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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 5 , P AGES 9 5 9 – 9 8 2

FURTHER RESULTS ON THE GENERALIZED
CUMULATIVE ENTROPY

Antonio Di Crescenzo and Abdolsaeed Toomaj

Recently, a new concept of entropy called generalized cumulative entropy of order n was
introduced and studied in the literature. It is related to the lower record values of a sequence
of independent and identically distributed random variables and with the concept of reversed
relevation transform. In this paper, we provide some further results for the generalized cumu-
lative entropy such as stochastic orders, bounds and characterization results. Moreover, some
characterization results are derived for the dynamic generalized cumulative entropy. Finally,
it is shown that the empirical generalized cumulative entropy of an exponential distribution
converges to normal distribution.

Keywords: generalized cumulative entropy, lower record values, reversed relevation trans-
form, stochastic orders, parallel system

Classification: 60E15, 62B10, 62N05

1. INTRODUCTION AND BACKGROUND

1.1. Basic notions

Let X be an absolutely continuous nonnegative random variable with probability density
function (PDF) f(x) and cumulative distribution function (CDF) F (x) = P(X ≤ x). It
is well-known that the classical approach to the description of information related to X
is based on Shannon information measure, defined by H(f) = H(X) = −E[log f(X)],
where E means expectation and ‘log’ stands for natural logarithm. Entropy, as a base-
line concept in the field of information theory, was first introduced by Shannon [36]. It
is also invoked to deal with information in the context of theoretical neurobiology, ther-
modynamics, and reliability theory. For some recent applications of Shannon’s entropy
to the ordering of coherent systems see Toomaj et al. [38] and references therein. In
many realistic situations such as survival analysis and reliability engineering, one has
information about the past lifetime, i. e. the time elapsed after failure till time t, given
that the unit has already failed. The Shannon entropy applied to conditioned random
variable is useful to measure uncertainty in such situations. Specifically, the inactivity
time of a random lifetime X, also known as the reversed residual life or waiting time, is
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defined by
X[t] = [t−X|X ≤ t], t > 0, (1)

which has the PDF f(x)/F (t), 0 ≤ x ≤ t, where, as usual, [X|B] denotes a random
variable having the same distribution of X conditioned on B. Indeed, X[t] describes the
length of the time interval occurring between the failure time X and an inspection time
t, given that at time t, the system has been found failed. Di Crescenzo and Longobardi
[13] considered the entropy for the past lifetime, called past entropy at time t of X,
denoted by

H(t) = −
∫ t

0

f(x)
F (t)

log
f(x)
F (t)

dx, t > 0,

see also Muliere et al. [25]. In particular, limt→∞H(t) = H(X) coincides with the
classical Shannon entropy. Moreover, Di Crescenzo and Longobardi [14] proposed the
cumulative entropy as an alternative measure of uncertainty for the inactivity time by
replacing the probability density function with the cumulative distribution function in
the Shannon entropy, that is

CE(X) = −
∫ ∞

0

F (x) logF (x) dx =
∫ ∞

0

F (x)T (x) dx, (2)

where

T (x) = − logF (x) =
∫ ∞
x

τ(t) dt, x > 0, (3)

denotes the cumulative reversed hazard function and τ(·) stands for the reversed hazard
rate function of X, defined by

τ(t) =
d
dt

logF (t) =
f(t)
F (t)

, t > 0. (4)

To see the basic properties and information about the reversed hazard rate function, we
refer the reader to e. g. Block et al. [8] and Chandra and Roy [11]. It follows that

CE(X) = E[µ̃(X)], (5)

where

µ̃(t) = E[X[t]] = E[t−X|X ≤ t] =
1

F (t)

∫ t

0

F (x) dx, t > 0, (6)

is the mean inactivity time of X.
Several properties of cumulative entropy were discussed in Di Crescenzo and Longo-

bardi [14]. They also considered the dynamic version of the cumulative entropy for the
past lifetime and obtained various results such as characterization and stochastic order-
ing. Recently, Psarrakos and Navarro [30] introduced a new measure of uncertainty and
called it generalized cumulative residual entropy (GCRE), defined by

En(X) =
∫ ∞

0

F (x)
[− logF (x)]n

n!
dx, (7)
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for n = 0, 1, 2, . . ., where F (x) = 1 − F (x) is the survival function of X. A weighted
(shift-dependent) version of En(X) has been studied recently by Kayal [21]. For n = 1,
Eq. (7) coincides with the cumulative residual entropy, introduced by Rao et al. [33],
whereas for n = 0 we have E0(X) = E(X). An analogue generalization was considered
by Kayal [20] for past lifetime, called generalized cumulative entropy (GCE) of X and,
due to (3), defined by

CEn(X) =
∫ ∞

0

F (x)
[T (x)]n

n!
dx =

∫ ∞
0

F (x)
[− logF (x)]n

n!
dx, (8)

for n = 1, 2, . . . . Also, Kayal [20] considered the following quantity:

CEn(t) = CEn(X; t) =
1
n!

∫ t

0

F (x)
F (t)

[
− log

F (x)
F (t)

]n
dx,

=
1
n!

∫ t

0

F (x)
F (t)

[T (x)− T (t)]n dx, (9)

for n ≥ 1 and t > 0. We point out that CEn(t) is the dynamic version of GCE for the
inactivity time introduced in (1). Note that limt→∞ CEn(t) = CEn(X), which coincides
with the GCE of X. In Table 1, some examples of GCE and DGCRE concerning the
uniform and Fréchet distributions are presented, where

Γ(a, x) =
∫ ∞
x

ta−1e−t dx,

is the upper incomplete gamma function and Γ(a, 0) = Γ(a) denotes the complete gamma
function. It is not hard to verify that for all k = 0, 1, · · · , n, for the case (c) of Table 1
we have ∫ t

0

F (x)[T (x)]k dx = a
1
γ Γ
(
k − 1

γ
,
a

tγ

)
, a > 0, γ > 1.

Hence, from Proposition 4.6 of Kayal [20], the results given for case (c) of Table 1 are
obtained. Specifically, for k = 0 we have

Γ
(
− 1
γ
,
a

tγ

)
= te−

a
tγ − a

1
γ Γ
(

1− 1
γ
,
a

tγ

)
.

Remark 1.1. Due to (8) and (9), CEn(t) identifies with the generalized cumulative
entropy of [X|X ≤ t], for t > 0.

