1], [2]. In such problems, the system matrix can be written in the form

A =

[
D1 −L2

L1 D2

]
,

where Di, i = 1, 2, have equal order, are often symmetric positive definite (spd)

and L1 + L2 is symmetric and positive semidefinite. In some problems L2 = cL1 or

L2 = cLT
1 , for some positive scalar c. A matrix factorization of A gives

A =

[
D1 0

L1 S

] [
I −D−1

1 L2

0 I

]
,

where S = D2 + L1D
−1
1 L2. An application of this factorization requires two so-

lutions with matrix D1 and one with the Schur complement matrix S. The latter

often implies a heavy computational cost. However, the systems can be solved by

iteration so it is not required to form S explicitly. As we shall see, in some problems

one can construct a very efficient preconditioner to S. To handle the cases where

this is not possible, to reduce the cost we consider also some special transformed

forms of the preconditioning method with no need to use S. This is particularly im-

portant when we solve optimal control problems with a state equation that involves

its own constraint, such as the Stokes equation. The paper presents in a uniform

way new, shorter and more generally applicable methods both for their derivation,

implementation and eigenvalue analyses and surveys some important applications.

An efficient implementation of the method is derived where each iteration involves

only two matrix-vector products besides the solution of two systems with a matrix

that is a linear combination of the two block row matrices. This is even less than

the matrix-vector multiplications involved in a matrix-vector multiplication with the

given matrix.

For reasons of comparison, we present also another method, the preconditioned

modified Hermitian and Skew-Hermitian splitting (PMHSS) iteration method, see

[9], [10], that has been presented there to solve a more special class of problems than

we are dealing with. This method involves also inner systems with a matrix that is

a linear combination of the block matrices. We present new and much shorter proofs

of the eigenvalue bounds for this method. It can be seen that it is not competitive

with our method.
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The paper is composed as follows. In Section 2 we consider the Schur complement

based approach. Then in Section 3 we consider the transformed form of precondi-

tioner, where we first assume that the block diagonal matrices are positive definite.

This assumption is then relaxed in Section 4, where we consider a Radau time in-

tegration method for the time-dependent Stokes equation. In Section 5 the short

and more general derivation of eigenvalue bounds for the PMHSS method is given.

Section 6 contains some comments on the use of a generalized conjugate gradient

method. The paper ends with some concluding remarks.

2. A Schur complement based solution method

2.1. A preconditioner for the Schur complement matrix. A linear block

matrix system

A
[
x1

x2

]
=

[
f1
f2

]
,

can be solved via the Schur complement by first eliminating x1, x1 = D−1
1 (f1+L2x2)

and substituting it in the second equation, D2x2 + L1x1 = f2 to form the Schur

complement residual,

r2 = Sx2 − (f2 − L1D
−1
1 f1) = D2x2 − f2 + L1D

−1
1 (L2x2 + f1).

This is normally solved by iteration, that is, given x2 then solve (approximately)

S(δx2) = r2, and let x2 := x2 + δx2. Besides some matrix-vector multiplications

the evaluation of an action of S costs one solution of a system with matrix D1

per iteration. To get an acceptable solution cost, thereby one must use an efficient

preconditioner to S. In some applications, such as when solving complex valued

systems in real arithmetics and for optimal control problems we have D1 = D2 = D,

an spd matrix and L1 = aL, L2 = bLT, where a and b have the same sign.

In this case

(2.1) S = D + abLD−1LT.

As a preconditioner we then use

(2.2) S0 = (D + γL)D−1(D + γLT),

where γ is a parameter to be chosen. We need to compute eigenvalue bounds that

hold for the preconditioned matrix S−1
0 S.

In the next proposition we generalize this problem to make it applicable also for

more general matrices, such as the matrix appearing in Section 2.3.
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Proposition 2.1. Let A, of order n × n, be spd and assume that B + BT is

positive semidefinite. Let S = A+ c(B +BT) + d2BA−1BT, where 0 6 c 6 d, d > 0

and let S0 = (A + γB)A−1(A + γBT) be a preconditioner to the S, where γ = d.

Then the eigenvalues λ of S−1
0 S are contained in the interval δ = 1

2 (1+c/d) 6 λ 6 1.

P r o o f. Consider the generalized eigenvalue problem, λS0x = Sx, x 6= 0. A con-

gruence transformation with A−1/2 of both matrices gives

λS̃0x̃ = S̃x̃,

where S̃0 = A−1/2S0A
−1/2, S̃ = A−1/2SA−1/2, and x̃ = A1/2x. Hence,

λ =
x̃TS̃x̃

x̃TS̃0x̃
=

x̃T(I + c(B̃ + B̃T) + d2B̃B̃T)x̃

x̃T(I + γ(B̃ + B̃T ) + γ2B̃B̃T)x̃

= 1− (γ − c)x̃T(B̃ + B̃T)x̃

x̃T(I + γ(B̃ + B̃T ) + γ2B̃B̃T)x̃
6 1,

where B̃ = A−1/2BA−1/2. Since x̃T(I − γB̃)(I − γB̃T)x̃ > 0, it follows that

γx̃T(B̃ + B̃T)x̃ 6 x̃Tx̃+ γ2x̃TB̃B̃Tx̃.

