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Abstract. This paper deals with the existence of positive ω-periodic solutions for the
neutral functional differential equation with multiple delays

(u(t)− cu(t− δ))′ + a(t)u(t) = f(t, u(t− τ1), . . . , u(t− τn)).

The essential inequality conditions on the existence of positive periodic solutions are ob-
tained. These inequality conditions concern with the relations of c and the coefficient func-
tion a(t), and the nonlinearity f(t, x1, . . . , xn). Our discussion is based on the perturbation
method of positive operator and fixed point index theory in cones.

Keywords: neutral delay differential equation; positive periodic solution; cone; fixed point
index
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1. Introduction

In the paper, we discuss the existence of positive ω-periodic solutions of the neutral

functional differential equation with multiple delays

(1.1) (u(t)− cu(t− δ))′ + a(t)u(t) = f(t, u(t− τ1), . . . , u(t− τn)),

where δ > 0, |c| < 1 are constants, a ∈ C(R, (0,∞)) is a ω-periodic function, f : R×

[0,∞)n → [0,∞) is a continuous function which is ω-periodic in t, and τ1, τ2, . . . , τn
are positive constants.
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The delay differential equation has been proposed in many fields such as biology,

physicochemistry, mechanics and economics, see [4], [7]. The existence problems of

periodic solutions have attracted many authors’ attention, see [2], [5], [6], [8]–[12]

and references therein. In some practice models, only positive periodic solutions

are significant. In [11], [12], the authors obtained the existence of positive periodic

solutions for some delay first-order differential equations in the form of

(1.2) u′(t) + a(t)u(t) = f(t, u(t− τ(t)))

by employing the fixed point theorem of cone mapping, and one well-known result

is that if the nonlinearity f(t, x) has superlinear or sublinear growth on x, the equa-

tion (1.2) has at least one positive ω-periodic solution.

Among the previous works, there are few ones concerned with neutral differential

equations. In [10], by means of the continuation theorem of coincidence degree prin-

ciple, Serra discussed the existence of periodic solutions for the neutral differential

equation

(1.3) (u(t)− cu(t− δ))′ = f(t, u(t)).

In [8], Luo, Wang and Shen employed the Krasnoselskii fixed point theorem on the

sum of a compact operator and a contractive operator to obtain the existence of

positive periodic solutions for the neutral functional differential equation with delay

(1.4) (u(t)− cu(t− τ(t)))′ + a(t)u(t) = f(t, u(t− τ(t))).

Motivated by the papers mentioned above, we study the existence of positive

periodic solutions of the neutral functional differential equation (1.1) with multiple

delays. We aim to obtain the essential conditions on the existence of positive periodic

solutions of equation (1.1) via the theory of the fixed point index in cones. Specially,

we hope the well-known existence result for equation (1.2) holds for equation (1.1).

We will show that if c and a(t) satisfy the following restriction condition (H), the

result is true for equation (1.1).

For convenience, we introduce the notations

(1.5) a = min
06t6ω

a(t), a = max
06t6ω

a(t), σ = exp

(

−2

∫ ω

0

a(r) dr

)

and make the following assumption:

(H) |c| <
σ

σ + 1
.
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Our main results are as follows:

Theorem 1.1. Let a ∈ C(R, (0,∞)) be a ω-periodic function, c satisfy assump-

tion (H), f ∈ C(R × [0,∞)n, [0,∞)) and f(t, x1, . . . , xn) be ω-periodic in t. If f

satisfies the conditions

(F1) there exist positive constants c1, . . . , cn satisfying c1 + . . .+ cn < a and η > 0

such that

f(t, x1, . . . , xn) 6 c1x1 + . . .+ cnxn

for t ∈ R and x1, . . . , xn ∈ [0, η];

(F2) there exist positive constants d1, . . . , dn satisfying d1 + . . .+ dn > a and H > 0

such that

f(t, x1, . . . , xn) > d1x1 + . . .+ dnxn

for t ∈ R and x1, . . . , xn > H ,

then equation (1.1) has at least one positive ω-periodic solution.

