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1. Introduction

Time-frequency analysis is an important field in signal processing. The windowed

Hankel transform plays a fundamental part in this analysis. To be more precise, let

d > 1 be the dimension, and let us denote by 〈·, ·〉 the scalar product and by |·| the
Euclidean norm on R

d. Our starting point is the following Heisenberg’s uncertainty

inequality:

(1.1) ‖|x|f‖2L2(Rd) + ‖|ξ|F(f)‖2L2(Rd) > d‖f‖2L2(Rd),

where the Fourier transform is defined for f ∈ L1(Rd) ∩ L2(Rd) by

F(f)(ξ) = (2π)−d/2

∫

Rd

f(x)e−i〈x,ξ〉 dx,

and it is extended from L1(Rd)∩L2(Rd) to L2(Rd) in the usual way. With this nor-

malization, if f(x) = f̃(|x|) is a radial function onRd, then F(f)(ξ) = Hd/2−1(f̃)(|ξ|),
where for α > −1/2, Hα is the Hankel transform (also known as the Fourier-Bessel

transform) defined by

Hα(f)(ξ) =

∫ ∞

0

f(x)jα(xξ) dµα(x), ξ ∈ R+ = [0,∞).
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Here dµα(x) = (x2α+1/2αΓ(α+ 1)) dx and jα is the spherical Bessel function given

by

jα(x) := Γ(α+ 1)

∞∑

n=0

(−1)n

n! Γ(n+ α+ 1)

(x
2

)2n
.

Therefore Heisenberg’s inequality (1.1) for the Hankel transform leads to (see [1], [3])

(1.2) ‖xf‖2L2
α
+ ‖ξHα(f)‖2L2

α
> (2α+ 2)‖f‖2L2

α
,

where for 1 6 p < ∞ we denote by Lp
α(R+) the Banach space consisting of measurable

functions f on R+ equipped with the norms

‖f‖Lp
α
=

(∫ ∞

0

|f(x)|p dµα(x)

)1/p
.

Shapiro in [8] observed that Heisenberg’s inequality (1.1) can be refined for infinite

orthonormal sequences, that is, if {ϕn}∞n=1 is an orthonormal sequence in L2(Rd),

then

(1.3) sup
n

(
‖|x|ϕn‖2L2(Rd) + ‖|ξ|F(ϕn)‖2L2(Rd)

)
= ∞.

A quantitative version of (1.3) can be written in the following form (see [7]): If s > 0

and {ϕn}∞n=1 is an orthonormal sequence in L2(Rd), then

(1.4)
N∑

n=1

(
‖|x|sϕn‖2L2(Rd) + ‖|ξ|sF(ϕn)‖2L2(Rd)

)
> CN1+s/d.

Time-frequency analysis has emerged as an important field in signal processing as

it can be used to represent time-varying signals in the time-frequency plane Rd × R̂
d.

Usually, the time-frequency resolution is associated with the windowed Fourier trans-

form also known as the (continuous) Gabor transform, or the short-time Fourier

transform. To be more precise, fix g ∈ L2(Rd) a nonzero window function, and de-

fine for f ∈ L2(Rd) its windowed Fourier transform with respect to the window g

as

Fg(f)(x, ξ) = F [fg(· − x)](ξ) = (2π)−d/2

∫

Rd

f(t)g(t− x)e−i〈t,ξ〉 dt.

A considerable attention has been devoted recently to discovering new mathematical

formulations of the uncertainty principle for the windowed Fourier transform. In

particular, we recall the Heisenberg-type uncertainty inequality

(1.5) ‖|x|Fg(f)‖2L2(R2d) + ‖|ξ|Fg(f)‖2L2(R2d) > C(d)‖g‖2L2(Rd)‖f‖2L2(Rd).
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Further limitations are given by various versions of the uncertainty principle for

the windowed Fourier transform. These state in particular that if we concentrate

Fg(f) in the x-variable, then we loose concentration in the ξ-variable. One might

then prove an extension of the result of Shapiro for the windowed Fourier transform,

which has been recently stated in [5].

An other fundamental tool in time-frequency analysis is the windowed Hankel

transform introduced in [2]. Precisely, we define the translation operator by

ταx f(y) =
Γ(α+ 1)√

πΓ(α+ 1/2)

∫
π

0

f(
√
x2 + y2 − 2xy cos θ)(sin θ)2α dθ,

and the modulation operator by

Mα
ξ g := Hα

(√
ταξ |Hα(g)|2

)
.