Therefore,

λ > 1− (γ − c)x̃T(B̃ + B̃T)x̃

2γx̃T(B̃ + B̃T )x̃
=

1

2

(
1 +

c

γ

)
.

�

Applying this proposition for the matrix in (2.1) yields c = 0, d2 = ab, so for

the eigenvalues of S−1
0 S, where S0 is defined in (2.2) with γ2 = ab, we obtain

1
2 6 λ(S−1

0 S) 6 1.

It follows that the condition number of S−1
0 S is bounded by 2. Consider now two

applications.

2.2. An optimal control problem. In optimal control problems for PDEs one

normally introduces a Lagrange multiplier. Then the system of first order neces-

sary optimality conditions for the corresponding Lagrangian functional includes as

a subsystem a matrix of the form discussed in this paper.

We consider then the problem of finding the optimal solution u, f that minimizes

the functional

J(u, f) = 1
2‖u− ud‖2 + 1

2β‖f‖2,
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where ud is the desired (target) solution, f ∈ L2(Ω) is a distributed control function

and u satisfies the differential equation

Lu = f in Ω, u = 0 on Γ = ∂Ω.

Here Ω is a bounded simply connected domain in R
n, n = 1, 2 or 3. Further, β > 0

is a regularization parameter. To illustrate the problem, we take

Lu = −∇(ν∇u) + σu,

where ν > 0, σ > 0.

The differential equation constraint is implemented via a Lagrange multiplier (v).

To strengthen the inf-sup condition, i.e. the saddle point structure of the problem, we

use an augmented formulation by adding the term − 1
2α‖v‖2, α > 0 to the Lagrangian

functional, which therefore takes the form

L(u, v, f) = J(u, f) +

∫

Ω

v(Lu − f) dx− 1
2α‖v‖2.

Using partial integration and the homogeneous boundary conditions, u = 0 and v = 0

on Γ, we can rewrite the Lagrange multiplier term in a symmetric bilinear form as

∫

Ω

v(Lu − f) dx =

∫

Ω

(ν∇u · ∇v + σuv − fv) dx.

This leads to an adjoint differential equation for the Lagrange multiplier −∆v +

σv = f in Ω, v = 0 on Γ.

Applying the first order necessary conditions, which are also sufficient for the

existence of a solution, using equal finite element approximations in H1
0 (Ω) for u and

v and a finite element approximation in L2(Ω) for f , we get a linear system,

(2.3)





∂L
∂u

= 0: M(u− ud) +Kv = 0,

∂L
∂v

= 0: Ku− αMv − M̃T
0 f = 0,

∂L
∂f

= 0: βM0f − M̃0v = 0.

HereM is the mass matrix [
∫
Ω ϕiϕj ], corresponding to basis functions {ϕi} for u and

v, K is the symmetric stiffness matrix corresponding to the operator L andM0 is the

mass matrix corresponding to basis functions {Ψi} for f ∈ L2(Ω) and M̃0 =
∫
ΩΨiΦj .

Note that M̃0 is a rectangular matrix.
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In this problem we may eliminate f to form the system

[
M K

K −αM − 1
β M̂0

] [
u

v

]
=

[
Mud

0

]
,

where M̂0 = M̃T
0 M−1

0 M̃0.

This system can be solved via the reduced Schur complement equation,

Sv = Mud,

where

S = M1 +KM−1K, M1 = αM +
1

β
M̂0.

To form a preconditioner to S we first approximate M1 by α̃M , α̃ > 0. If the basis

functions Ψi = ϕi, then M1 = (α+ 1/β)M , so α̃ = (α+ 1/β). We let now

S0 =
(√

α̃M + γK
)
M−1

(√
α̃M + γK

)

be the preconditioner to the Schur complement matrix

S = α̃M +KM−1K.

Taking γ = 1, it follows from Proposition 2.1 that we get a condition number bound

κ(S−1
0 S) 6 2. The method in Section 3 gives an alternative choice where the inner

system with matrix M , needed to evaluate actions of the Schur complement matrix,

is avoided.

2.3. An implicit time-integration method. There exist high order time-

integration methods that are strongly A-stable, such as those based on Radau inte-

gration, see e.g. [12], [1].

Consider here a two-point Radau integration method to solve a system of ordinary

differential equations,

M
dx

dt
+ Âx(t) = f(t), t > 0, x(0) = x0,

where M is spd, frequently a mass matrix, and Â + ÂT is assumed to be posi-

tive semidefinite. The global time-integration error in this method is O(τ3), i.e. of

a higher order than in the familiar Crank-Nicolson method. Furthermore, the Radau

time-integration method is strongly, i.e. asymptotically, stable.
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Here the matrix systems to be solved at each time t with time step τ takes the

form (see, e.g. [1], [2])

[
M + 5

12A − 1
12A

9
12A M + 3

12A

] [
x1

x2

]
=

[
Mx0 +

1
12τ(5f1 − f2)

Mx0 +
1
4τ(3f1 + f2)

]
,

where A = τÂ. Multiplying by
[
M−1 0

0 M−1

]
, eliminating variable x1, using commu-

tativity between matrix products and multiplying back with M , we get a reduced

block matrix system

Sx2 =
[
M +

2

3
A+

1

6
AM−1A

]
x2 =

(
M − 1

3
A
)
x0 +

3

4
τf1 + τ

(1
4
M +

1

6
A
)
M−1f2

to be solved. The reduced matrix S can here be preconditioned with

S0 = (M + γA)M−1(M + γA) = M + 2γA+ γ2AM−1A.