Theorem 1.2. Let a ∈ C(R, (0,∞)) be a ω-periodic function, c satisfy assump-

tion (H), f ∈ C(R × [0,∞)n, [0,∞)) and f(t, x1, . . . , xn) be ω-periodic in t. If f

satisfies the conditions

(F3) there exist positive constants d1, . . . , dn satisfying d1 + . . .+ dn > a and η > 0

such that

f(t, x1, . . . , xn) > d1x1 + . . .+ dnxn

for t ∈ R and x1, . . . , xn ∈ [0, η];

(F4) there exist positive constants c1, . . . , cn satisfying c1 + . . .+ cn < a and H > 0

such that

f(t, x1, . . . , xn) 6 c1x1 + . . .+ cnxn

for t ∈ R and x1, . . . , xn > H ,

then equation (1.1) has at least one positive ω-periodic solution.

In Theorem 1.1, conditions (F1) and (F2) allow f(t, x1, . . . , xn) to have superlinear

growth on x1, . . . , xn. For example,

f(t, x1, . . . , xn) = a1(t)x
2
1 + . . .+ an(t)x

2
n

satisfies (F1) and (F2), where a1(t), . . . , an(t) are positive and continuous ω-periodic

functions.
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In Theorem 1.2, conditions (F3) and (F4) allow f(t, x1, . . . , xn) to have sublinear

growth on x1, . . . , xn. For example,

f(t, x1, . . . , xn) = b1(t)
√

|x1|+ . . .+ bn(t)
√

|xn|

satisfies (F3) and (F4), where b1(t), . . . , bn(t) are positive and continuous ω-periodic

functions.

Conditions (F1) and (F2) in Theorem 1.1 and conditions (F3) and (F4) in Theo-

rem 1.2 are optimal for the existence of positive periodic solutions of equation (1.1).

This fact can be shown from the neutral differential equation with linear delays

(1.6) (u(t)− cu(t− δ))′ + a0u(t) = a1u(t− τ1) + . . .+ anu(t− τn) + h(t),

where a0, a1, . . . , an are positive constants, h ∈ C(R) is a positive ω-periodic function.

If a1, . . . , an satisfy

(1.7) a1 + a2 + . . .+ an = a0,

equation (1.6) has no positive ω-periodic solutions. In fact, if equation (1.6) has a

positive ω-periodic solution, integrating the equation on [0, ω] and using the peri-

odicity of u(t), we can obtain that
∫ ω

0
h(t) dt = 0, which contradicts the positivity

of h(t). Hence, equation (1.6) has no positive ω-periodic solution. For a(t) ≡ a0 and

f(t, x1, . . . , xn) = a1x1 + . . .+ anxn + h(t), if condition (1.7) holds, conditions (F1)

and (F2) in Theorem 1.1 and conditions (F3) and (F4) in Theorem 1.2 are not

satisfied. From this we see that the conditions in Theorems 1.1–1.2 are optimal.

The proofs of Theorems 1.1 and 1.2 are based on the fixed point index theory in

cones, which will be given in Section 3. Some preliminaries to discuss equation (1.1)

are presented in Section 2.

2. Preliminaries

Let Cω(R) denote the Banach space of all continuous ω-periodic functions u(t) with

norm ‖u‖C = max
06t6ω

|u(t)|. Let C1
ω(R) be the continuous differentiable ω-periodic

function space and C+
ω (R) be the cone of all nonnegative functions in Cω(R).

In order to discuss the existence of positive ω-periodic solutions of equation (1.1),

we need to build the existence and uniqueness results of ω-periodic solutions for the

corresponding linear neutral differential equation

(2.1) (u(t)− cu(t− δ))′ + a(t)u(t) = h(t), t ∈ R,
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where h ∈ Cω(R). For this we consider the linear differential equation

(2.2) u′(t) + 2a(t)u(t) = h(t), t ∈ R.

By a direct calculation, we easily prove that for every h ∈ Cω(R) equation (2.2) has

a unique ω-periodic solution given by

(2.3) u(t) =

∫ t+ω

t

G(t, s)h(s) ds := Th(t),

where

(2.4) G(t, s) =
exp

(

2
∫ s

t
a(r) dr

)

exp
(

2
∫ ω

0
a(r) dr

)

− 1
.

Clearly, the operator T : C(R) → C(R) defined by (2.3) is a completely continuous

linear operator.