1.2. Background on aging notions and stochastic orders

Aging notions and stochastic orders have many applications in various areas of sciences
such as reliability and survival analysis, economics, insurance, actuarial and management
sciences and coding theory; see Shaked and Shanthikumar [35] for a greater detail. In
the following, we review some notions that are used in the sequel. Note that here and
throughout this paper, the terms ‘increasing’ and ‘decreasing’ are used in a non-strict
sense. Moreover, prime (′) denotes derivative.
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F (x) CEn(X) CEn(t)

(a) x, 0 < x < 1
1

2n+1

t

2n+1

(b) e−a/x, x > 0
a

n(n− 1)
ae

a
t

n!

n∑
k=0

(
n

k

)
(−1)n−k

(a
t

)n−k
Γ
(
k − 1,

a

t

)
(c) e−ax

−γ
, x > 0

a1/γ

γn!
Γ
(
n− 1

γ

) a
1
γ e

a
tγ

n!

n∑
k=0

(
n

k

)
(−1)n−k

( a
tγ

)n−k
Γ
(
k − 1

γ
,
a

tγ

)
Tab. 1. The generalized cumulative entropy and the dynamic

generalized cumulative entropy for some distribution functions, with

a > 0 and γ > 1.

Definition 1.2. IfX is an absolutely continuous random variable with support (lX , uX),
CDF F (x), PDF f(x), survival function F (x) = 1−F (x), hazard rate function hX(x) =
d
dx logF (x) and reversed hazard rate function τ(x) = f(x)/F (x), then

• X has the increasing likelihood ratio (ILR) property if f(x) is log-concave or,
equivalently, if f ′(x)/f(x) is decreasing in x ∈ (lX , uX);

• X has the decreasing likelihood ratio (DLR) property if f(x) is log-convex or,
equivalently, if f ′(x)/f(x) is increasing in x ∈ (lX , uX);

• X has the decreasing reversed hazard rate (DRHR) property if τ(t) is decreasing
in t ∈ (lX , uX) or, equivalently, if T (x) = − logF (x) is convex;

• X is said to have decreasing failure rate (DFR) if hX(t) = d
dt logF (t) is decreasing

in t.

Moreover, if Y is an absolutely continuous random variable with support (lY , uY ), CDF
G(x), PDF g(x), survival function G(x) = 1−G(x), and hazard rate function hY (x) =
d
dx logG(x), then

• X is smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if F (t) ≤
G(t), ∀ t ∈ R, or equivalently F (t) ≥ G(t), ∀ t ∈ R.

• X is smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ) if
f(x)g(y) ≥ f(y)g(x) for all x ≤ y, with x, y ∈ (lX , uX) ∪ (lY , uY ).

• X is smaller than Y in the up shifted likelihood ratio order (denoted by X ≤lr↑ Y )
if X − x ≤lr Y for all x ≥ 0 or equivalently for each x ≥ 0 we have g(t)/f(t + x)
is increasing in t ∈ (lX − x, uX − x) ∪ (lY , uY ), where a/0 is taken to be equal to
∞ whenever a > 0.

• X is smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if hX(x) ≥
hY (x) for all x ∈ R.
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• X is smaller than Y in the dispersive order (denoted by X ≤d Y ) if F−1(v) −
F−1(u) ≤ G−1(v) − G−1(u), ∀ 0 < u ≤ v < 1, where F−1 and G−1 are right
continuous inverses of F and G, respectively, or equivalently

g(G−1(v)) ≤ f(F−1(v)), 0 < v < 1. (10)

1.3. Motivation and plan of the paper

Several properties of the generalized cumulative entropy such as the effect of linear trans-
formations, a two-dimensional version, a normalized version, bounds, stochastic ordering
as well as the dynamic generalized cumulative entropy and various relationships with
other functions are given by Kayal [20]. In this paper, we obtain some further results on
the generalized cumulative entropy (8) and the dynamic generalized cumulative entropy
(9). The new entropy measure is related to the mean time between lower record values
of a sequence of independent and identically distributed (i.i.d.) random variables and the
concept of reversed relevation transform. We also discuss some characterization results
and stochastic ordering properties. Specifically, it is worth mentioning that the gener-
alized cumulative entropy is equal to the difference between the means of consecutive
recursive reversed relevation transforms, which in turn are of interest in the analysis of
lower record values. For instance, their role in the analysis of a new measure of associ-
ation based on the log-odds rate has been recently pinpointed by Asadi [2]. Hence, our
new results can be applied within such fields. Moreover, as a further novelty, in the final
part of the paper we introduce the empirical generalized cumulative entropy and show
that

(i) it is an unbiased and consistent estimator for a random sample from an uniform
distribution, and

(ii) it converges to the normal distribution for a random sample from an exponential
distribution.

Therefore, the rest of this paper is organized as follows: In Section 2, the definitions,
motivations and basic properties of n-fold reversed relevation transform are given. We
also relate this notion and related results to some well-known concepts such as distor-
tion functions, weighted random variables, and the proportional reversed hazard rates
model. The new version of cumulative entropy, its stochastic ordering and aging classes
properties are provided in Section 3. Characterization results and orderings for the gen-
eralized cumulative entropy of the maxima of random samples are also given. In Section
4, we study the monotonicity properties of the dynamic generalized cumulative entropy,
and a characterization of a stochastic model related to family of distributions. Some
examples and a central limit theorem for the empirical GCE are derived in Section 5.
The summary given in Section 6 concludes the paper.

2. PROPERTIES OF N -FOLD REVERSED RELEVATION TRANSFORM

Consider a reliability (repairable) system, in which a failed unit can be repaired or
replaced by a unit with the same age. Let X be a nonnegative random variables with
support [0,∞), which denotes the lifetime of the first unit, with survival function F (t) =
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1−F (t), and let Y be the lifetime of the second unit, with survival function G(t+x)/G(x)
given that X = x. Hence, the reliability of the relevation process is obtained by

G#F (x) = G(x) + F (x)
∫ x

0

1
F (t)

dG(t), x > 0, (11)

where the symbol # denotes the relevation transform of F andG introduced by Krakowski
[23]; see also Baxter [7]. Equation (11) was discussed by Kapodistria and Psarrakos [19];
see also Burkschat and Navarro [9] and Psarrakos and Navarro [30] and the references
therein. Recently, in analogy with (11), Di Crescenzo and Toomaj [16] introduced the
reversed relevation transform, defined by

G#̃F (x) = G(x) + F (x)
∫ ∞
x

1
F (t)

dG(t), x > 0, (12)

where the symbol #̃ means reversed relevation transform of F and G. They provided
some new connections of the cumulative entropy and the past lifetime by using the
concept of reversed relevation transform. Let X and Y be independent random lifetimes
with distribution function F and G, respectively. Denoting by X[t] = [X|X ≤ t], the
total time of X given that it is less than t, then the reversed relevation transform of F
and G given in (12) can be viewed as the distribution function of X[Y ], i. e. the total
time of X given that it is less than Y .