Proposition 2.2. Let γ = 1/
√
6. The eigenvalues of the preconditioned matrix

S−1
0 S are contained in the interval [δ, 1], where δ = 1

2

(
1 +
»

2
3

)
.

P r o o f. This follows from Proposition 2.1 with c = 1
3 and d2 = 1

6 , so the lower

bound becomes δ = 1
2 (1 +

1
3

√
6) = 1

2 (1 +
»

2
3 ). �

It is seen that the eigenvalues of S̃−1
0 S are found in the narrow interval [δ, 1] and

the condition number of S̃−1
0 S is bounded by δ−1 ≃ 1.1, i.e. very close to unity. This

result is an improvement of the results in [1], [2].

The preconditioner requires two solutions with matrix M + γA at each iteration.

Besides this and some matrix vector products, to evaluate the action of the Schur

complement, this method requires also an inner solution with matrix M .

3. A transformed matrix approach

3.1. The transformed preconditioner. We consider now an alternative to the

Schur complement method where only the two systems with linear combinations ofM

and A are needed per iteration, i.e. the additional solution with a system matrix M

is not required. The next lemma will be useful.

Lemma 3.1. Let ab > 0 and assume that A +
√
abBi, i = 1, 2, are invertible.

Then a matrix in the form

(3.1) B =

[
A+

√
ab(B1 +B2) −aB2

bB1 A

]
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can be written in the transformed form

(3.2) B =

[
I 0

αI I

] [
A+

√
abB1 −aB2

0 A+
√
abB2

] [
I 0

−αI I

]
,

where α =
√
b/a, which shows that B is nonsingular.

P r o o f. Since aα =
√
ab, the above matrix equals

[
I 0

αI I

] [
A+

√
abB1 + aαB2 −aB2

−α(A+
√
abB2) A+

√
abB2

]

=

[
A+

√
ab(B1 +B2) −aB2

α
√
abB1 A+ (

√
ab− αa)B2

]

=

[
A+

√
ab(B1 +B2) −aB2

bB1 A

]
= B.

�

It follows that a system

B
[
x1

x2

]
=

[
f1

f2

]

can be solved as

(3.3)

[
A+

√
abB1 −aB2

0 A+
√
abB2

] [
x1

y2

]
=

[
f1

g2

]
,

where y2 = x2 −
√
b/ax1, g2 = f2 −

√
b/af1. Hence, besides some vector additions,

it requires only one solution with each of Hi = A +
√
abBi, i = 1, 2, namely with

H2 = A +
√
abB2 to compute y2, followed by a matrix vector multiplication with

aB2 and a solution with H1 = A+
√
abB1.

Depending on the form of the given system with matrix A, we modify typically
the pivot block to get a matrix on the same form as B in (3.1) and use it as a pre-
conditioner when solving the given system with A. As an example take first

A =

[
A −aB2

bB1 A

]
.

Here we add
√
ab(B1 +B2) to the pivot block to form the matrix B.

Proposition 3.1. Let A be symmetric and positive definite, let B1 = B,

B2 = BT, and assume that B + BT is positive semidefinite. Then the eigenval-

ues of the preconditioned matrix B−1A are contained in the interval [ 12 , 1].
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P r o o f. To analyse the eigenvalues (λ) of the preconditioned matrix B−1A, we
consider the generalized eigenvalue problem,

λB
[
x

y

]
= A

[
x

y

]
, ‖x‖+ ‖y‖ 6= 0

or

µA
[
x

y

]
=

[√
ab(B +BT) 0

0 0

] [
x

y

]
,

where µ = 1/λ− 1.

It follows that µ = 0 (λ = 1) if x = 0, y 6= 0. For x 6= 0, we have

Ay = −bBx

and

(3.4) µ(A+ abBTA−1B)x =
√
ab(B +BT)x.

Since B +BT is positive semidefinite, it follows that µ > 0, i.e. λ 6 1.

By use of the congruence transformation, B̃ = A−1/2BA−1/2, (3.4) can be written

in the form

µ(I + abB̃TB̃)x̃ =
√
ab(B̃ + B̃T)x̃,

where x̃ = A1/2x.

Since (I −
√
abB̃T)(I −

√
abB̃) > 0, it follows that

I + abB̃TB̃ >
√
ab(B̃ + B̃T).

Hence µ 6 1, so 1
2 6 λ 6 1. �

We show now that the above transformation in (3.2) allows also an efficient im-

plementation of the preconditioned iterations. Besides solving systems by matrix

A +
√
abBi, i = 1, 2, it involves namely even fewer matrix-vector multiplications

than a matrix-vector multiplication by A. To see this, we use

B−1A = B−1(B − (B −A)) =

[
I 0

0 I

]
−
√
abB−1

[
B1 +B2 0

0 0

]
.