Define a subcone K0 of C
+
ω (R) in Cω(R) by

(2.5) K0 = {u ∈ Cω(R) : u(t) > σ‖u‖C , t ∈ R}.

Lemma 2.1. For every h ∈ C+
ω (R), the ω-periodic solution of equation (2.2),

u = Th ∈ K0. Namely, T (C
+
ω (R)) ⊂ K0.

P r o o f. By the expression (2.4) of the Green function G(t, s),

(2.6) G := max{G(t, s) : t ∈ R, t 6 s 6 t+ ω} =
exp

(

2
∫ ω

0
a(r) dr

)

exp
(

2
∫ ω

0
a(r) dr

)

− 1
,

G := min{G(t, s) : t ∈ R, t 6 s 6 t+ ω} =
1

exp
(

2
∫ ω

0
a(r) dr

)

− 1
.

Let h ∈ C+
ω (R) and u = Th. For every t ∈ R, from (2.3) it follows that

u(t) =

∫ t+ω

t

G(t, s)h(s) ds 6 G

∫ t+ω

t

h(s) ds = G

∫ ω

0

h(s) ds,

and therefore,

‖u‖C 6 G

∫ ω

0

h(s) ds.

Noting that G/G = σ, by (2.3) we obtain that

u(t) =

∫ t+ω

t

G(t, s)h(s) ds > G

∫ t+ω

t

h(s) ds = G

∫ ω

0

h(s) ds > σ‖u‖C .

Hence, Th = u ∈ K0. �
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Let A : Cω(R) → Cω(R) be the linear bounded operator defined by

(2.7) Au(t) = u(t)− cu(t− δ), t ∈ R, u ∈ Cω(R).

We easily verify the following lemma:

Lemma 2.2. If |c| < 1, then A has a bounded inverse operator A−1 :

Cω(R) → Cω(R), which is given by

(2.8) A−1v(t) =

∞
∑

j=0

cjv(t− jδ), v ∈ Cω(R),

and its norm satisfies ‖A−1‖ 6 1/(1− |c|).

Let v = Au. Then equation (2.1) becomes

(2.9) v′(t) + a(t)A−1v(t) = h(t), t ∈ R.

From (2.8) we easily verify that if v ∈ C1
ω(R), then A−1v ∈ C1

ω(R) and (A−1v)′ =

A−1v′. Hence, u ∈ C1
ω(R) is a ω-periodic solution of equation (2.1) if and only if

v = Au ∈ C1
ω(R) is a ω-periodic solution of equation (2.9).

Lemma 2.3. If |c| < 1

2
, then for every h ∈ Cω(R), equation (2.9) has a unique

ω-periodic solution v ∈ C1
ω(R). Furthermore, for h ∈ C+

ω (R), the solution v ∈ K0

when |c| < σ/(σ + 1).

P r o o f. Rewrite equation (2.9) to the form of

(2.10) v′(t) + 2a(t)v(t) = Bv(t) + h(t), t ∈ R,

where B : Cω(R) → Cω(R) is a linear bounded operator defined by

(2.11) Bv(t) = 2a(t)v(t)− a(t)A−1v(t)

= a(t)v(t) + a(t)(I −A−1)v(t)

= a(t)v(t) − ca(t)A−1v(t− δ), t ∈ R.

From (2.10) it is easy to see that the ω-periodic solution problem of equation (2.9)

is equivalent to the operator equation in Banach space Cω(R)

(2.12) (I − TB)v = Th,

16



where T : Cω(R) → Cω(R) is the ω-periodic solution operator of equation (2.2)

given by (2.3), I is the identity operator in Cω(R). We prove that the norm of TB

in L(Cω(R), Cω(R)) satisfies ‖TB‖ < 1.

For every v ∈ Cω(R), by the definition of B we have

|Bv(t)| = |a(t)v(t) − ca(t)A−1v(t− δ)|

6 a(t)‖v‖C + |c|a(t)‖A−1v‖C 6

(

1 +
|c|

1− |c|

)

‖v‖Ca(t).