Then for any nonzero window function g ∈ L2
α(R+), the windowed Hankel transform

of any signal f ∈ L2
α(R+) with respect to the window g is given by

Vα
g (f)(x, ξ) =

∫ ∞

0

f(s)ταx Mα
ξ g(s) dµα(s), (x, ξ) ∈ R+ × R̂+,

where R̂+ denotes the half real line thought of as the frequency axis and the bar

denoting complex conjugation.

Notice that the windowed Hankel transform cannot be obtained from the windowed

Fourier transform by taking spherical averages (see e.g. [2], Example 1, Example 2),

i.e. if f, g ∈ L2
d/2−1(R+) are the radial parts of F,G ∈ L2(Rd), then it is not true in

general that

Vd/2−1
g (f)(|x|, |ξ|) = FG(F )(x, ξ), x, ξ ∈ R

d,

because generally FG(F ) is not radial in any of the two variables. So, the win-

dowed Hankel transform is a new object and not just an average of the standard

windowed Fourier transform. Our contribution shows which part of the approach of

references [7], [5] is still valid in the Gabor-Hankel context. This involves considering

new aspects such as the role of Gabor-Toeplitz operators and spectrograms.

Heisenberg-type uncertainty inequality for the windowed Hankel transform can be

written in the form (see [4], Theorem 4.5)

(1.6) ‖xsVα
g (f)‖L2

α(R+×R̂+)‖ξsVα
g (f)‖L2

α(R+×R̂+) > C(α, s)‖f‖2L2
α
‖g‖2L2

α
.

It states that the windowed Hankel transform of a nonzero function with respect

to a nonzero window function cannot be time and frequency concentrated around
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zero, and a dilation argument (see [4], Lemma 2.2) shows that inequality (1.6) is

equivalent to

(1.7) ‖xsVα
g (f)‖2L2

α(R+×R̂+)
+ ‖ξsVα

g (f)‖2L2
α(R+×R̂+)

> 2C(α, s)‖f‖2L2
α
‖g‖2L2

α
.

Here we denote by Lp
α(R+ × R̂+), 1 6 p < ∞, the Banach space consisting of

measurable functions F on R+ × R̂+ equipped with the norms

‖F‖Lp
α(R+×R̂+) =

(∫∫

R+×R̂+

|F (x, ξ)|p dνα(x, ξ)
)1/p

,

where dνα(x, ξ) = dµα(x) dµα(ξ).

In this paper, we will adopt the broader view that the uncertainty principle can

be seen not only as a statement about the time-frequency localization of a single

function but also as a statement on the degradation of localization when one consid-

ers successive elements of an orthonormal sequence. In particular, Heisenberg-type

inequality (1.7) states that a unit-norm function in L2
α(R+) cannot occupy an arbi-

trarily small region in the time-frequency plane. The main aim of this paper is to re-

fine inequality (1.7) for orthonormal sequences, and, motivated by the Malinnikova’s

process in [7], we show the following analogue of the dispersion inequality (1.4) for

the windowed Hankel transform.

Theorem 1.1. Let s > 0, g ∈ L2
α(R+) be a nonzero window function of unit

L2
α-norm and let {ϕn}∞n=1 be an orthonormal sequence in L2

α(R+). Then for every

N > 1,

(1.8)

N∑

n=1

(
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

+ ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

)
> c(s, α)N1+s/(2α+2).

This result shows how an orthonormal sequence can cover the time-frequency

plane R+ × R̂+, and this is an important factor in determining which applications

the sequence is suited for. In particular, inequality (1.8) implies that the elements

of an orthonormal sequence cannot be uniformly concentrated in the time-frequency

plane (see Corollary 4.7). This problem was first studied by Shapiro in [8] in order

to bound the time and frequency dispersions of an orthonormal sequence by means

of the Fourier transform.

Other consequence of inequality (1.8) is the following so-called strong uncertainty

principle for infinite orthonormal sequences, that improves its corresponding inequal-

ity (1.7) for a single function,

(1.9) sup
n

(
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

+ ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

)
= ∞.
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It is also interesting to note that if one takes N = 1 in (1.8), then this yields the

usual form of Heisenberg-type uncertainty principle (1.7) for the windowed Hankel

transform.