545



Here, by (3.2),

B−1

[
B1 +B2 0

0 0

] [
x

y

]

=

[
I 0

αI I

] [
(A+

√
abB1)

−1 0

0 I

] [
A+

√
abB2 aB2

0 I

]

[
(A+

√
abB2)

−1 0

0 (A+
√
abB2)

−1

] [
I 0

−αI I

] [
(B1 +B2)x

0

]

=

[
I 0

αI I

] [
(A+

√
abB1)

−1 0

0 I

] [
A+

√
abB2 aB2

0 I

] [
x̃

−αx̃

]
,

where x̃ = (A+
√
abB2)

−1(B1 +B2)x. Hence,

B−1

[
(B1 +B2)x

0

]
=

[
I 0

αI I

] [
(A+

√
abB1)

−1 0

0 I

] [
Ax̃

−αx̃

]

=

[
I 0

αI I

] [
(A+

√
abB1)

−1Ax̃

−αx̃

]
=

[
I 0

αI I

] [
x̃−

√
ab(A+

√
abB1)

−1B1x̃

−αx̃

]

=

[
x̃−

√
ab(A+

√
abB1)

−1B1x̃

−b(A+
√
abB1)

−1B1x̃

]
.

Consider the solution of a system

A
[
x

y

]
=

[
f1
f2

]
.

It follows from the above that the computation of a preconditioned residual can be

done as

[
r1

r2

]
= B−1

(
A
[
x

y

]
−
[
f1

f2

])
=

[
x

y

]
− B−1

[
f1

f2

]
+

[√
ab(z̃ − x̃)

bz̃

]
,

where x̃ = (A+
√
abB2)

−1(B1 +B2)x, z̃ =
√
ab(A +

√
abB1)

−1B1x̃. Hence, besides

a solution of a system with (A +
√
abB2) followed by one with (A +

√
abB1), the

computation of a residual in each iteration, involves only a matrix multiplication by

B1 and one by B1 + B2. In many applications, B2 = BT
1 , in which case B1 + B2 is

symmetric so a matrix-vector multiplication by it can be further simplified.

The initial computation of B−1
[
f1
f2

]
takes place as in (3.3). Note also that the

second component y of the vector does not enter in the evaluation of the last term in
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the expression for the residual, which therefore does not need to be accessed during

the further computation of (r1, r2).

We consider now some applications of the transformed matrix approach.

3.2. Optimal control problem. Consider the solution of the optimal control

problem in Section 2.2, where we used a Schur complement reduction approach.

We use now instead the transformed matrix approach to handle the solution of the

arising saddle point type matrix,

[
M KT

K −αM

]
.

We transform it first to
[
I 0

0 α−1/2I

] [
M KT

K −αM

] [
I 0

0 α−1/2I

]
=

[
M α−1/2KT

α−1/2K −M

]

to obtain the matrix A =
[

M α−1/2KT

α−1/2K −M

]
. This matrix is preconditioned by

perturbing the pivot matrix block, to form

B =

[
M + α−1/2(K +KT) α−1/2KT

α−1/2K −M

]
.

As follows from Proposition 3.1, the resulting spectral condition number is bounded

by 2, uniformly in the parameter α, α > 0. The matrix B can be transformed to
block triangular form by

(3.5)

[
I 0

−I I

] [
M + α−1/2(K +KT) α−1/2KT

α−1/2K −M

] [
I 0

−I −I

]

[
I 0

−I I

] [
M + α−1/2K −α−1/2KT

M + α−1/2K M

]
=

[
M + α−1/2K −α−1/2KT

0 M + α−1/2KT

]
.

3.3. Radau time integration. As another application, consider next the Radau

two-point integration matrix. Here

(3.6) A =

[
M + 5

12A − 1
12A

9
12A M + 3

12A

]
=

[
D1 − 1

12A
9
12A D2

]
.

To form a preconditioner to A we first approximate A by Â =
[
M+ 3

12A −
1
12A

9
12A M+ 3

12A

]
for

which we construct the preconditioner

B =

[
M + 3

12A+ 2
√

9
12 A − 1

12A
9
12A M + 3

12A

]
=

[
M + 3

4A − 1
12A

9
12A M + 3

12A

]
,
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i.e. using the same approach as before. It follows that

(3.7) B = A+

[ 1
3A 0

0 0

]
.

Proposition 3.2. For the Radau time-integration method the eigenvalues of the

preconditioned matrix B−1A are contained in the interval [ 23 , 1].

P r o o f. Let µ = 1
λ − 1. Then

µA
[
x

y

]
=

[ 1
3A 0

0 0

] [
x

y

]
, ‖x‖+ ‖y‖ 6= 0.

For x 6= 0, it follows

(M + 3
12A)y = − 9

12Ax

and

µ[M + 5
12A+ 9

144A(M + 3
12A)

−1A]x = 1
3Ax.

Using the congruence transformation, Ã = M−1/2AM−1/2, we get now

µ[I + 5
12 Ã+ 1

16 Ã(I +
3
12 Ã)

−1Ã]x̂ = 1
3 Ãx̂,

where x̂ = (I + 1
4 Ã)

−1x, so

µ[I + 8
12 Ã+ ( 1

16 + 15
144 )Ã

2]x̂ = 1
3 Ã(I + 1

4 Ã)x̂

or

µ(I + 2
3 Ã+ 1

6 Ã
2)x̂ = 1

3 Ã(I + 1
4 Ã)x̂,

i.e.

µ[I + 2
3 Ã(I + 1

4 Ã)]x̂ = 1
3 Ã(I +

1
4 Ã)x̂.