We remark that the analogy between the survival function (11) and the distribution
function (12) holds also for the corresponding PDF’s, say g#f(x) and g#̃f(x), since for
x > 0

g#f(x) = f(x)
∫ x

0

1
F (t)

dG(t) and g#̃f(x) = f(x)
∫ ∞
x

1
F (t)

dG(t), (13)

where f and g denote the PDF’s of X and Y , respectively. Let us now provide some
ordering results involving such densities.

Proposition 2.1. Let X and Y be absolutely continuous nonnegative random variables
with support [0,∞), and denote by X#Y and X#̃Y the random variables having PDF’s
shown in (13), respectively. Then, one has

(i) X#̃Y ≤lr X ≤lr X#Y ;

(ii) X#̃Y ≤lr↑ X ≤lr↑ X#Y provided that X is ILR.

P r o o f . From (13) we have that the ratios f(x)/g#̃f(x) and g#f(x)/f(x) are both
increasing in x > 0. The proof of statement (i) thus follows recalling Definition 1.2.
Similarly one can prove point (ii), noting that f(x)/g#̃f(x + t) and g#f(x)/f(x) are
both increasing in x > 0 for all t > 0, if and only if f(x) is log-concave, i. e. X is ILR.

�

Applying (12), we immediately have the following lemma concerning proper mixtures
of distributions.
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Lemma 2.2. Let us consider the cumulative distribution functions F , G and H. For
a ≥ 0, b ≥ 0, and a+ b = 1, we have

(aF + bG)#̃H(x) = aF #̃H(x) + bG#̃H(x), x > 0.

It is worth pointing out that Lemma 2.2 still holds in the case of generalized mixtures.
We recall that if F, F1, . . . , Fk are distribution functions, then F is said a generalized
mixture of F1, . . . , Fk with weights w1, . . . , wk ∈ R if F (t) = w1F1(t) + . . .+wkFk(t) for
all t ∈ R. For the basic properties of generalized mixtures, we refer the reader to e. g.
Navarro and Rubio [28] and references therein.

Consider the reversed relevation transform (12) when F = G. In this case, recalling
that T (x) = − logF (x), one has

F #̃F (x) = F (x) + F (x)
∫ ∞
x

1
F (t)

dF (t) = F (x)[1 + T (x)], x > 0. (14)

By iteration, the CDF of the n-fold recursive reversed relevation transform of F is defined
as

Fn(x) =
{
F (x), n = 1
Fn−1#̃F (x), n ≥ 2

(15)

so that, recalling (14), we have F2(x) = F #̃F (x) = F (x)[1 + T (x)].

Remark 2.3. We remark that in general G#̃F (x) 6= F #̃G(x), i. e. the reversed rele-
vation transform is not commutative. Indeed, in Theorem 1 of [16] it is specified that
G#̃F (x) = F #̃G(x) for all x > 0 if, and only if, X and Y satisfy the proportional re-
versed hazard rates model. For instance, if F (x) = 1− 1

x+1 , x ≥ 0, and G(x) = 1− 1
(x+1)2 ,

x ≥ 0, (so that Y ≤st X), then for x ≥ 0 one has

G#̃F (x) =
x(x+ 2(1 + x) log(1 + 1/x))

(1 + x)2

≥ x[2(1 + x)− (2 + x) log(x/(2 + x))]
2(1 + x)2

= F #̃G(x)

(so that Y #̃X ≤st X#̃Y ). Moreover, due to (15) we have, for x ≥ 0,

F #̃F2(x) = F (x)[1+(1+T (x)) log(1+T (x))] 6= F (x)
[
1+T (x)+

1
2

(−T (x))2
]

= F2#̃F (x).

In Eq. (17) below we give the explicit expression of the n-fold recursive reversed
relevation transform of F , defined in (15). Specifically, in order to provide an equivalent
form for Fn(x), hereafter we recall a useful notion. Let q : [0, 1]→ [0, 1] be a continuous,
non-decreasing and piecewise differentiable function, that satisfies q(0) = 0 and q(1) = 1.
A function defined in this way is usually called distortion function. In applications
such as insurance and reliability, distortion functions are commonly used for changing
the probability measure. Indeed, for a given cumulative distribution function F , the
transformation

Fq(x) = q[F (x)] = q ◦ F (x)
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defines a new distribution function associated to a certain random variable Xq, which is
a distorted random variable induced by q; see, for instance, Sordo and Suarez-Llorens
[37], and the references therein. For n = 1, 2, . . ., let

qn(x) = x

n−1∑
k=0

[− log x]k

k!
, 0 ≤ x ≤ 1, (16)

be a sequence of distortion functions. Hereafter we show that the CDF defined in (15)
can be expressed in a straightforward manner in terms of the distortion function (16).

Remark 2.4. Given a nonnegative random variable X with CDF F , let Xn, n ≥ 1,
denote the n-fold recursive reversed relevation transform of F . Then, the cumulative
distribution function of Xn, n ≥ 1, is

Fn(x) = qn[F (x)] = F (x)
n−1∑
k=0

[T (x)]k

k!
, x > 0, (17)

where T (·) and qn(·) are defined in (3) and (16), respectively. It should be noted that
(17) is similar to relation (2) is Psarrakos and Navarro [30].

As mentioned earlier, qn(x) is a sequence of distortion functions and thus some order-
ing properties can be obtained from the results for distortion functions given in Navarro
et al. [30] and Sordo and Suarez-Llorens [37]. Now, consider the definition of the lower
record values and the related distribution (see, e. g., Chandler [10], or Arnold et al. [1]).