The remainder of the paper is organized as follows. Next section is devoted to

some preliminaries on the windowed Hankel transform and in Section 3 we introduce

the Gabor-Toeplitz and the phase-space restriction operators and we prove a trace

formula in terms of the spectrogram. Finally, in Section 4 we prove the dispersion

inequality (1.8).

2. Preliminaries

2.1. Notation. Throughout this paper, s and r will be two real numbers such

that s, r > 0 and Br = {(x, ξ) ∈ R+× R̂+ : |(x, ξ)| 6 r} is the closed ball in R+× R̂+

centered at 0 and of radius r. If A is a subset of R+ × R̂+, then we denote by

Ac = (R+× R̂+)\A the complement of A in R+× R̂+ and the characteristic function

of A will be denoted by χA.

We write cs,α for a constant that depends only on the parameters s and α. This

constant may change from line to line.

Finally, if a compact operator A on the Hilbert space L2
α(R+) is Hilbert-Schmidt,

then the positive operator A∗A is in the space of trace class and

(2.1) ‖A‖2HS = tr(A∗A) =

∞∑

n=1

‖Aϕn‖2L2
α

for any orthonormal basis {ϕn}∞n=1 for L
2
α(R+).

2.2. Generalities. For α > −1/2, let us recall the Poisson representation formula

jα(x) =
Γ(α+ 1)

Γ(α+ 1/2)Γ(1/2)

∫ 1

−1

(1 − s2)α−1/2 cos(sx) dx.

Therefore jα is bounded with |jα(x)| 6 jα(0) = 1. As a consequence,

(2.2) ‖Hα(f)‖∞ 6 ‖f‖L1
α
.

Here ‖·‖∞ is the usual essential supremum norm and L∞(R+) will denote the usual

space of essentially bounded functions.

It is also well known that the Hankel transform extends to an isometry on L2
α(R+):

(2.3) ‖Hα(f)‖L2
α
= ‖f‖L2

α
.
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2.3. Generalized translation. Following Levitan in [6], for any function f ∈
C2(R+) we define the generalized Bessel translation operator

ταy f(x) = u(x, y), x, y ∈ R+,

as a solution of the following Cauchy problem:

( ∂2

∂x2
+

2α+ 1

x

∂

∂x

)
u(x, y) =

( ∂2

∂y2
+

2α+ 1

y

∂

∂y

)
u(x, y)

with initial conditions u(x, 0) = f(x) and ∂u(x, 0)/∂y = 0; here

∂2

∂x2
+

2α+ 1

x

∂

∂x

is the differential Bessel operator. The solution of the Cauchy problem can be written

out in explicit form:

(2.4) ταx f(y) = ταy f(x) =
Γ(α+ 1)√

πΓ(α+ 1/2)

∫
π

0

f
(√

x2 + y2 − 2xy cos θ
)
(sin θ)2α dθ.

The operator ταx can be also expressed by the formula

(2.5) ταx f(y) =

∫ ∞

0

f(t)W (x, y, t) dµα(t),

where W (x, y, t) dµα(t) is a probability measure and W (x, y, t) is defined by

W (x, y, t) =





2π
α+1/2Γ(α+ 1)2

Γ(α+ 1/2)

∆(x, y, t)2α−1

(xyt)2α
, if |x− y| < t < x+ y,

0, otherwise,

where

∆(x, y, t) =
√
(x+ y)2 − t2

√
t2 − (x − y)2

is the area of the triangle with side length x, y, t. Further, W (x, y, t) dµα(t) is

a probability measure, so that, for p > 1, |ταx f |p 6 ταx |f |p, thus

(2.6) ‖ταx f‖Lp
α
6 ‖f‖Lp

α
.

This allows to extend the definition of ταx f to functions f ∈ Lp
α(R+). It is also well

known that for every r, x, ξ > 0, f ∈ L1
α(R+)

(2.7)

∫ ∞

0

ταx f(s) dµα(s) =

∫ ∞

0

f(s) dµα(s),
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and

(2.8) ταx jα(r ·)(ξ) = jα(rx)jα(rξ).

Therefore for f ∈ Lp
α(R+), p = 1 or 2,

Hα

(
ταx f)(ξ) = jα(xξ)Hα(f)(ξ).