By this and the definition (2.3) of T and the positivity of G(t, s), we have

|TBv(t)| 6

∫ t+ω

t

G(t, s)|Bv(s)| ds

6

(

1 +
|c|

1− |c|

)

‖v‖C

∫ t

t−ω

G(t, s)a(s) ds =
1

2

(

1 +
|c|

1− |c|

)

‖v‖C ,

from which it follows that ‖TBv‖C 6 1

2
(1 + |c|/(1− |c|))‖v‖C . Therefore,

(2.13) ‖TB‖ 6
1

2

(

1 +
|c|

1− |c|

)

.

Since |c| < 1

2
, it follows that

1

2

(

1 +
|c|

1− |c|

)

< 1.

By this inequality and (2.13), we obtain that ‖TB‖ < 1.

Thus, I − TB has a bounded inverse operator given by the series

(I − TB)−1 =

∞
∑

n=0

(TB)n.

Consequently, equation (2.12), equivalently equation (2.9), has a unique ω-periodic

solution

(2.14) v = (I − TB)−1Th =

∞
∑

n=0

(TB)nTh.

For h ∈ C+
ω (R), let w = Th. By Lemma 2.1, w ∈ K0. Hence we have

Bw(t) = a(t)w(t) − ca(t)A−1w(t − δ)

> a(t)w(t) − |c|a(t)‖A−1w‖C

> a(t)σ‖w‖C − a(t)|c|‖A−1w‖C

> a(t)
(

σ −
|c|

1− |c|

)

‖w‖C .
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Hence, when |c| < σ/(σ + 1), Bw(t) > 0 for every t ∈ R. Namely, Bw ∈ C+
ω (R).

By Lemma 2.1, (TB)w = T (Bw) ∈ K0. Using the inductive method we easily prove

that (TB)nw ∈ K0 for every n ∈ N. Thus according to (2.14), the unique ω-periodic

solution of equation (2.9) is

v =

∞
∑

n=0

(TB)nTh =

∞
∑

n=0

(TB)nw ∈ K0.

This completes the proof of Lemma 2.3. �

Let c satisfy assumption (H). Choose a positive constant α as

(2.15) α =







σ(1 − |c|), if c > 0,

σ − |c|

1 + |c|
, if c < 0,

and define another cone K in Cω(R) by

(2.16) K = {u ∈ Cω(R) : u(t) > α‖u‖C , t ∈ R}.

Lemma 2.4. If c satisfies assumption (H), then for every h ∈ Cω(R), equa-

tion (2.1) has a unique ω-periodic solution u := Sh ∈ C1
ω(R). Moreover, S :

Cω(R) → Cω(R) is a completely continuous linear operator, and Sh ∈ K when

h ∈ C+
ω (R).

P r o o f. Let h ∈ Cω(R). By assumption (H) and Lemma 2.3, equation (2.9) has

a unique ω-periodic solution v ∈ C1
ω(R) given by (2.14). Hence

(2.17) u = A−1v = A−1(I − TB)−1Th := Sh

is a unique ω-periodic solution of equation (2.1), where

(2.18) S = A−1(I − TB)−1T

is the corresponding ω-periodic solution operator. In (2.18), since

(I − TB)−1T =

∞
∑

n=0

(TB)nT = T

(

I + B

( ∞
∑

n=0

(TB)nT

))

,

from the complete continuity of operator T : Cω(R) → Cω(R) and boundedness

of operator I + B
( ∞
∑

n=0

(TB)nT
)

: Cω(R) → Cω(R), it follows that (I − TB)−1T :

Cω(R) → Cω(R) is a completely continuous linear operator. Combining this with
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the fact that A−1 : Cω(R) → Cω(R) is a bounded linear operator, we see that S =

A−1(I − TB)−1T : Cω(R) → Cω(R) is completely continuous.

Let h ∈ C+
ω (R) and u = Sh. By Lemma 2.3, equation (2.9) has a unique ω-periodic

solution v ∈ K0. By (2.17), u = A−1v.

If c > 0, by Lemma 2.2 and the definition of cone K0, we have

u(t) = A−1v(t) =
∞
∑

j=0

cjv(t− jδ) > v(t) > σ‖v‖C = σ‖Au‖C

> σ‖A−1‖−1‖u‖C = σ(1 − |c|)‖u‖C = α‖u‖C.

