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CONTROLLING THE STOCHASTIC SENSITIVITY
IN THERMOCHEMICAL SYSTEMS
UNDER INCOMPLETE INFORMATION

Irina Bashkirtseva

Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the
thermochemical model of flow reactor are studied. It is revealed that the underlying reason
of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of
stabilization of the excitable equilibrium regimes is investigated. We develop the control ap-
proach using feedback regulators which reduce the stochastic sensitivity and keep the randomly
forced system near the stable equilibrium. We consider also a case when the information about
system state is incomplete. Our new mathematical technique is applied to the stabilization of
operating modes in the flow chemical reactors forced by random disturbances.

Keywords: stabilization, stochastic sensitivity, flow reactor, incomplete information

Classification: 60H10, 93E20

1. INTRODUCTION

The variety and complexity of the dynamic regimes in real processes is related to their
nonlinearity and stochasticity. Interplay of these factors can cause unexpected phenom-
ena which have no analogues in the initial deterministic models, such as noise-induced
transitions [11], stochastic resonance [8, 2], noise-induced complexity [21, 23], stochastic
excitability [15], etc. These complex phenomena are observed in various models of neural
activity, lasers, population dynamics, and electronics. Recently, mathematical models of
flow thermochemical reactors with a wide variety of nonlinear dynamic regimes attracted
attention of researchers [12, 13].

Traditionally, a deterministic stability of the equilibrium mode is considered as a con-
dition of the proper operation of the chemical reactor. However, such stability can be
insufficient, especially in nonlinear stochastic systems. In excitable systems, even weak
noise can destroy a stable operating mode, and cause unacceptable stochastic oscilla-
tions. In the study of the probabilistic mechanisms of the noise-induced phenomena, the
stochastic sensitivity analysis [5, 16] can be a useful tool. It was shown that the noise-
induced large-amplitude oscillations and stochastic transformations are a consequence
of the high stochastic sensitivity of initial deterministic attractors. To ensure a proper
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operating mode in such excitable systems, it is important to develop adequate control
procedures.

Control problems of nonlinear stochastic systems attract attention of many researchers
(see, for instance, [3, 9, 10, 14, 18, 20, 22] and bibliography therein). A theory of the
control based on the stochastic sensitivity synthesis was developed in [4, 6].

In control procedures, feedback regulators are frequently used. These regulators form
a control input as a function of the system states. However, in practice, the available
information on the current system state usually is not complete. So, for nonlinear
stochastic systems, a development of the control theory with incomplete information is a
subject of a high importance [17]. A problem of the synthesis of the stochastic sensitivity
in the case of incomplete information when the observations of the system states contain
random errors was studied in [7]. In the present paper, we consider a problem of the
synthesis of the stochastic sensitivity in the case of incomplete information when only
some coordinates of the system state are observable.

This problem is solved in Section 2 for the general randomly forced system. A de-
sign of the feedback static regulator providing the required stochastic sensitivity of the
equilibrium is reduced to the solution of the corresponding matrix equation. Here, an at-
tainability of the required sensitivity is discussed, and explicit formulas for the regulator
parameters are derived.

The aim of the current paper is to show how this new mathematical technique can
be applied to the solution of the important engineering problem of the stabilization of
operating modes in the flow chemical reactors forced by random disturbances. Here,
we consider a conceptual dynamic model of the flow reactor proposed by Volter and
Salnikov [19].

In Section 3, an influence of the random noise on this model is studied in different
mono- and bistability parametric zones. In the bistability zone where the system exhibits
a coexistence of the equilibrium and limit cycle, noise generates an intermittency of
small- and large-amplitude oscillations. A stochastic excitability in a monostability
zone of stable equilibria is demonstrated. It is shown that the reason of this excitability
is in the high level of the stochastic sensitivity of the equilibrium.

In Section 4, for the stabilization of the equilibrium mode in stochastic flow reactor,
a general mathematical approach from Section 2 is applied. It is shown how to synthe-
size the appropriate regulator which reduces the stochastic sensitivity and suppresses
unaccepted large-amplitude stochastic oscillations in the randomly forced flow reactor.
Cases of complete and incomplete information about system states are covered.