Definition 2.5. Suppose that Y1, Y2, . . . is a sequence of nonnegative i.i.d. random vari-
ables having the common CDF F (x). We say that Yk is a lower record value of this
sequence if Yk < min{Y1, Y2, . . . , Yk−1}, with k > 1, and by definition Y1 is a lower
record value. Let L(1) = 1 and L(n) = min{j : j > L(n − 1), Yj < YL(n−1)} for n > 1,
so that L(n) denotes the index where the nth lower record value occurs. By defining
Fn(x) as the CDF of YL(n), for n ≥ 1 we have:

Fn(x) = F (x)
n−1∑
k=0

[− logF (x)]k

k!
, x > 0. (18)

One can see that (17) coincides with the distribution function of the nth lower record
value given in (18). Hence, the study of n-fold recursive reversed relevation transform
is equivalent to the study of lower record values. In the following proposition, with
reference to the sequence defined in Remark 2.4, we prove that Xn converges to 0 (in
probability) when n goes to infinity.

Proposition 2.6. Let (Xn)n≥1 be a sequence of nonnegative random variables having
CDF Fn(x) given in (17), then Xn

p−→ 0 as n→∞.

P r o o f . Recalling that Xn
d−→ 0 if and only if Xn

p−→ 0, when n→∞, it is sufficient
to prove that

lim
n→∞

Fn(x) =
{

1, x > 0
0, x < 0.
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From (17), and recalling (3), we have

lim
n→∞

Fn(x) = F (x)
∞∑
k=0

[T (x)]k

k!

= F (x)eT (x) = 1, x > 0,

and hence this completes the proof. �

If the CDF F is absolutely continuous, then the PDF of (17) is obtained as

fn(x) = f(x)
[T (x)]n−1

(n− 1)!
, x > 0, (19)

for all n ≥ 1. Equation (19) shows that fn(x) is a sequence of weighted PDF’s with
a normalizing weight w(x) = Tn−1(x), x > 0. We recall that, given an absolutely
continuous random variable X having PDF f , and a nonnegative real function w, the
associated weighted random variable Xw is

fw(x) =
w(x)f(x)
E[w(X)]

, x ∈ R,

provided that 0 < E[w(X)] < ∞. Some recent papers on weighted distributions are
Bartoszewicz [6], Li et al. [24], Navarro et al. [29], among others.

Hereafter, we provide some ordering properties of the n-fold reversed relevation trans-
form of F with CDF (17) and PDF (19). The results given hereafter, in this section, are
similar to various results given in Section 3 of Di Crescenzo and Toomaj [16] and hence
we omit their proofs.

Theorem 2.7. Let X1, X2, . . . be a sequence of nonnegative random variables defined
as in Remark 2.4. Let n ≥ 1.

(a) If Xn is ILR, then Xn ≥lr↑ Xn+1.

(b) Let n ≥ 1. If X is DLR, then Xn is DLR.

Remark 2.8. IfX is ILR, thenXn is not necessarily ILR (see Example 4 of Di Crescenzo
and Toomaj [16]).

Proposition 2.9. Let τn(x) = d
dx logFn(x) denote the reversed hazard rate of Xn,

with Fn given in (17) and let q(x) be a nonnegative function of x > 0. If q(x)τ1(x) is a
decreasing function of x > 0, then q(x)τn(x) is also a decreasing function of x > 0, for
all n = 1, 2, . . ..

Corollary 2.10. If X is DRHR, then Xn is DRHR for all n ≥ 2.

Let us now recall the following property.

Definition 2.11. Let X be an absolutely continuous random variable with support
(lX , uX). We say that X has the decreasing reversed hazard rate in length-biased sense
(LB-DRHR) if x τ(x) is decreasing in x ∈ (lX , uX).
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Equivalently, X is said to be LB-DRHR if and only if X∗v ≤st X∗w for all 0 < v < w <
1, where P(X∗v ≤ x) = F−1(vx)/F−1(v), 0 < x < 1, where F−1 is the right continuous
inverse of the CDF of X (see Section 5.3 of Di Crescenzo et al. [15]). The following
result also follows from Proposition 2.9.

Corollary 2.12. If X is LB-DRHR, then Xn is LB-DRHR for all n ≥ 2.

Consider now the following stochastic order due to Rezaei et al. [34].

Definition 2.13. Let X and Y be nonnegative random variables with CDF’s F and G
and reversed hazard rates τX(x) and τY (x), respectively. The random variable X is said
to be smaller than Y in relative reversed hazard rate order (denoted by X ≤RRH Y ), if
τY (x)/τX(x) is an increasing function of x > 0.

Let X and Y denote the lifetimes of two components. Given that the components
have been found to be failed at the same time, then X ≤RRH Y states that Y has been
lived longer than X or equivalently X aged faster than Y .

Proposition 2.14. For the n-fold recursive reversed relevation transform of F , we have
Xn ≤RRH X for all n ≥ 1.

LetX and Y be absolutely continuous nonnegative random variables with CDF’s F (x)
and G(x), and reversed hazard rate functions τX(x) and τY (x), respectively. These vari-
ables satisfy the proportional reversed hazard rates model with proportionality constant
θ > 0, θ 6= 1, if

G(x) = [F (x)]θ, x > 0. (20)

The parent distribution function can be expressed as F (x) = e−T (x), x > 0, where
T (x) is defined in (3).

Theorem 2.15. Let Xn, n ≥ 1, denote the n-fold recursive reversed relevation trans-
form of F , and let Y be an absolutely continuous nonnegative random variable with
CDF G. If X1 and Y satisfy the proportional reversed hazard rates model given in (20),
then Xn ≤RRH Y for all n ≥ 1.

P r o o f . The proof is similar to that of Theorem 6 of Di Crescenzo and Toomaj [16].
�

3. RESULTS ON THE GENERALIZED CUMULATIVE ENTROPY

In this section, we obtain some further results on the stochastic ordering properties of
the generalized cumulative entropy (8).

First of all, recalling Remark 3.2 of Kayal [20], we note that the GCE is strictly
related to the recursive reversed relevation transform. Indeed, from (8) and (17), or
equivalently (18), we have

CEn(X) = E(Xn)− E(Xn+1), n = 1, 2, . . . , (21)
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where (Xn)n≥1 denotes the sequence of nonnegative random variables defined as in
Remark 2.4.

Now we consider the dispersive and hazard rate orders. The proof of the first theorem
is similar to the proof of Lemma 3 in Klein et al. [22] and hence we omit it.

Theorem 3.1. Let X and Y be absolutely continuous nonnegative random variables
with CDFs F and G, respectively. If X ≤d Y, then

CEn(X) ≤ CEn(Y ),

for all n = 1, 2, . . ..

Theorem 3.2. Let X and Y be two independent nonnegative random variables. If X
and Y have log-concave densities, then

CEn(X + Y ) ≥ max{CEn(X), CEn(Y )},

for all n = 1, 2, . . . .