If c < 0, by Lemma 2.2 and the definition of cone K0, we have

u(t) = A−1v(t) =

∞
∑

j=0

cjv(t− jδ)

=

∞
∑

j=0

|c|2jv(t− 2jδ)−

∞
∑

j=0

|c|2j+1v(t− (2j + 1)δ)

>

∞
∑

j=0

|c|2jσ‖v‖C −

∞
∑

j=0

|c|2j+1‖v‖C

=
σ − |c|

1− |c|2
‖v‖C =

σ − |c|

1− |c|2
‖Au‖C

>
σ − |c|

1− |c|2
‖A−1‖−1‖u‖C =

σ − |c|

1 + |c|
‖u‖C = α‖u‖c.

Hence Sh = u ∈ K. �

Let f ∈ C(R× [0,∞)n, [0,∞)). Now we consider the nonlinear equation (1.1). For

every u ∈ K, set

(2.19) F (u)(t) := f(t, u(t− τ1), . . . , u(t− τn)), t ∈ R.

Then F : K → C+
ω (R) is continuous. Define a mapping Q : K → K by

(2.20) Q(u) = S(F (u)), u ∈ K.

By the definition of operator S, the positive ω-periodic solution of equation (1.1) is

equivalent to the nontrivial fixed point of Q. By Lemma 2.4, we have the following

statement:

Lemma 2.5. Q : K → K is a completely continuous mapping.

19



We will find the nonzero fixed point of Q by using the fixed point index theory in

cones. The following two lemmas from [1], [3] are needed in our argument.

Lemma 2.6. Let E be a Banach space, Ω be a bounded open subset of E with

θ ∈ Ω, Q : K ∩ Ω → K a completely continuous mapping. If λQ(u) 6= u for every

u ∈ K ∩ ∂Ω and 0 < λ 6 1, then the fixed point index i(Q,K ∩Ω,K) = 1.

Lemma 2.7. Let E be a Banach space, Ω be a bounded open subset of E and

Q : K ∩ Ω → K a completely continuous mapping. If there exists an e ∈ K \ {θ}

such that u−Q(u) 6= µe for every u ∈ K ∩ ∂Ω and µ > 0, then the fixed point index

i(Q,K ∩ Ω,K) = 0.

In the next section, we will use Lemma 2.6 and Lemma 2.7 to prove Theorem 1.1

and Theorem 1.2.

3. Proofs of main results

P r o o f of Theorem 1.1. Choose E = Cω(R). Let K ⊂ E be the closed convex

cone defined by (2.16) and Q : K → K be the operator defined by (2.20). Then

the positive ω-periodic solution of equation (1.1) is equivalent to the nontrivial fixed

point of Q. Set

(3.1) Ω1 = {u ∈ Cω(R) : ‖u‖C < r}, Ω2 = {u ∈ Cω(R) : ‖u‖C < R},

where 0 < r < R < ∞. We show that the operatorQ has a fixed point inK∩(Ω2\Ω1)

when r is small enough and R large enough.

Let r ∈ (0, η), where η is the positive constant in condition (F1). We prove

that Q satisfies the condition of Lemma 2.6 in K ∩ ∂Ω1, namely λQu 6= u for every

u ∈ K∩∂Ω1 and 0 < λ 6 1. In fact, if there exist u0 ∈ K∩∂Ω1 and 0 < λ0 6 1 such

that λ0Qu0 = u0, then by the definition of Q and Lemma 2.4, u0 ∈ C1
ω(R) satisfies

the delay differential equation

(3.2) (u0(t)− cu0(t− δ))′ + a(t)u0(t) = λ0f(t, u0(t− τ1), . . . , u0(t− τn)), t ∈ R.

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

(3.3) 0 6 u0(t− τk) 6 ‖u0‖C = r < η, k = 1, . . . , n, t ∈ R.

Hence from condition (F1) it follows that

f(t, u0(t− τ1), . . . , u0(t− τn)) 6 c1u0(t− τ1) + . . .+ cnu0(t− τn), t ∈ R.
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By this and (3.2), we obtain that

(u0(t)− cu0(t− δ))′ + a(t)u0(t) 6 c1u0(t− τ1) + . . .+ cnu0(t− τn), t ∈ R.

Integrating both sides of this inequality from 0 to ω and using the periodicity of u0,

we have
∫ ω

0

a(t)u0(t) dt 6 c1

∫ ω

0

u0(t− τ1) dt+ . . .+ cn

∫ ω

0

u0(t− τn) dt

= (c1 + . . .+ cn)

∫ ω

0

u0(t) dt.