The Bessel convolution f ∗α g of two functions f and g in L1
α(R+) ∩ L∞(R+) is

defined by

f ∗α g(x) =

∫ ∞

0

f(t)ταx g(t) dµα(t) =

∫ ∞

0

ταx f(t)g(t) dµα(t), x > 0.

Then if 1 6 p, q, r 6 ∞ are such that 1/p+1/q− 1 = 1/r, then f ∗α g ∈ Lr
α(R+) and

‖f ∗α g‖Lr
α
6 ‖f‖Lp

α
‖g‖Lq

α
.

This then allows to define f ∗α g for f ∈ Lp
α(R+) and g ∈ Lq

α(R+). In particular, if

f ∈ L1
α(R+) and g ∈ Lq

α(R+), q = 1 or 2, then

(2.9) Hα(f ∗α g) = Hα(f)Hα(g).

Moreover, for f, g ∈ L2
α(R+) the function f ∗α g belongs to L2

α(R+) if and only if

the function Hα(f)Hα(g) belongs to L
2
α(R+) and then (2.9) holds.

2.4. The windowed Hankel transform. Following [2] for every g ∈ L2
α(R+)

the modulation of g by ξ ∈ R̂+ is defined by

(2.10) Mα
ξ g := gαξ := Hα

(√
ταξ |Hα(g)|2

)
.

Then for every g ∈ L2
α(R+) and ξ ∈ R̂+ we have:

(2.11) ‖gαξ ‖L2
α

= ‖g‖L2
α
and ‖Hα(g

α
ξ )‖∞ 6 ‖Hα(g)‖∞.

For a nonzero window function g ∈ L2
α(R+) and (x, ξ) ∈ R+ × R̂+ we consider the

function gαx,ξ defined by

(2.12) gαx,ξ = ταx g
α
ξ .
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Therefore, for any function f ∈ L2
α(R+) we define its windowed Hankel transform

with respect to the window g by

(2.13) Vα
g (f)(x, ξ) =

∫ ∞

0

f(s)gαx,ξ(s) dµα(s), (x, ξ) ∈ R+ × R̂+,

which can also be written in the form

(2.14) Vα
g (f)(x, ξ) = f ∗α gαξ (x).

Thus, from the Cauchy-Schwartz inequality and from (2.6), (2.11) we have

(2.15) ‖Vα
g (f)‖∞ 6 ‖f‖L2

α
‖g‖L2

α
.

Moreover, the windowed Hankel transform satisfies the following properties (see [2]).

Proposition 2.1. Let g ∈ L2
α(R+) be a nonzero window function. Then we have:

(1) A Plancherel’s theorem: for every f ∈ L2
α(R+)

(2.16) ‖Vα
g (f)‖L2

α(R+×R̂+)
= ‖f‖L2

α
‖g‖L2

α
.

(2) An orthogonality relation: for every f, h ∈ L2
α(R+) we have

〈Vα
g (f),Vα

g (h)〉να =

∫ ∞

0

∫ ∞

0

Vα
g (f)(x, ξ)Vα

g (h)(x, ξ) dνα(x, ξ)(2.17)

= ‖g‖2L2
α

∫ ∞

0

f(t)h(t) dµα(t),

where 〈·, ·〉να is the usual inner product in the Hilbert space L2
α(R+ × R̂+).

3. The Gabor-Toeplitz and the phase-space restriction operators

In the remainder of this section, g ∈ L2
α(R+) will be a nonzero window func-

tion such that ‖g‖L2
α

= 1 and Σ ⊂ R+ × R̂+ will be a subset of finite measure

0 < να(Σ) < ∞.

Definition 3.1. The spectrogram of a signal f ∈ L2
α(R+) with respect to the

window g is defined to be

(3.1) SPECgf(x, ξ) = |Vα
g (f)(x, ξ)|2, (x, ξ) ∈ R+ × R̂+.
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The spectrogram measures the distribution of the time-frequency content of f ,

and it is often interpreted as an energy density in time-frequency space. Its size

depends on the window g and from the definition, it is non-negative. Moreover, by

Plancherel’s theorem (2.16), it is energy-preserving, i.e.

(3.2) ‖SPECgf‖L1
α(R+×R̂+) = ‖f‖2L2

α
.

Note that the uncertainty principle in Fourier analysis states that if a unit L2
α-norm

signal f is concentrated inside a region Σ in the time-frequency plane R+× R̂+, then

the area of Σ must be at least 1. More precisely (see [2], Proposition 3.7), if the

spectrogram of f with respect to g satisfies

∫

Σ

SPECgf(x, ξ) dνα(x, ξ) > 1− ε,

then να(Σ) > 1− ε2.