P r o o f . Let X have a log-concave density. From Theorem 3.B.7 of Shaked and Shan-
thikumar [35], one can conclude thatX ≤d X+Y for any random variable Y independent
of X. Hence, Theorem 3.1 implies that CEn(X+Y ) ≥ CEn(X). Similar result also holds
when Y has a log-concave density i. e. CEn(X+Y ) ≥ CEn(Y ). Therefore, this completes
the proof. �

Theorem 3.3. If X ≤hr Y and X or Y is DFR, then

CEn(X) ≤ CEn(Y ),

for all n = 1, 2, . . ..

P r o o f . If X ≤hr Y and X or Y is DFR, then X ≤d Y, due to Bagai and Kochar [3].
Therefore, from Theorem 3.1 the desired result follows. �

Remark 3.4. It is worth pointing out that for any nonnegative random variable X with
decreasing reversed hazard rate (DRHR) property, it follows that CEn(X) is decreasing
in n, by Kayal [20]. Hence, the given upper bounds in Di Crescenzo and Longobardi
[14] holds for CEn(X) by noting that CEn(X) ≤ CE1(X).

In the sequel, we present some results related to various findings given in Psarrakos
and Toomaj [31].

Proposition 3.5. For a nonnegative random variable X and n = 1, 2, . . ., we have

CEn(X) ≥ 1
n!

(∫ ∞
0

F (x)F (x) dx
)n

. (22)
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The proof is omitted, being similar to previous results. Indeed, the integral in the
right-hand-side of (22) is already involved in other bounds for information measures see
e. g., Proposition 4.3 of [14] and Proposition 1 of [32]; see also Remark 4.1 of [14] for
its probabilistic interpretation. The next proposition gives a lower bound for the GCE,
depending on the cumulative entropy.

Proposition 3.6. For a nonnegative random variable X and n = 1, 2, . . . , it holds that

CEn(X) ≥ 1
n!

[CE(X)]n, (23)

where CE(X) is defined in (2).

P r o o f . Since F (x) ≥ [F (x)]n, for all x ∈ R and for all n = 1, 2, . . ., from (8) we have

CEn(X) =
∫ ∞

0

F (x)
[T (x)]n

n!
dx ≥ 1

n!

∫ ∞
0

[F (x)T (x)]n dx ≥ 1
n!

[∫ ∞
0

F (x)T (x) dx
]n
,

where the last inequality is obtained from Jensen’s inequality by noting that g(x) =
xn, n ≥ 1, is a convex function. Then, the desired result follows by recalling (2). �

Making use of Proposition 4.2 of Di Crescenzo and Longobardi [14] and Proposition
3.6 another lower bound for the GCE is obtained hereafter in terms of the Shannon
entropy.

Corollary 3.7. If X is an absolutely continuous nonnegative random variable, for all
n = 1, 2, . . . , we have

CEn(X) ≥ 1
n!
CnenH(X),

where C = exp
{∫ 1

0
log(x| log x|) dx

}
= e−1−γ = 0.206549 . . ., γ being the Euler’s con-

stant.

Let us now consider the following problem: to express the generalized cumulative
entropy of X in terms of quantities depending on X and Y , where Y is a random
variable larger than X in the usual stochastic order. To this purpose, we introduce the
following function:

Rn(x) =
1
n!

∫ ∞
x

Tn(s) ds, x > 0, (24)

where T is defined in (3).

Proposition 3.8. Let X and Y be nonnegative random variables with finite unequal
means and such that X ≤st Y . If the function defined in (24) is finite, and E[Rn(Y )] is
finite, then for any n = 1, 2, . . . we have

CEn(X) = E[Rn(Y )] +
1
n!

E [Tn(Z)] [E(Y )− E(X)] , (25)

where Z is an absolutely continuous nonnegative random variable having PDF

fZ(x) =
P(Y > x)− P(X > x)

E(Y )− E(X)
, x > 0.
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P r o o f . The proof follows from the probabilistic mean value theorem shown in Theorem
4.1 of Di Crescenzo [12], and making use of the identity CEn(X) = E[Rn(X)], which has
been given in Lemma 3.1 of Kayal [20]. �

We note that Proposition 3.8 also provides a lower bound for the GCE of X. Indeed,
since Tn(·) ≥ 0, due to (3), and since E(X) < E(Y ), from (25) we obtain

CEn(X) ≥ E[Rn(Y )].

From Eq. (21) we have E(Xn) = E(Xn+1) + CEn(X), for n ≥ 1. Let us now provide
a generalization of such result.

Proposition 3.9. Let (Xn)n≥1 denote the sequence of nonnegative random variables
defined as in Remark 2.4. If g(·) is a measurable and differentiable function, with its
derivative measurable and Riemann-integrable on the interval [x, y] for all y ≥ x ≥ 0,
such that E[g(Xn)] is finite for all n ≥ 1, then we have

E[g(Xn)] = E[g(Xn+1)] + E[g′(Zn)] CEn(X),

for any n ≥ 1, where Zn is an absolutely continuous nonnegative random variable having
PDF

fZn(x) =
F (x) [T (x)]n

CEn(X)n!
, x > 0.

P r o o f . The proof follows from the probabilistic mean value theorem given in [12], by
noting that the sequence (Xn)n≥1 is decreasing in the usual stochastic order, and using
Eqs. (17) and (21). �

Hereafter, we provide some characterization results of the GCE. First, we need the fol-
lowing well-known Müntz-Szász theorem; see for details Hwang and Lin [17] and Kamps
[18].

Lemma 3.10. For any increasing sequence of positive integers {mj , j ≥ 1}, the se-
quence of polynomials {xmj} is complete on L(0, 1) if and only if

+∞∑
j=1

m−1
j = +∞, 0 < m1 < m2 < . . . . (26)

Hwang and Lin [17] extended the Müntz-Szász Theorem as follows:

Lemma 3.11. Let f(x) be an absolutely continuous function on (a, b) with f(a)f(b) ≥
0, and let its derivative satisfy f ′(x) 6= 0 a.e. on (a, b). Then, under the assumption (26),
the sequence {fmj (x), j ≥ 1} is complete on L(a, b) if and only if the function f(x) is
monotone on (a, b).
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By using the proof techniques of Theorems 2.1 and 2.2 of Baratpour [4], and applying
Lemmas 3.1 and 3.2, we obtain the following characterization results. Their proof is
similar to the proof of Theorems 3.3 and 3.4 in Psarrakos and Toomaj [31] and hence we
omit them. As usual, we denote by Xm:m, the maximum of a random sample having size
m whose random variables are distributed as X, and similarly for Ym:m. The random
variable Xm:m is known as the lifetime of the parallel system in engineering reliability
and has many applications in engineering and reliability sciences; see e. g. Barlow and
Proschan [5] for further details.