2. CONTROLLING THE STOCHASTIC SENSITIVITY

Consider a general stochastic system with control

ẋ = f(x, u) + εσ(x)ξ(t), (1)

where x is an n-dimensional state, u is an l-dimensional control, f(x, u) is an n-vector-
function, ξ(t) is an q-dimensional standard Gaussian process with parameters Eξ(t) = 0,
Eξ(t)ξ>(τ) = δ(t−τ)I ( I is the identity matrix), and ε is the noise intensity. The n×q-
matrix-function σ(x) characterizes a dependence of random disturbances on the system
state.
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It is supposed that the unforced and uncontrolled system (1) (with ε = 0, u = 0) has
an equilibrium x̄. The stability of x̄ is undetermined.

For the synthesis of the control input, one needs some information about states x of
system (1). In the ideal case, we know all states exactly. But in practice, the available
information on the current state x(t) is usually incomplete.

In the present paper, we consider a case that the measurement m-vector y(t) is
connected with the state x(t) by the following relation:

y(t) = g(x(t)).

In this case, the following static regulator of the fixed structure will be considered:

u = K(y − ȳ), ȳ = g(x̄). (2)

Here, K is a constant l ×m-matrix.
Denote by K a set of matrices K which provide an exponential stability of the equi-

librium x̄ for the corresponding closed-loop deterministic system

ẋ = f(x,K(g(x)− g(x̄))) (3)

in some neighbourhood of x̄.
For deviations v(t) = x(t) − x̄ of states x(t) of system (3) from the equilibrium x̄,

consider the following first approximation system:

v̇ = (F +BKC)v, F =
∂f

∂x
(x̄, 0), B =

∂f

∂u
(x̄, 0), C =

∂g

∂x
(x̄). (4)

So, the set K is defined as

K = {K| Reλi(F +BKC) < 0}.

Here, λi(F + BKC) are the eigenvalues of the matrix F + BKC. It is supposed that
the set K is not empty.

Consider now the corresponding closed-loop stochastic system

ẋ = f(x,K(g(x)− g(x̄))) + εσ(x)ξ(t). (5)

The vector z(t) = ∂xε(t)
∂ε

∣∣∣
ε=0

of the sensitivity of the solution xε(t) of the stochastic

system (5) satisfies the following system

ż = (F +BKC)z +Gξ(t), G = σ(x̄). (6)

For the covariance matrix V (t) = cov(z(t), z(t)), one can write the equation

V̇ = (F +BKC)V + V (F +BKC)> + S, S = GG>. (7)

For any K ∈ K, this equation has a unique stable stationary solution W satisfying the
following algebraic equation

(F +BKC)W +W (F +BKC)> + S = 0. (8)
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For non-singular noises (detS 6= 0), the solution W of equation (8) is positive definite.
The matrix W is called a stochastic sensitivity matrix of the equilibrium x̄. For small
noise, this matrix allows us to find the first approximation of the covariance matrix of
the stationary distributed solutions x̄ε(t) of system (5):

cov(x̄ε(t), x̄ε(t)) ≈ ε2W.

Thus, the control of the dispersion of random states around the equilibrium x̄ can be
reduced to a synthesis of the assigned stochastic sensitivity matrix W by the appropriate
regulator (2).

For any K ∈ K, the regulator (2) provides an exponential stability of the equilibrium
x̄ for the deterministic system (3), and forms the corresponding stochastic sensitivity
matrix WK of this equilibrium in the stochastic system (5).

Denote by M a set of symmetric and positive definite n×n-matrices. For the assigned
matrix W ∈ M, it is necessary to find a matrix K ∈ K guaranteeing the equality
WK = W, where WK is a solution of equation (8).

Note that not all matrices of the set M are attainable. The element W ∈M is said
to be attainable if the equality WK = W is true for some K ∈ K. The attainability set

W = {W ∈M | ∃K ∈ K WK = W}

consists of all attainable elements. We say that the equilibrium x̄ is completely stochas-
tic controllable if

∀W ∈M ∃ K ∈ K : WK ≡W.

So, the condition of the complete stochastic controllability of the equilibrium x̄ can be
written as W = M.

As a result, the problem of the synthesis of the assigned stochastic sensitivity matrix
W is reduced to the search of the matrix K satisfying the matrix equation

BKCW +WC>K>B> +H(W ) = 0, H(W ) = FW +WF> + S. (9)

Here, the following matrix analysis is needed. The equation (9) is equivalent to the
equation

BKC = (Q− FW − 0.5S)W−1, (10)

where Q is an arbitrary skew-symmetric n × n-matrix. Consider a case when matrices
B and C are quadratic and non-singular. Then for any W ∈ M, the solution of the
equation (10) can be found as

K = B−1 [Q− FW − 0.5S]W−1C−1. (11)

The fact that this matrix K is a solution of equation (9) can be verified by the direct
substitution of (11) into (9).