Let H = Vα
g [L

2
α(R+)] ⊂ L2

α(R+ × R̂+) be the (closed) range of the Vα
g , and let Pg

(or PH) be the orthogonal projection from L2
α(R+ × R̂+) onto H. The orthogonal

projector Pg is an integral operator explicitly given by

(3.3) PgF (z) =

∫

R+×R̂+

F (z′)Kg(z; z
′) dνα(z

′), z = (x, ξ) ∈ R+ × R̂+.

Using this description, it follows that (see [4], Proposition 4.1) H is a reproducing

kernel Hilbert space in L2
α(R+ × R̂+) with kernel function Kg defined by

(3.4) Kg((x
′, ξ′); (x, ξ)) = gαx,ξ ∗α gαξ′(x

′) = Vα
g (g

α
x,ξ)(x

′, ξ′).

This means that each function F ∈ H is continuous and satisfies:

(3.5) F (x, ξ) = 〈F,Kg(· ; (x, ξ))〉να , (x, ξ) ∈ R+ × R̂+.

Since Kg is the integral kernel of an orthogonal projection, it satisfies

(3.6) Kg(z′; z) = Kg(z; z
′), z = (x, ξ), z′ = (x′, ξ′) ∈ R+ × R̂+,

and

(3.7) Kg(z; z
′) =

∫

R+×R̂+

Kg(z; z
′′)Kg(z

′′; z′) dνα(z
′′).

Note also that for all z = (x, ξ), z′ = (x′, ξ′) ∈ R+ × R̂+,

(3.8) |Kg(z; z
′)|2 = SPECgg

α
x,ξ(z

′).

235



We introduce the orthogonal projections PΣ on L
2
α(R+ × R̂+) known as the time-

frequency limiting operator defined by:

PΣF = FχΣ, F ∈ L2
α(R+ × R̂+).

Since H is a reproducing kernel Hilbert space in L2
α(R+×R̂+), then PΣPg is a Hilbert-

Schmidt operator with (see [4], inequality (4.8))

(3.9) ‖PΣPg‖2HS 6 να(Σ).

Definition 3.2. We define the Gabor-Toeplitz operator Tg,Σ : H → H by

(3.10) Tg,Σ F = PgPΣF,

and the phase space restriction operator by

(3.11) Lg,Σ = Tg,ΣT
∗
g,Σ = PgPΣPg.

Since Tg,Σ is Hilbert-Schmidt, then Lg,Σ is trace-class and from (2.1), (3.9),

(3.12) tr(Lg,Σ) = ‖Tg,Σ‖2HS 6 να(Σ).

Moreover, for F ∈ H,

(3.13) 〈Tg,ΣF, F 〉να = 〈Pg(PΣF ), F 〉να = 〈PΣF, F 〉να .

Then

(3.14) 0 6 Tg,Σ 6 PΣ.

In particular, Tg,Σ is bounded and positive. Furthermore, it is explicitly given by

(3.15) Tg,ΣF (z) =

∫

Σ

F (z′)Kg(z′; z) dνα(z
′) =

∫

Σ

F (z′)Kg(z; z
′) dνα(z

′).

The advantage of working with Lg,Σ instead of Tg,Σ is that it is defined on

L2
α(R+ × R̂+) and consequently its spectral properties can be easily related to its

integral kernel. Hence, Lg,Σ is positive and with respect to the decomposition

L2
α(R+ × R̂+) = H⊕H

⊥ we deduce that

(3.16) tr(Lg,Σ) = tr(Tg,Σ).

In addition, we have the following result.

Proposition 3.3. The trace of T 2
g,Σ is given by

(3.17) tr(T 2
g,Σ) =

∫

Σ

∫

Σ

SPECgg
α
x,ξ(x

′, ξ′) dνα(x, ξ) dνα(x
′, ξ′).
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P r o o f. Since Lg,Σ is positive, then

(3.18) tr(T 2
g,Σ) = tr(L2

g,Σ).

Now from formulas (3.3) and (3.15) we obtain

Lg,ΣF (z) = Tg,Σ(PgF )(z)

=

∫

R+×R̂+

F (z′)

∫

R+×R̂+

χΣ(z
′′)Kg(z; z

′′)Kg(z
′′; z′) dνα(z

′′) dνα(z
′).