Theorem 3.12. Assume that M = {mj , j ≥ 1} is a strictly increasing sequence of
positive integers such that (26) holds. Let X and Y be two nonnegative random variables
with absolutely continuous CDF’s F and G and PDF’s f and g, respectively. Then F
and G belong to the same family of distributions, but for a change of location and scale,
if and only if

CEn(Xm:m)
E(Xm:m)

=
CEn(Ym:m)
E(Ym:m)

, (27)

for a fixed n ≥ 1 and for all m ∈M.

Theorem 3.13. Let X and Y be two nonnegative random variables with PDF’s f and
g and absolutely continuous CDF’s F and G, respectively. Then F and G belong to the
same family of distributions, but for a change in location, if and only if

CEn(Xm:m) = CEn(Ym:m), (28)

for a fixed n ≥ 1 and for all m ∈M, where M is defined as in Theorem 3.12.

The last theorem of this section concerns comparisons of generalized cumulative en-
tropies of maxima.

Theorem 3.14. Let X and Y be two nonnegative random variables with PDF’s f and
g and absolutely continuous CDF’s F and G, respectively, and let

A1 =
{

0 < v < 1
∣∣f(F−1(v)) ≥ g(G−1(v))

}
, A2 =

{
0 < v < 1

∣∣f(F−1(v)) < g(G−1(v))
}
.

If CEn(X) ≤ CEn(Y ) for all n ≥ 1, and A1 = ∅ or A2 = ∅ or inf A1 ≥ supA2, then

CEn(Xm:m) ≤ CEn(Ym:m)

for all n = 1, 2, . . . and for any positive integer m.

P r o o f . If A1 = ∅ or A2 = ∅, the proof is obvious. Hence, we suppose that A1 6= ∅ and
A2 6= ∅. First note that since m is a positive integer and um−1 is nondecreasing, then it
holds that

inf
A1
um−1 ≥ sup

A2

um−1 ⇔ inf A1 ≥ supA2. (29)

Since, for n positive integer, CEn(X) ≤ CEn(Y ) by assumption, we have

CEn(Y )− CEn(X) =
1
n!

∫ 1

0

uD(u) du ≥ 0, (30)
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where

D(u) := (− log u)n
[

1
g(G−1(u))

− 1
f(F−1(u))

]
.

We note from (8) that

n! CEn(Xm:m) = mn

∫ 1

0

um(− log u)n

f(F−1(u))
du. (31)

Hence, by assumption, D(u) ≥ 0 for u ∈ A1 and D(u) < 0 for u ∈ A2. Therefore, due
to (31) we have

CEn(Ym:m)− CEn(Xm:m)

=
mn

n!

∫ 1

0

umD(u) du

=
mn

n!

∫
A1

umD(u) du+
mn

n!

∫
A2

umD(u) du

≥ mn

n!

(
inf
A1
um−1

)∫
A1

uD(u) du+
mn

n!

(
sup
A2

um−1

)∫
A2

uD(u) du

≥ mn

n!

(
sup
A2

um−1

)∫
A1

uD(u) du+
mn

n!

(
sup
A2

um−1

)∫
A2

uD(u) du

=
mn

n!

(
sup
A2

um−1

)∫ 1

0

uD(u) du ≥ 0.

The second inequality in (32) holds by condition inf A1 ≥ supA2, due to (29), while the
last inequality is obtained from (30). �

4. DYNAMIC GENERALIZED CUMULATIVE ENTROPY

In this section, we provide some further results on the dynamic version of the generalized
cumulative entropy. As specified in (9), the dynamic version of GCE for the inactivity
time (1) for t > 0 is given by

CEn(t) = CEn(X; t) =
1
n!

∫ t

0

F (x)
F (t)

[T (x)− T (t)]n dx =
1
n!

∫ t

0

F (x)
F (t)

[
− log

F (x)
F (t)

]n
dx,

for all n = 1, 2, . . .. In analogy to Proposition 3.6, we obtain

CEn(t) ≥ 1
n!

[CE1(t)]n, t > 0.

Also, Corollary 3.7 can be stated as

CEn(t) ≥ 1
n!
CnenH(t), t > 0.

Hereafter, we obtain some characterization results based on the GCE as well as the
dynamic GCE. To this purpose, we first need the following theorem due to Kayal [20].
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Theorem 4.1. If X is an absolutely continuous nonnegative random variable, then

CE ′n(t) = τ(t)[CEn−1(t)− CEn(t)], t > 0, (32)

for all n = 1, 2, . . ..

Note that in (32) we use

CE0(t) =
1

F (t)

∫ t

0

F (x) dx = µ̃(t),

which is due to (6). As a consequence of the preceding theorem, we have the forthcoming
characterization result which extends the result given in Theorem 6.2 (i) of Di Crescenzo
and Longobardi [14].

Theorem 4.2. Let X be a random variable with support [0, b], where b is finite. Then
CEn(X; t) = c CEn−1(X; t) holds for all 0 ≤ t ≤ b, 0 < c < 1 and for a fixed n = 1, 2, . . . ,
if and only if X has the distribution function

F (t) =
(
t

b

)c/(1−c)
, 0 ≤ t ≤ b, 0 < c < 1.

P r o o f . The necessity is trivial and hence it remains to prove the sufficiency part. We
shall prove it by induction. For n = 1, it was proved by Di Crescenzo and Longobardi
[14]. Now, assuming that the result is true for n− 1 (n > 1), we shall prove it for n. Let

CEn(t) = c CEn−1(t), 0 ≤ t ≤ b, 0 < c < 1. (33)

Thus, we obtain
CE ′n(t) = c CE ′n−1(t).

From (32), we have
c CE ′n−1(t) = τ(t)[CEn−1(t)− CEn(t)],

and then (33) implies
c CE ′n−1(t) = (1− c)τ(t)CEn−1(t).

Similarly, Eq. (32) for n− 1 yields

c CE ′n−1(t) = cτ(t)[CEn−2(t)− CEn−1(t)].