From this it follows that

(3.4) a

∫ ω

0

u0(t) dt 6

∫ ω

0

a(t)u0(t) dt 6 (c1 + . . .+ cn)

∫ ω

0

u0(t) dt.

By the definition of cone K,
∫ ω

0
u0(t) dt > α‖u0‖C · ω > 0. From (3.4) it follows

that a 6 c1 + . . .+ cn, which contradicts the assumption in condition (F1). Hence Q

satisfies the condition of Lemma 2.6 in K ∩ ∂Ω1. By Lemma 2.6, we have

(3.5) i(Q,K ∩ Ω1,K) = 1.

Next, choose R > max{H/α, η}, where H is the positive constant in condi-

tion (F2), and let e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show that Q satisfies the

condition of Lemma 2.7 in K ∩∂Ω2, namely u−Qu 6= µe for every u ∈ K ∩∂Ω2 and

µ > 0. In fact, if there exist u1 ∈ K ∩ ∂Ω2 and µ1 > 0 such that u1 − Qu1 = µ1e,

since u1 − µ1e = Qu1, by definition of Q and Lemma 2.4, u1 ∈ C1
ω(R) satisfies the

differential equation

(3.6) (u1(t)− cu1(t− δ))′ + a(t)(u1(t)− µ1)

= f(t, u1(t− τ1), . . . , u1(t− τn)), t ∈ R.

Since u1 ∈ K ∩ ∂Ω2, by the definition of K, we have

(3.7) u1(t− τk) > α‖u1‖C > H, t ∈ R, k = 1, . . . , n.

From this and condition (F2), it follows that

f(t, u1(t− τ1), . . . , u1(t− τn)) > d1u1(t− τ1) + . . .+ dnun(t− τn), t ∈ I.

By this inequality and (3.6), we have

(u1(t)− cu1(t− δ))′ + a(t)(u1(t)− µ1) > d1u1(t− τ1) + . . .+ dnu1(t− τn), t ∈ I.

21



Integrating this inequality on [0, ω] and using the periodicity of u1, we have

∫ ω

0

a(t)(u1(t)− µ1) dt > d1

∫ ω

0

u1(t− τ1) dt+ . . .+ dn

∫ ω

0

u1(t− τn) dt

= (d1 + . . .+ dn)

∫ ω

0

u1(t) dt.

Consequently,

(3.8) a

∫ ω

0

u1(t) dt >

∫ ω

0

a(t)u1(t) dt >

∫ ω

0

a(t)(u1(t)− µ1) dt

> (d1 + . . .+ dn)

∫ ω

0

u1(t) dt.

Since
∫ ω

0
u1(t) dt > α‖u1‖C · ω > 0, from this inequality it follows that a >

d1 + . . . + dn, which contradicts the assumption in condition (F2). This means

that Q satisfies the condition of Lemma 2.7 in K ∩ ∂Ω2. By Lemma 2.7,

(3.9) i(Q,K ∩ Ω2,K) = 0.

Now by the additivity of fixed point index, (3.5) and (3.9) we have

i(Q,K ∩ (Ω2 \ Ω1),K) = i(Q,K ∩Ω2,K)− i(Q,K ∩ Ω1,K) = −1.

Hence Q has a fixed point in K ∩ (Ω2 \ Ω1), which is a positive ω-periodic solution

of equation (1.1). �

P r o o f of Theorem 1.2. Let Ω1,Ω2 ⊂ Cω(R) be defined by (3.1). We prove that

the operator Q defined by (2.20) has a fixed point in K ∩ (Ω2 \ Ω1) if r is small

enough and R large enough.

Let r ∈ (0, η), where η is the positive constant in condition (F3), and choose

e(t) ≡ 1. We prove that Q satisfies the condition of Lemma 2.7 in K ∩ ∂Ω1, namely

u−Qu 6= µe for every u ∈ K ∩ ∂Ω1 and µ > 0. In fact, if there exist u0 ∈ K ∩ ∂Ω1

and µ0 > 0 such that u0 −Qu0 = µ0e, since u0 − µ0e = Qu0, by definition of Q and

Lemma 2.4, u0 ∈ C1
ω(R) satisfies the differential equation

(3.10) (u0(t)−cu0(t−δ))′+a(t)(u0(t)−µ0) = f(t, u0(t−τ1), . . . , u0(t−τn)), t ∈ R.