Hence, 0 6 µ 6 1
2 ,

2
3 6 λ 6 1 and the condition number is bounded by 3

2 . �

This method requires the solution of two systems with matrix

M + 3
12A+

√
ab2A = M + 3

4A

per iteration. The method in Section 2, using preconditioning of the reduced Schur

complement matrix requires one solution with matrix M and two solutions with

matrices M +γB = M + 1
√

6
A, per iteration step (here A contains the factor τ (time

step)). As we have shown in Section 2, it has an even smaller condition number.
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This method requires however that M is positive definite. For Stokes-like prob-

lems, this does not hold, as the corresponding matrix is indefinite. In Section 4 we

show that the transformation method is applicable also for such problems.

3.4. Complex valued systems solved in real arithmetics. Complex val-

ued systems can be solved in real arithmetics, which saves demand of memory and

computational complexity. We show that the transformed matrix approach gives

a simpler and shorter derivation of the method and its properties than the approach

taken in [6], see also [5] and [8].

Consider then the system

(3.8) (A+ iB)(x+ iy) = f + ig,

where A,B, x, y, f and g are real valued. We rewrite (3.8) in the form

A
[
x

y

]
=

[
f

g

]
,

where A =
[
A −B

B A

]
and, following the transformed matrix approach, precondition

A by B =
[
A+2B −B

B A

]
. Let λ(C) denote the eigenvalues of a matrix C.

Proposition 3.3. Assume that A + B is nonsingular. Then B is nonsingular,
λ(B−1A) = 1 for eigenvector (x̂, ŷ), x̂ ∈ N (B) and the remaining eigenvalues satisfy

λ(B−1A) = 1 + 2[((A+B)−1B)2 − (A+B)−1B].

P r o o f. The generalized eigenvalue problem

λB
[
x

y

]
= A

[
x

y

]
, ‖x‖+ ‖y‖ 6= 0,

can be rewritten in the form

λ

[
I 0

−I I

]
B
[
I 0

I I

] [
x̃

ỹ

]
=

[
I 0

−I I

]
A
[
I 0

I I

] [
x̃

ỹ

]
,

where [
x̃

ỹ

]
=

[
I 0

−I I

] [
x

y

]
.

Based on this relation a computation shows that

(3.9) λ

[
A+B −B

0 A+B

] [
x̃

ỹ

]
=

[
A−B −B

2B A+B

] [
x̃

ỹ

]
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or

(λ− 1)

[
A+B −B

0 A+B

] [
x̃

ỹ

]
= 2

[−B 0

B 0

] [
x̃

ỹ

]
.

Hence λ = 1 for eigenvectors x̃ ∈ N (B), the nullspace of B. Let ŷ = (λ − 1)y. For

λ 6= 1 we have ŷ = 2(A+B)−1Bx̃ and

(λ− 1)(A+B)x̃ = 2(B(A+B)−1B −B)x̃,

which shows the result. �

Corollary 3.1. Assume that A and B are symmetric and positive semidefinite

and that N (A) ∩ N (B) = {0}. Then the eigenvalues of B−1A are located in the
interval [ 12 , 1].

P r o o f. Let x̂ = (A + B)1/2x̃, B̂ = (A + B)−1/2B(A + B)−1/2. Then it follows

from Proposition 3.3 that

(λ− 1)x̂Tx̂ = 2x̂T(B̂2 − B̂)x̂.

Clearly 0 6 B̂ 6 I. Since 0 6 x−x2 6 1
4 for 0 6 x < 1, it follows that− 1

2 6 λ−1 6 0.

�

4. The transformed matrix approach for

a time-dependent Stokes problem

We present first the problem and show how the discrete system can be reduced to

a set of two equations. We discuss then the preconditioning method and a method

based on a projection matrix.

4.1. Problem formulation and reduced systems. For a bounded domain Ω

the time dependent Stokes equation is given by

{ ∂u

∂t
−∆u+∇p = f,

∇ · u = 0 in Ω× [0, τ ],

and u = uD on ∂Ω, and a given initial value u(0) = u0.

Here u is the velocity field and p is the pressure. After a proper inf-sup, stable

space discretization, and use of the two-point Radau time-integration method, the
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resulting system for the first time step (and similarly for the following time steps)

takes the form (for notational simplicity we let here τ = 1)

(4.1)





Mu(13 ) +
5
12 (Ku(13 ) + BTp(13 ))− 1

12 [Ku(1) +BTp(1)]

= Mu0 +
τ
12 (5f1 − f2),

5
12Bu(13 )− 1

12Bu(1) = 0,

Mu(1) + 9
12

(
Ku(13 ) +BTp(13 )

)
+ 3

12 (Ku(1) +BTp(1))

= Mu0 +
τ
4 (3f1 + f2),

9
12Bu(13 ) +

3
12Bu(1) = 0.

HereM is the block mass-matrix,K = τK̃, where K̃ is the discrete negative diffusion

matrix, B = τB̃ and BT = τB̃T, where B̃, B̃T are the discrete divergence and

gradient operators, respectively and τ > 0 is the time step. We assume that the so

called inf-sup stable finite element pairs (see e.g. [11]) have been used, which implies

that the matrix B has full rank. The part of the matrix system corresponding to the

divergence constraint can be written as

[ 5
12 − 1

12
9
12

3
12

] [
Bu(13 )

Bu(1)

]
=

[
0

0

]

and this matrix is nonsingular. Hence, it follows that Bu(13 ) = 0, Bu(1) = 0, that is,

the discrete divergence constraint holds for the solution in both integration points.