That is, Lg,Σ has integral kernel

(3.19) Ng,Σ(z, z
′) =

∫

R+×R̂+

χΣ(z
′′)Kg(z; z

′′)Kg(z
′′; z′) dνα(z

′′).

Then

(3.20) L2
g,ΣF (z) =

∫

R+×R̂+

F (z′′)Ng,Σ(z, z
′′) dνα(z

′′)

with

(3.21) Ng,Σ(z, z
′′) =

∫

R+×R̂+

Ng,Σ(z, z
′)Ng,Σ(z

′, z′′) dνα(z
′).

Therefore

tr(L2
g,Σ) =

∫

R+×R̂+

Ng,Σ(z, z) dνα(z)

=

∫

R+×R̂+

∫

R+×R̂+

Ng,Σ(z, z
′)Ng,Σ(z

′, z) dνα(z) dνα(z
′)

=

∫

R+×R̂+

∫

R+×R̂+

χΣ(z1)χΣ(z2)K(z1, z2) dνα(z1) dνα(z2),

where

K(z1, z2) =

∫

R+×R̂+

∫

R+×R̂+

Kg(z2; z)Kg(z; z1)(3.22)

×Kg(z1; z
′)Kg(z

′; z2) dνα(z) dνα(z
′).

Using (3.6), (3.7) and (3.8), we get

(3.23) K(z1, z2) = SPECgg
α
x,ξ(z2), z1 = (x, ξ), z2 = (x′, ξ′).

This completes the proof. �

237



4. Quantitative dispersion inequality for orthonormal sequences

In this section we will prove the main result of this paper. Our proof is inspired

by related results established in [7].

Definition 4.1. Let 0 < ε < 1 and let f, g ∈ L2
α(R+) be two nonzero functions

and Σ be a measurable subset of R+ × R̂+. Then we say that Vα
g (f) is ε-time-

frequency concentrated on Σ if

(4.1) ‖PΣcVα
g (f)‖L2(R+×R̂+)

6 ε‖f‖L2
α
‖g‖L2

α
.

If we take ε = 0 in inequality (4.1), then Σ will be the exact support of Vα
g (f), so

when 0 < ε < 1, inequality (4.1) means that Vα
g (f) is “practically zero” outside Σ.

Indeed, Σ may be considered as the “essential” support of Vα
g (f).

Theorem 4.2. Let {ϕn}Nn=1 be an orthonormal system in L2
α(R+). If Vα

g (ϕn) is

εn-time-frequency concentrated on Σ, then

(4.2)

N∑

n=1

(1− εn) 6 ‖g‖−2
L2

α
να(Σ).

P r o o f. Since

N∑

n=1

〈PΣVα
g (ϕn),Vα

g (ϕn)〉να =

N∑

n=1

〈PgPΣVα
g (ϕn), PgVα

g (ϕn)〉να

=

N∑

n=1

〈Lg,ΣVα
g (ϕn),Vα

g (ϕn)〉να

6 tr(Lg,Σ) = ‖PΣPg‖2HS ,

by (3.9) we obtain

(4.3)

N∑

n=1

〈PΣVα
g (ϕn),Vα

g (ϕn)〉να 6 να(Σ).

On the other hand, as

(4.4) 〈PΣVα
g (ϕn),Vα

g (ϕn)〉να = ‖g‖2L2
α
− 〈PΣcVα

g (ϕn),Vα
g (ϕn)〉να ,

by Cauchy-Schwartz inequality,

(4.5) 〈PΣVα
g (ϕn),Vα

g (ϕn)〉να > ‖g‖2L2
α
(1− εn).

Therefore from (4.3), we deduce the desired result. �
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Now we will fix g to be a nonzero window function in L2
α(R+) with ‖g‖L2

α
= 1.

Thus, from Theorem 4.2 we can obtain immediately the following corollary.

Corollary 4.3. Let 0 < ε < 1 and let {ϕn}Nn=1 be an orthonormal system in

L2
α(R+). If Vα

g (ϕn) is ε-time-frequency concentrated on Br, then

N 6
r4α+4

22α+2Γ(2α+ 3)

1

1− ε
.