Therefore, we get
CEn−1(t) = c CEn−2(t),

and hence by induction hypothesis, we get the desired result. �

Now, we investigate the monotonicity of the function CEn(t) with respect to t > 0,
for any n. First, we need the following definition.
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Definition 4.3. The cumulative distribution function F is said to have increasing dy-
namic generalized cumulative entropy of order n, shortly written as IDGCEn, if for all
n = 0, 1, 2, . . . , CEn(t) is an increasing function of t > 0.

Kayal [20] pointed out that the generalized dynamic cumulative entropy cannot be
decreasing in t. Notice that IDGCE0 is equivalent to say that F has an increasing mean
inactivity time (IMIT), that is the mean inactivity time µ̃(t) is increasing with respect
to t > 0. In the forthcoming theorem, we shall prove that the class of IDGCEn−1 is
included in IDGCEn for all n = 1, 2, . . . . The proof of the results are similar the proof
of Lemma 3.1 and Theorem 3.1 in Navarro and Psarrakos [27] and hence we omit their
proof.

Lemma 4.4. Let X be an absolutely continuous nonnegative random variable such that
CEn(0) <∞, for a fixed n = 1, 2, . . . . Then

CEn(t) =
1

F (t)

∫ t

0

CEn−1(x)f(x) dx, t > 0.

Hence, under the assumptions of Lemma 4.1, the dynamic GCE can be expressed as

CEn(t) = E[CEn−1(X) |X ≤ t], t > 0.

Theorem 4.5. If F is IDGCEn, then F is IDGCEn+1.

It is worth to point out that Theorem 4.5 generalizes Proposition 4.4 of Navarro et
al. [26]. In this case, if X is IMIT, then

IDGCE1 ⇒ . . . ⇒ IDGCEn. (34)

Navarro et al. [26] gave an example where a cumulative distribution function F is either
IMIT or IDGCE1. Moreover, they also gave an example that a cumulative distribution
function F is IDGCE1 but not IMIT. In the following example, we show that F is not
IMIT but it is IDGCEn for n = 1, 2, . . . .

Example 4.6. Let X have a cumulative distribution function

F (x) =



x

2
0 ≤ x ≤ 1,

1
2

1 ≤ x ≤ 2,

x− 1
2

2 ≤ x ≤ 3.

A straightforward calculation shows that the dynamic generalized cumulative entropy is

CEn(t) =



t

2n+1
0 ≤ t ≤ 1,

1
2n+1

1 ≤ t ≤ 2,

t− 1
2n+1

+
(log(t− 1))n

n!(t− 1)
2 ≤ t ≤ 3,
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Fig. 1. The functions CEn(t) of Example 4.6 for n = 0, 1, 2, 3 (from

top to bottom).

for all n = 0, 1, 2, . . . . In Example 6.1 of Di Crescenzo and Longobardi [14], a special
case for CE0(t) = µ̃(t) and CE1(t) is given. The functions CEn(t), are plotted in Figure
1 for n = 0, 1, 2, 3. It is seen that CE0(t) > CE1(t) > CE2(t) > CE3(t), for all t > 0. Note
that the functions CEn(t) are increasing and continuous for all n = 1, 2, . . ., while CE0(t)
is not monotonic and is discontinuous at t = 2. As specified in (34), if F is IDGCE1,
then F is IDGCEn for all n = 2, 3, . . . .

Now, we give an example where F is neither IMIT nor IDGCE1, but it is included in
the larger class IDGCEn for all n = 2, 3, . . . .

Example 4.7. Let us suppose that a random variable X takes values in [0, 1] with
cumulative distribution function

F (x) =


1− p
p

x 0 ≤ x ≤ p,

p

1− p
x+

1− 2p
1− p

p ≤ x ≤ 1,

where 0 < p < 1. From (9), for 0 ≤ t ≤ p, we have CEn(t) = t/2n+1. However, it is
not easy to compute the dynamic GCE when p ≤ t ≤ 1, and hence we proceed via
numerical computations. The functions CEn(t), n = 0, 1, 2, 3, 4 are displayed in Figure
2 for some values of t and for some choices of p. From Figure 2, it is seen that when
p = 0.7, then CE0(t) is not monotonic but CEn(t) is increasing in t for all n = 1, 2, . . . ,
keeping in mind Eq. (34). Moreover, for p = 0.8, the functions CE0(t) and CE1(t) are
not monotonic while CEn(t) is increasing for all n = 2, . . . . In this case, we see that
F is neither IMIT nor IDGCE1, but it is included in the larger class IDGCEn for all
n ∈ {2, 3, . . .}. It is interesting to note that for p = 0.9, CEn(t) is not monotonic for
n = 0, 1, 2 however it is increasing for n = 3, 4, . . . and finally F is not in the class
IDGCEn for n = 0, 1, 2, 3 when p = 0.95 while it is included in the larger class IDGCEn
for all n ∈ {4, 5, . . .}. According to the numerical findings, we expect that the dynamic
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Fig. 2. Dynamic generalized cumulative entropy of Example 4.7 for

n = 0, 1, 2, 3, 4 from top to bottom, near the origin for four choices of

p.

generalized cumulative entropies CEn(t), for some n, is not increasing for all t, when p
is sufficiently large.

Theorem 4.8. Let X and Y be two nonnegative random variables with PDF’s f and
g and absolutely continuous CDF’s F and G, respectively. Then F and G belong to the
same family of distributions, but for a change in location and scale, if and only if

CEn(Xm:m; t) = CEn(Ym:m; t),

for a fixed n ≥ 1, for all t ≥ 0, and for all m ∈ M, where M is defined as in Theorem
3.12.