So, the regulator (2) with the feedback matrix (11) can synthesize any assigned
stochastic sensitivity matrix. This means that the equilibrium x̄ is completely stochastic
controllable.
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In the general case, the equation (10) can be unsolvable. Based on the pseudo-
inversion matrix technique [1], the following necessary and sufficient condition of the
solvability of (10) can be derived:

(I −BB+) [Q− FW − 0.5S]W−1 = 0, [Q− FW − 0.5S]W−1(I − C+C) = 0. (12)

Here, the sign ”+” means a pseudo-inversion.
If the equalities (12) are true, then the equation (10) has a solution

K = B+ [Q− FW − 0.5S]W−1C+. (13)

So, the equalities (12) define the attainability of the matrix W .
Further, we apply this theory to the stabilization of equilibrium mode of the stochas-

tically forced thermochemical system modeling the operation of the flow reactor.

1.578 1.58 1.582

0.2

0.3

a

y

Fig. 1. Bifurcation diagram of the deterministic system (14): stable

equilibria and cycles (solid lines), and unstable equilibria and cycles

(dashed lines).

3. STOCHASTIC EXCITABILITY IN THE MODEL OF THE FLOW REACTOR

Consider a kinetic model of the thermochemical reaction in the flow reactor [19] of ideal
mixing:

ẋ = −x exp
(
−1
y

)
+ l(a− x),

ẏ = x exp
(
−1
y

)
+m(b− y).

(14)

Here, the variable x is the concentration of the reagent, and y is a temperature inside
the reactor. Parameters a and b stand for the concentration and temperature at the
reactor inlet, and l, m are positive parameters.

Following [19] we fix l = 0.5,m = 0.25, b = 0.165. The system (14) has an equilib-
rium M(x̄(a), ȳ(a)). Consider how this system dynamics depends on the parameter a
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varying in the range 1.578 < a < 1.584. In this parametric zone, one can observe three
dynamic regimes. For a < a1 = 1.580079, the system is monostable with a single stable
equilibrium M ; for a1 < a < a2 = 1.582843, the system is bistable with coexisting equi-
librium and limit cycle; and for a > a2, the system is monostable with a limit cycle as
a single attractor. The critical point a1 marks the saddle-node bifurcation, and a2 cor-
responds to the subcritical Hopf bifurcation. In the bifurcation diagram (see Figure 1),
y-coordinates of attractors and repellers of system (14) are presented.

To study an impact of noise on the thermochemical processes in the reactor, we
consider the following stochastic model

ẋ = −x exp
(
−1
y

)
+ l(a− x) + ε1ξ1(t),

ẏ = x exp
(
−1
y

)
+m(b− y) + ε2ξ2(t).

(15)

Here, ξ1,2(t) are the standard Gaussian uncorrelated processes, and ε1,2 are the noise
intensities. In what follows, we put ε1 = ε2 = ε.

Consider how random forcing deforms deterministic dynamics of the system modelling
the equilibrium operation mode of the thermochemical process under consideration.

Bistability zone

First, consider the stochastic dynamics of system (15) in the bistability zone a1 < a <
a2 where the stable equilibrium M and limit cycle coexist. Their basins of attraction are
separated by the unstable cycle. Let the random trajectory starts from the equilibrium
M . For weak noise, random trajectories reside near the point M with small-amplitude
stochastic oscillations (see, i. e. time series for ε = 0.00003 in Figure 2a, blue color).
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Fig. 2. Time series y(t) of stochastic system (15) for a = 1.582:

a) with ε = 0.00003 (blue), ε = 0.0001 (green); b) with ε = 0.001.

When noise increases, the amplitude of stochastic oscillations increases too, and the
trajectory can cross the separatrix (unstable cycle) and fall into the basin of attraction
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of the limit cycle and continue oscillations near this cycle (see time series for ε = 0.0001
in Figure 2a, green color). As one can see, the system exhibits a transition from small- to
large-amplitude stochastic oscillations. Here, transitions from the basin of attraction of
the cycle to equilibrium are also possible. As a result, mixed-mode stochastic oscillations
are observed (see Figure 2b for ε = 0.001). Note that the frequency of such transitions
grows with increasing noise.
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Fig. 3. Phase trajectories and time series y(t) of stochastic system

for a) a = 1.55 with ε = 0.0005 (blue), ε = 0.003 (green); b) a = 1.58

with ε = 0.0001 (blue), ε = 0.0005 (green).