We show now that this enables one to reduce the system to a two-by-two block matrix

form.

Let x1 = u(13 ), x2 = u(1), y1 = p(13 ), and y2 = p(1). Then the remaining equations

in (4.1) can be written as

(4.2)

{
Mx1 +

5
12 (Kx1 +BTy1)− 1

12 (Kx2 +BTy2) = g1,

9
12 (Kx1 +BTy1) +Mx2 +

3
12 (Kx2 +BTy2) = g2,

where g1, g2 are the corresponding r.h.s. expressions in (4.1). By multiplication of

each row in (4.2) by BM−1, and using xi ∈ N (B), we get

{
5
12 (BM−1Kx1 +BM−1BTy1)− 1

12 (BM−1Kx2 +BM−1BTy2) = g̃1,

9
12 (BM−1Kx1 +BM−1BTy1) +

3
12 (BM−1Kx2 +BM−1BTy2) = g̃2,

where g̃i = BM−1gi, i = 1, 2.

Here we eliminate first the pair (x2, y2) and then the pair (x1, y1) to get

{
BM−1Kx1 +BM−1BTy1 = ĝ1 := 3

2 (g̃1 +
1
3 g̃2),

BM−1Kx2 +BM−1BTy2 = ĝ2 := 1
2 (5g̃2 − 9g̃1).
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Since B has full rank, it follows that BM−1BT is nonsingular so that

(4.3) yi = −(BM−1BT)−1[BM−1Kxi − ĝi], i = 1, 2.

Substituting this into (4.2), we get

(4.4)

{
Mx1 +

5
12 (I − P )Kx1 − 1

12 (I − P )Kx2 = h1

9
12 (I − P )Kx1 +Mx2 +

3
12 (I − P )Kx2 = h2

for some right hand sides hi, i = 1, 2. (Actually hi = (I − P )gi, i = 1, 2.) Here

P = BT(BM−1BT)−1BM−1

is a projection matrix onto the range of BT. Here we can apply a Richardson

iteration method, multiplying both equations byM−1. It follows that iterations with

this matrix will only occur for vectors x in the orthogonal complement subspace of

range(BT). For Stokes problem it means that convergence will take place in the

subspace of divergence-free vectors. Besides several solutions with the mass matrix,

the method involves computing actions of P . For this purpose, we can replace

M in BM−1BT by its diagonal part and form the so arising version of BM−1BT

explicitly and then use some standard available preconditioned iterative solution

method to compute actions of (BM−1BT)−1. However, since this can be costly,

in the next subsection we present an alternative approach to solve time-dependent

Stokes problems.

Note that a multiplication of the equations in (4.4) by BM−1 gives Bxi = 0,

i = 1, 2, which is in accordance with the validity of the divergence-free condition.

4.2. Block matrix preconditioner based on the transformed matrix ap-

proach. Since computing actions of matrix P can be costly, it may not be feasible to

use the previous equation to solve for x1, x2. However, we can compare it with (3.6)

to see how a preconditioning similar to (3.7) will function. Write then the global

system matrix (4.1) in the form

A =

[
M̂ + 5

12K̂ − 1
12 K̂

9
12 K̂ M̂ + 3

12K̂

]
,

where M̂ =
[
M 0

0 0

]
, K̂ =

[
K BT

B 0

]
, and where M̂ is positive semidefinite.

As shown in (3.7), the preconditioner

B =

[
M̂ + 9

12K̂ − 1
12K̂

9
12K̂ M̂ + 3

12 K̂

]
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gives eigenvalue bounds of B−1A in the interval
[
2
3 , 1

]
. Hence, there will be very few

outer iterations. Further, it was shown that B can be written in the transformed
form

B =

[
I 0

α I

] [
M̂ + 6

12K̂ − 1
12 K̂

0 M̂ + 6
12K̂

] [
I 0

−α I

]
,

where α =
√
ab =

√
9/1 = 3. This enables us to solve systems with matrix B that

involves just two solutions with matrix M̂ + 1
2K̂. This is the matrix that appears in

the inner iteration method.

They can be solved as a time-dependent Stokes problem with matrix

[
M + 1

2K
1
2B

T

1
2B 0

]

for the different right-hand sides that appear in the outer iteration method. For this

purpose one can use an inner iteration method with the preconditioner

(4.5)

[
M + 1

2K 0
1
2B −S̃

]
,

where S̃ is an approximation of the Schur complement matrix

S = B(M + 1
2K)−1BT.

A straightforward computation shows that for a matrix B̃ with full row rank,

(4.6) (B̃(I + B̃TB̃)−1B̃T)−1 = I + (B̃B̃T)−1.

Hence, letting B̃ = W−1/2BM−1/2, we obtain

(B(M +BTW−1B)−1BT)−1 = W−1 + (BM−1BT)−1,

where W is an spd matrix.

Hence, if matrix K = BTM−1
p B, where Mp is the pressure mass matrix, or if K

can be approximated by a matrix in such a form, then with W = 2Mp, it follows

from (4.6) that

S−1 = (B(M + 1
2B

TM−1
p B)−1BT)−1 = 1

2M
−1
p + (BM−1BT)−1.