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, u0 satisfies (3.3). From (3.3)

and condition (F3) it follows that

f(t, u0(t− τ1), . . . , u0(t− τn)) > d1u0(t− τ1) + . . .+ dnu0(t− τn), t ∈ R.

22



From this and (3.10), it follows that

(u0(t)− cu0(t− δ))′ + a(t)(u0(t)− µ0) > d1u0(t− τ1) + . . .+ dnu0(t− τn), t ∈ R.

Integrating this inequality on [0, ω] and using the periodicity of u0(t), we have that

∫ ω

0

a(t)(u0(t)− µ0) dt > d1

∫ ω

0

u0(t− τ1) dt+ . . .+ dn

∫ ω

0

u0(t− τn) dt

= (d1 + . . .+ dn)

∫ ω

0

u0(t) dt.

From this we obtain that

(3.11) a

∫ ω

0

u0(t) dt >

∫ ω

0

a(t)u0(t) dt >

∫ ω

0

a(t)(u0(t)− µ0) dt

> (d1 + . . .+ dn)

∫ ω

0

u0(t) ds.

Since
∫ ω

0
u0(t) dt > α‖u0‖C · ω > 0, from the inequality (3.11) it follows that a >

d1 + . . . + dn, which contradicts the assumption in (F3). Hence, Q satisfies the

condition of Lemma 2.7 in K ∩ ∂Ω1. By Lemma 2.7, we have

(3.12) i(Q,K ∩ Ω1,K) = 0.

Then, choosing R > max{H/α, η}, we show that Q satisfies the condition of

Lemma 2.6 in K ∩ ∂Ω2, namely λQu 6= u for every u ∈ K ∩ ∂Ω2 and 0 < λ 6 1. In

fact, if there exist u1 ∈ K ∩ ∂Ω2 and 0 < λ1 6 1 such that λ1Qu1 = u1, then by the

definition of Q and Lemma 2.4, u1 ∈ C1
ω(R) satisfies the differential equation

(3.13) (u1(t)− cu1(t− δ))′ + a(t)u1(t) = λ1f(t, u1(t− τ1), . . . , u1(t− τn)), t ∈ R.

Since u1 ∈ K ∩ ∂Ω2, by the definition of K, u1 satisfies (3.7). From (3.7) and

condition (F4), it follows that

f(t, u1(t− τ1), . . . , u1(t− τn)) 6 c1u1(t− τ1) + . . .+ cnu1(t− τn), t ∈ R.

By this and (3.13), we have that

(3.14) (u1(t)− cu1(t− δ))′ + a(t)u1(t) 6 c1u1(t− τ1) + . . .+ cnu1(t− τn), t ∈ R.

Integrating this inequality on [0, ω] and using the periodicity of u1(t), we have that

∫ ω

0

a(t)u1(t) dt 6 c1

∫ ω

0

u1(t− τ1) dt+ . . .+ cn

∫ ω

0

u1(t− τn) dt

= (c1 + . . .+ cn)

∫ ω

0

u1(t) dt.

23



From this we obtain that

(3.15) a

∫ ω

0

u1(t) dt 6

∫ ω

0

a(t)u1(t) dt 6 (c1 + . . .+ cn)

∫ ω

0

u1(t) dt.

Since
∫ ω

0
u1(t) dt > α‖u0‖C · ω > 0, from the inequality (3.15) it follows that a 6

c1 + . . .+ cn, which contradicts the assumption in condition (F4). Hence, Q satisfies

the condition of Lemma 2.6 in K ∩ ∂Ω1. By Lemma 2.6, we have

(3.16) i(Q,K ∩ Ω2,K) = 1.

Now, from (3.12) and (3.16) it follows that

i(Q,K ∩ (Ω2 \ Ω1),K) = i(Q,K ∩ Ω2,K)− i(Q,K ∩ Ω1,K) = 1.

Hence Q has a fixed point in K ∩ (Ω2 \ Ω1), which is a positive ω-periodic solution

of equation (1.1). �
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