Thus, in the bistability zone, noise generates a new more complicated regime of
mixed-mode oscillations that can not be observed in the deterministic case. It is worth
noting that such noise-induced complexity is not connected with the bistability only. In
what follows we will consider the monostability zone where the stable equilibrium is a
single attractor. Despite the apparent simplicity of this case, noise can here essentially
complicate the system behaviour.

Excitability in the monostability zone
Consider now the stochastic dynamics of system (15) in the monostability zone a < a1

where the deterministic system (14) has the single attractor in a form of the stable
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equilibrium M . Peculiarities of the stochastic dynamics are shown in Figure 3 for two
values of the parameter a. Here, the random trajectories start from the equilibrium M .

a) 10
−4

10
−3

0.2

0.3

0.4

0.5

ε

y

b) 10
−4

10
−3

0.2

0.3

0.4

0.5

ε

y

Fig. 4. Random states of system for a) a = 1.55, b) a = 1.58.

First fix the value a = 1.55. Forced by a weak noise, these trajectories are localised
nearby the M , and exhibit small-amplitude stochastic oscillations (see phase trajectories
and time series for ε = 0.0005 in Figure 3a, blue color). As noise increases, the ampli-
tude of stochastic oscillations increases too, and the trajectory can falls into the zone
of the phase plane where large amplitude scrolls are observed (see phase trajectories
and time series for ε = 0.003 in Figure 3a, green color). As one can see, even in the
monostability zone a < a1, the stochastic system exhibits the intermittency of small-
and large-amplitude stochastic oscillations. The similar scenario of the transition from
unimodal small-amplitude stochastic oscillations (ε = 0.0001) to the the intermittency
regime (ε = 0.0005) is shown in Figure 3b for a = 1.58.

Such transitions from the unimodal regime to the bimodal one are shown in detail
in Figure 4 where random states versus noise intensity are plotted for a = 1.55 (a)
and a = 1.58 (b). As one can see, stochastic phenomena, shown here, are observed
for the very week noise. Moreover, the closer a to the bifurcation value a2 the smaller
critical value of the noise intensity corresponding to the onset of the generation of large-
amplitude stochastic oscillations. The underlying reason of these effects lies in the
high sensitivity of the equilibrium M to the random disturbances in the model under
consideration.

The stochastic sensitivity of the equilibrium is characterised by the matrix W (see
equation (8) with K = 0 in Section 2). For the equilibrium M(x̄, ȳ) of system (15), this
matrix is a solution of the equation

FW +WF> + S = 0, (16)

where

W =

[
w11 w12

w21 w22

]
, F =

[
f11 f12
f21 f22

]
, S =

[
1 0
0 1

]
,
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f11 = − exp
(
−1
ȳ

)
− l, f12 = −x̄ exp

(
−1
ȳ

)
1
ȳ2
,

f21 = exp
(
−1
ȳ

)
, f22 = x̄ exp

(
−1
ȳ

)
1
ȳ2
−m.

For a = 1.55, we have w11 = 4.62 · 102, w12 = w21 = −1.02 · 102, w2 = 3.4 · 101. For
a = 1.58, we have w11 = 1.1 · 104, w12 = w21 = −2.26 · 103, w2 = 5.21 · 102. Plots of the
functions w11(a) and w22(a) are shown in Figure 5.

1.55 1.56 1.57 1.58

10
1

10
2

10
3

10
4

10
5

w22

a2

a

w11

w

Fig. 5. Stochastic sensitivity of the equilibrium M .

As one can see, the stochastic sensitivity of the equilibrium unlimitedly grows as the
parameter a tends to a2.

In the next Section, we consider how in the system with regulator one can reduce a
stochastic sensitivity of the equilibrium and stabilize the normal operating mode with
acceptable small-amplitude oscillations around the equilibrium.

4. STABILIZATION OF THE STOCHASTIC FLOW REACTOR

Consider now the system (15) with additional control inputs:

ẋ = −x exp
(
−1
y

)
+ l(a− x) + u1 + ε1ξ1(t),

ẏ = x exp
(
−1
y

)
+m(b− y) + u2 + ε2ξ2(t).