Therefore if the generalized dispersion of the elements of an orthonormal sequence

is uniformly bounded, then this sequence is finite and we can give a bound on the

number of elements in that sequence. More precisely:

Corollary 4.4. Fix A > 0. Let {ϕn}Nn=1 be an orthonormal sequence in L2
α(R+)

that satisfies ‖|(x, ξ)|sVα
g (ϕn)‖1/s

L2
α(R+×R̂+)

6 A. Then there exists a positive con-

stant cs,α such that

N 6 cs,αA
4α+4.

P r o o f. Since

(4.6) ‖PBc
r
Vα
g (ϕn)‖L2

α(R+×R̂+)
6 r−s‖|(x, ξ)|sVα

g (ϕn)‖L2
α(R+×R̂+)

,

if we choose r = 41/sA, we deduce that ϕn is 1/4-time-frequency concentrated on Br.

Therefore from Corollary 4.3 we obtain the desired result. �

Our proof of inequality (1.8) formulated in the Introduction is based on the fol-

lowing lemma.

Lemma 4.5. Let {ϕn}∞n=1 be an orthonormal sequence in L2
α(R+). Then there

exists j0 ∈ Z such that

(4.7) ∀n > 1, max
(
‖xsVα

g (ϕn)‖L2
α(R+×R̂+), ‖ξsVα

g (ϕn)‖L2
α(R+×R̂+)

)
> 2s(j0−1).

P r o o f. Direct consequence of Heisenberg-type inequality (1.7). �

Theorem 4.6. Let {ϕn}∞n=1 be an orthonormal sequence in L2
α(R+). Then for

every N > 1,

(4.8)
N∑

n=1

(
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

+ ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

)
> cs,αN

1+s/(2α+2).
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P r o o f. For each j ∈ Z we define

Pj =
{
n : max

(
‖xsVα

g (ϕn)‖1/s
L2

α(R+×R̂+)
, ‖ξsVα

g (ϕn)‖1/s
L2

α(R+×R̂+)

)
∈ [2j−1, 2j)

}
.

First, by inequality (4.7), we see that Pj is empty for all j < j0. Moreover, using the

fact that

(4.9) |a+ b|s 6 2s(|a|s + |b|s),

we obtain that for each n ∈ Pj , j > j0,

(4.10) ‖|(x, ξ)|sVα
g (ϕn)‖1/s

L2
α(R+×R̂+)

6 2(s+1)/2s+j .

Therefore, by Corollary 4.4, Pj is finite for all j > j0, and if we denote by Nj the

number of elements in Pj , then

Nj 6 cs,α 4j(2α+2).

Therefore, for every m > j0 the number of elements in
m⋃

j=j0

Pj is less than

cs,α 4m(2α+2), where cs,α is a constant that does not depend on m.

Now if N > 2cs,α4
j0(2α+2), then we can choose an integer m > j0 such that

2cs,α4
(m−1)(2α+2) < N 6 2cs,α 4m(2α+2).

Therefore at least half of {1, . . . , N} does not belong to
m−1⋃
j=j0

Pj and we obtain

N∑

n=1

(
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

+ ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

)

>
N

2
4s(m−1)

>
1

2

N

4s

( N

2cs,α

)s/(2α+2)

=
(2cs,α)

−s/(2α+2)

21+2s
N1+s/(2α+2).

Finally, if N 6 2cs,α4
j0(2α+2), then from Lemma 4.5 we have

N∑

n=1

(
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

+ ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

)

> N4s(j0−1)
>

N

4s

( N

2cs,α

)s/(2α+2)

=
(2cs,α)

−s/(2α+2)

4s
N1+s/(2α+2).

This completes the proof. �
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The last dispersion inequality implies in particular that there does not exist an

infinite sequence {ϕn}∞n=1 in L2
α(R+) such that the two sequences

{‖xsVα
g (ϕn)‖L2

α(R+×R̂+)}∞n=1 and {‖ξsVα
g (ϕn)‖L2

α(R+×R̂+)}∞n=1

are bounded. More precisely:

Corollary 4.7. Let {ϕn}∞n=1 be an orthonormal sequence in L2
α(R+). Then for

every N > 1,

(4.11) sup
16n6N

{
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

, ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

}
> cs,αN

s/(2α+2).

In particular,

(4.12) sup
n

(
‖xsVα

g (ϕn)‖2L2
α(R+×R̂+)

+ ‖ξsVα
g (ϕn)‖2L2

α(R+×R̂+)

)
= ∞.
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