Here BM−1BT can be approximated by the negative scalar Laplacian. Therefore,

(4.7) S̃−1 =
1

2
M−1

p + (−∆)−1
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defines an efficient approximation of the inverse of the Schur complement matrix S,

to be used in the preconditioned matrix (4.5), see also [13] and [2]. Normally the

action of both of the inverses can be computed efficiently.

Note that K, B, and BT contain the factor τ . Hence, the second term in (4.7)

contains a factor τ−1 larger than the first term.

5. The PMHSS iteration method

In [9] a preconditioned iteration method, named the preconditioned modified Her-

mitian sequential subspace (PMHSS) method, is presented which also deals with

solution of systems of the form we consider and with a preconditioning matrix that

involves solving systems with a matrix in the form of a linear combination of the block

row matrices in the given matrix. We show here a much simplified and more general

analysis of the corresponding spectrum and rate of convergence of that method. As

in our method, the presentation in [9] involves also a method which involves a pre-

conditioner that contains a linear combination of one of the block row matrices with

possibly another matrix that is not necessarily equal to the second row block ma-

trix. However, the analysis in [9] indicates that it cannot considerably improve the

preconditioning and we let it here be the other block row matrix only.

Let α > 0 be a parameter and let A =
[
A −B

B A

]
and A

[
x

y

]
=

[
f1
f2

]
be the given

system to be solved, where A and B are symmetric and positive semidefinite and

N (A) ∩ N (B) = {0}. The method can be written as an alternating fixed-point
iteration method, in the form

[
(α+ 1)I 0

0 (α+ 1)I

] [
Ay(k+1/2)

Az(k+1/2)

]
=

[
αA B

−B αA

] [
y(k)

z(k)

]
+

[
f1
f2

]
,

[
αA+B 0

0 αA+B

] [
y(k+1)

z(k+1)

]
=

[
αA −A

A αA

] [
y(k+1/2)

z(k+1/2)

]
+

[
f2
−f1

]
, k = 0, 1, . . .

Let x(k) =
[
y(k)

z(k)

]
. Since

[
(α+ 1)−1I 0

0 (α + 1)−1I

] [
αI −I

I αI

]
=

1

α+ 1

[
αI −I

I αI

]
,

it follows that the method can be reformulated as a Richardson iteration method,

x(k+1) = L(A;α)x(k) +R(A;α)g, k = 0, 1, . . .
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for some block vector g, where

(5.1) L(A;α) =
1

α+ 1

[
(αA+B)−1 0

0 (αA+B)−1

] [
αI −I

I αI

] [
αA B

−B αA

]

=
1

α+ 1

[
(αA+B)−1 0

0 (αA+B)−1

] [
α2A+B α(B −A)

α(A−B) α2A+B

]

and

R(A;α) =
α

α+ 1

[
(αA+B)−1 0

0 (αA+B)−1

] [
I I

−I I

]
.

Proposition 5.1. Let α > 0, αA + B be positive definite. Then the eigenval-

ues (λ) of L(A;α) are bounded as follows:

1

α+ 1
min(α, 1) 6 Re(λ) 6

1

α+ 1
max(α, 1)

and

|Im(λ)| 6 1

α+ 1
max(1, α).

P r o o f. Let α be a fixed positive number. In order to compute bounds for the

eigenvalues of the iteration matrix L(A;α) we consider the generalized eigenvalue

problem

λ

[
αA +B 0

0 αA+B

] [
x

y

]
=

1

α+ 1

[
α2A+B α(B −A)

α(A−B) α2A+B

] [
x

y

]
, |x|+ |y| = 1,

or

(α+ 1)λ

[
E 0

0 E

] [
x

y

]
=

[
(α2 − α)A + E αE − (α2 + α)A

(α2 + α)A − αE (α2 − α)A + E

] [
x

y

]
,

where E = αA+B. Since, by assumption, E is symmetric and positive definite, we

can apply the congruence transformation,

(α+ 1)λ

[
x̃

ỹ

]
=

[
(α− 1)Ã+ I αI − (α+ 1)Ã

(α+ 1)Ã− αI (α− 1)Ã+ I

] [
x̃

ỹ

]
,

where Ã = E−1/2(αA)E−1/2, x̃ = E1/2x, ỹ = E1/2y. Hence,

(
λ− 1

α+ 1

) [
x̃

ỹ

]
=

[ α−1
α+1 Ã

α
α+1I − Ã

Ã− α
α+1I

α−1
α+1 Ã

] [
x̃

ỹ

]

or

(5.2)
(
λ− 1

α+ 1

)[
x̃

ỹ

]
=

α− 1

α+ 1

[
Ã 0

0 Ã

] [
x̃

ỹ

]
+

[
0 α

α+1I − Ã

Ã− α
α+1I 0

] [
x̃

ỹ

]
,
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where the matrix has been split in a symmetric positive semidefinite and a skew

symmetric term.

It follows from (5.2) for any fixed α that the eigenvalues λ depend on µ as

Re(λ) =
1

α+ 1
+

α− 1

α+ 1
µ, |Im(λ)| =

∣∣∣ α

α+ 1
− µ

∣∣∣,

where µ is an eigenvalue of Ã. Since A andB are symmetric and positive semidefinite,

it follows from µ(αA+B)z = αAz that 0 < µ 6 1. This implies the stated bounds.