P r o o f . The necessity is trivial and hence it remains to prove the sufficiency part. If
for a fixed n ≥ 1 and for all m ∈M we have CEn(Xm:m; t) = CEn(Ym:m; t), for all t ≥ 0,
then recalling Remark 1.1, by Theorem 3.13 we have that [X|X ≤ t] and [Y |Y ≤ t]
have the same distribution but for a change in location parameter. Hence, we have
ft(x) = gt(x + d), x > 0, for all t > 0, where ft and gt are, respectively, the PDF’s of
[X|X ≤ t] and [Y |Y ≤ t]. Thus, f(x) = F (t)

G(t)g(x+ d), x > 0, this meaning that F and G
belong to the same family of distributions, but for a change in location and scale. �
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5. EMPIRICAL GENERALIZED CUMULATIVE ENTROPY

In this section, we provide some new results on the empirical GCE of a random variable
defined by Kayal [20]. Let X1, X2, . . . , Xm be absolutely continuous nonnegative i.i.d.
random variables, forming a random sample of size m taken from a population, which
has CDF F (x). We denote the empirical distribution of the sample by

F̂m(x) =
m−1∑
i=1

i

m
1(X(i),X(i+1)](x), x ∈ R, (35)

where X(1) ≤ X(2) ≤ . . . ≤ X(m) denote the associated order statistics of the sample,
and 1A is the indicator function of A. According to (8) and (35), Kayal [20] defined the
empirical generalized cumulative entropy for all fixed n ≥ 1 as

CEn(F̂m) =
1
n!

m−1∑
i=1

Ui+1
i

m

[
− log

i

m

]n
, (36)

where Ui+1 = X(i+1) − X(i), for i = 1, 2, . . . ,m − 1, denote the sample spacings. The
analogy between the empirical generalized cumulative entropy and the empirical cumu-
lative entropy is straightforward. Indeed, for n = 1 the expression given in (36) identifies
with Eq. (34) of [14].

Now, we focus our attention on the convergence of CEn(F̂m) as m tends to infinity,
for all fixed n ≥ 1. We recall that Glivenko–Cantelli theorem asserts that

sup
x∈R
|F̂m(x)− F (x)| → 0 a.s. as m→∞.

Example 5.1. Let X1, . . . , Xm be a random sample taken from the uniform distribution
in [0, 1]. For the uniform distribution, the sample spacing Ui+1 = X(i+1) − X(i) has
the beta distribution with parameters 1 and m, i. e. Ui+1 ∼ Beta(1,m) and hence
E(Ui+1) = (m + 1)−1. From (36), we obtain the mean and variance of the empirical
generalized cumulative entropy:

E[CEn(F̂m)] =
1

n!(m+ 1)

m−1∑
i=1

i

m

[
− log

i

m

]n
, (37)

V ar[CEn(F̂m)] =
m

n!(m+ 1)2(m+ 2)

m−1∑
i=1

(
i

m

)2 [
− log

i

m

]2n
. (38)

We notice that for n = 1, the mean (37) can be expressed in terms of the Riemann zeta
function and the generalized Riemann zeta function (see Di Crescenzo and Longobardi
[14] for further details). For all n = 1, 2, . . . , from (37) and (38) it holds that

lim
m→∞

E[CEn(F̂m)] =
1

2n+1
,

and

lim
m→∞

V ar[CEn(F̂m)] =
(2n)!
n!32n+1

lim
m→∞

m2

(m+ 1)2(m+ 2)
= 0.
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Hence, noting that CEn(X1) = 1
2n+1 , we immediately have that CEn(F̂m) is an unbi-

ased and consistent estimator for the generalized cumulative entropy of a population
uniformly distributed in [0, 1].

Example 5.2. Let X1, . . . , Xm be a random sample of exponentially distributed ran-
dom variables with parameter λ. The sample spacing Ui, 1 ≤ i ≤ m, are independent
such that Ui+1 has an exponential distribution with parameter λ(m − i). Hence, from
(36) we have

E[CEn(F̂m)] =
1
n!λ

m−1∑
j=1

1
m− j

j

m

[
− log

j

m

]n
, (39)

V ar[CEn(F̂m)] =
1

n!λ2

m−1∑
j=1

1
m− j

j

m

[
− log

j

m

]2n
. (40)

We are now able to provide a central limit theorem for the empirical generalized
cumulative entropy for random samples from the exponential distribution.

Theorem 5.3. If X1, X2, . . . , Xn are i.i.d. random variables coming from the common
exponential distribution, then for any fixed n = 1, 2, . . . ,

Zm =
CEn(F̂m)− E[CEn(F̂m)]√

V ar[CEn(F̂m)]
,

converges in distribution to the standard normal distribution as m→∞.

P r o o f . By (36) the empirical generalized cumulative entropy in this case can be ex-
pressed as the sum of independent exponential random variables Wi having mean

E[Wi] =
1

mλ
(

1
i/m − 1

) [− log
i

m

]n
.

Since E[|Wi − E[Wi]|3] = 2e−1(6− e)[E(Wi)]3 for any exponentially distributed random
variable Wi (see Di Crescenzo and Longobardi [14]), we have

m∑
i=1

V ar(Wi) =
1

(mλ)2

m∑
i=1

1(
1
i/m − 1

)2

[
− log

i

m

]2n
≈ c2,n
mλ2

,

m∑
i=1

E[|Wi − E(Wi)|3] =
2(6− e)
e(mλ)3

m∑
i=1

1(
1
i/m − 1

)3

[
− log

i

m

]3n
≈ 2(6− e)c3,n

em2λ3
,

where, for k = 2, 3 and for a fixed n = 1, 2, . . .,

ck,n =
∫ 1

0

(
(− log x)n

1
x − 1

)k
dx <∞.
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Hence, Lyapunov’s condition of the central limit theorem is satisfied, i. e.(∑m
i=1 E[|Wi − E(Wi)|3]

)1/3
(
∑m
i=1 V ar(Wi))

1/2
≈ [2(6− e)c3,n]1/3

e1/3c
1/2
2,n

m−1/6 → 0 as m→∞.

The proof is thus completed. �

6. SUMMARY

In this paper, some further results of the GCE, introduced by Kayal [20], were dis-
cussed. First, we showed that the study of n-fold recursive reversed relevation trans-
form is equivalent to the study of lower record values. Then, several ordering properties
of n-fold recursive reversed relevation transform related to other concept of stochastic
orders are presented. We also discussed some further results of the generalized cu-
mulative entropy such as ordering properties, bounds, expressions and characterization
results. Specifically, we investigated characterization based on the maximum of random
variables. Similar results are obtained for the dynamic generalized cumulative entropy.
The characterization problem from the cumulative entropy function was discussed in Di
Crescenzo and Longobardi [13] and Navarro et al. [26]. Accordingly, in Theorem 4.2 we
have analyzed the characterization problem for CEn, with n = 1, 2, . . . , which includes
the cumulative entropy function as a particular case. Furthermore, we investigated some
monotonicity properties of the GCE functions, and proved that the increasing dynamic
GCE class of order n, denoted by IDGCEn, is included in the IDGCEn+1 class. Finally,
it was shown that for a random sample taken from the exponential distribution, the
empirical generalized cumulative entropy converges to the normal distribution.
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