�

It is readily seen that α = 1 is an optimal choice. In this case λ = 1
2 ± i Im(λ),

where |Im(λ)| 6 1
2 and |λ| = 1

2

√
2. This agrees with the bound of the spectral radius

found in [9].

As has been pointed out in [9], the corresponding eigenvector matrix in the PMHSS

method is unitary in a certain inner product space, which for a normal two-by-two

block matrix is unitary in the Euclidean space. This makes the method ideal for a

MINRES iteration method.

As shown in [2], [10], see also references therein, for a related symmetric linear

system the eigenvalues are real and contained in the interval [−1,− 1
2

√
2] ∪ [ 12

√
2, 1].

Hence, the method can be effective and is mesh independent. However, since there

are both positive and negative eigenvalues, it will converge slower than the methods

presented in the previous sections.

6. Iterative solution methods

For the solution of symmetric indefinite problems one can apply the MINRES

method [16]. This requires, however, use of a symmetric positive definite precondi-

tioner, typically a block diagonal matrix.

For optimal control problems this will be less efficient than the use of the precondi-

tioner proposed in this paper which, however, is nonsymmetric so it requires the use

of a GMRES or GCG-LS [7] method. Normally one solves the matrix systems arising

in the preconditioner with inner iterations which implies a slightly variable precon-

ditioner. Hence, the flexible version, FGMRES [17] or the variable preconditioned

version of GCG-LS must be used anyway.

What is important then is to use a preconditioner that leads to a full eigenvector

space, i.e. a preconditioned matrix that is normal. For completeness of the paper we

recall now the reason for that.

The GMRES and GCG-LS methods result in iterative approximate vectors xk ∈
x0+span{r0, Cr0, . . . , Ck−1r0}, where x0 is the initial approximation, r0 is the corre-

sponding residual and C = B−1A is the preconditioned matrix. This implies that the
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residuals of the iteration vectors satisfy rk = Pk(C)r0 for some polynomial Pk of de-

gree k, which is normalized Pk(0) = 1 at the origin. If C has a complete eigenvector

space (or, at least if r0 is represented by a subset of linearly independent eigenvec-

tors of C), then the methods produce a best polynomial approximation on the set

of eigenvalues {λi} and min
Pk

max
λi

|Pk(λi)| gives an upper bound of the convergence
factor.

If this does not hold, i.e. if the eigenvector space is incomplete, then it can be

seen that there exist initial residuals where this factor decays arbitrarily slow, see

for instance [14]. Even if r0 can be represented by this set of eigenvectors but the

eigenvector space is incomplete then rounding errors, occurring during the iterations,

introduce components outside this set and the rate of convergence of the method can

slow down considerably.

We now show that the preconditioning matrix used in Section 3 has a complete

eigenvector space so the above problematic issues cannot occur. Consider then the

splitting

A = B −
√
ab

[
B1 +B2 0

0 0

]
.

We assume that B1 = B, B2 = BT. Then, using the explicit expression for B−1, we

obtain

(6.1) C = B−1A =

[
I 0

0 I

]
−
[
0 F

0 E

]
,

where F =
√
b/a(I −H−1

2 A)H−1
1 (B1 +B2), and E =

√
abH−1

2 AH−1
1 (B1 +B2) and

H1 = A +
√
abB, H2 = A +

√
abBT. Here E can be symmetrized by the similarity

transformation

A−1/2H2EH−1
2 A1/2 =

√
abA1/2H−1

1 (B +BT)H−1
1 A1/2.

Further, since

H1A
−1H2 = (A+

√
abB)A−1(A+

√
abBT) = A+

√
ab(B +BT) + abBA−1BT,

it follows by the Cauchy-Schwarz inequality that E has eigenvalues in the interval

[0, 12 ]. Hence, by (6.1), B−1A =
[
I −F

0 I−E

]
and has eigenvalues in the interval [ 12 , 1].

To find its eigenvectors, consider the eigenvalue problem

[
I −F

0 I − E

] [
x

y

]
= λ

[
x

y

]
.
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Here λ = 1 if x 6= 0, y = 0 or if x = 0, Ey = 0. For λ 6= 1 we have Ey = (1−λ)y and

x = Fy/(1−λ). Since E has a complete eigenvector space, so has the preconditioned

matrix C, i.e. C is a normal matrix.

7. Concluding remarks

Two types of methods to solve linear matrix systems in two-by-two block form

with square matrix blocks have been analysed.

Although the Schur complement reduction method involves an additional solution

with the pivot matrix block we have seen an example, the Radau time integration,

where the matrix can be preconditioned efficiently with a resulting condition number

very close to unity. The preconditioner involves just solving twice a system which is

a linear combination of the mass matrix and the stiffness matrix.

The transformed method does not involve the additional mass matrix block and is

applicable also for problems like time-dependent Stokes equation where an additional

constraint (divergence-free flow), i.e. one leading to an indefinite submatrix, arises.

Both methods can be used for the solution of optimal control problems involving

a partial differential equation as constraint. The condition number of the precondi-

tioned matrix is bounded, typically by 2 or less, which holds uniformly with respect

to the various problem parameters. The methods compete favourably with another

type of approach, published in [9].

A c k n ow l e d g em e n t. Comments by two referees on the original version of

this paper helped to improve the presentation of it and is gratefully acknowledged.
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