(17)

In the case of complete information, when coordinates x, y of the system state are known
for any time exactly, to stabilize an operating mode of the stochastically forced reactor,
we will use the regulator

u1 = k11(x− x̄) + k12(y − ȳ), u2 = k21(x− x̄) + k22(y − ȳ). (18)
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In this case, from the formula (11), taking into account B = C = S = I, Q = 0, we
have

K = −F − 0.5W−1.

This formula gives the matrix K =
[
k11 k12

k21 k22

]
of the regulator (18) which provides

the assigned stochastic sensitivity matrix W .
Here, we restrict ourselves by the diagonal stochastic sensitivity matrices W =[
w 0
0 w

]
with any assigned w > 0. In this case,

k11 = −f11 −
1

2w
, k12 = −f12, k21 = −f21, k22 = −f22 −

1
2w

. (19)

For the equilibrium M , the regulator (18) with parameters (19) provides the stability and
constant stochastic sensitivity for any value of the parameter a. Results of the control
based on the synthesis of the stochastic sensitivity w = 10 are shown in Figure 6. Note
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Fig. 6. Time series of the stochastic system with ε = 0.001:

a) a = 1.58; b) a = 1.582; c) a = 1.583. The control is switched on at

t = 5000, the regulator provides w = 10.

that a decrease of the control parameter w allows us to decrease a dispersion of these
small-amplitude oscillations (compare time series in Figure 7 for w = 0.1 and w = 10).

Consider now the case of the incomplete information when the only coordinate x is
observable. Here, we use the following regulator:

u1 = k1(x− x̄), u2 = k2(x− x̄). (20)

In this case,

K =
[
k1

k2

]
, C = [ 1 0 ] , F +BKC =

[
f11 + k1 f12
f21 + k2 f22

]
.

The set K of the regulator (20) parameters which provide the exponential stability of
the equilibrium M is defined by the system of linear inequalities:

tr(F +BKC) = f11 + f22 + k1 < 0,
det(F +BKC) = f11f22 − f12f21 + f22k1 − f12k2 > 0.

(21)
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Fig. 7. Time series of the controlled stochastic system for a = 1.58,

ε = 0.001 with the regulator providing w = 0.1 (blue) and w = 10

(green).

−1 −0.5 0
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1
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k1

k2

Fig. 8. The stability domain K for a = 1.58.

For a = 1.58, the stability domain K is shown in Figure 8.
For any (k1, k2) ∈ K, elements wij(k1, k2) of the stochastic sensitivity matrix W (k1, k2)
are found from the system (8). Further, the problem of the reducing the sensitivity can
be solved by the standard descent procedures.

For example, for k1 = −0.5, k2 = 1 (see asterisk in Figure 8) we have

w11 = 1.317, w12 = −0.794, w22 = 5.735.

Remember, that for the system without control, we have

w11 = 1.1 · 104, w12 = −2.26 · 103, w2 = 5.21 · 102.

As one can see, the regulator (20) with k1 = −0.5, k2 = 1 essentially decreases the
stochastic sensitivity. Results of the numerical simulation of the system (17) with regu-
lator (20) are shown in Figure 9.
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Fig. 9. Phase trajectories and time series y(t) of stochastic system

for a = 1.58, ε = 0.001 without control (green), and with regulator

(20) with k1 = −0.5, k2 = 1 (blue).

It is worth noting that in the case of the incomplete information, the suggested control
approach also allows us to stabilize the equilibrium regime of the stochastic flow reactor
and suppress unwanted large-amplitude stochastic outbreaks.

CONCLUSION

Deterministic stability of the equilibrium is considered as a standard condition of the
proper operation of the various technical processes. However, there is a class of so-called
excitable systems in which such stability is insufficient, especially under the random dis-
turbances. In excitable systems, even weak noise can destroy a stable operating mode,
and cause unacceptable large-amplitude stochastic oscillations. In this paper, the math-
ematical details of the similar noise-induced excitability were considered on the example
of the simple conceptual thermochemical model of flow reactor. To prevent the equilib-
rium regime of this reactor from unacceptable large-amplitude stochastic oscillations, a
new control approach was suggested. A main point of this approach is to construct feed-
back regulators which reduce the stochastic sensitivity and keep the randomly forced
system near the stable equilibrium. Mathematically, the problem of the synthesis of
the assigned stochastic sensitivity for the equilibrium of the nonlinear randomly forced
system by feedback regulator under incomplete information was reduced to the solu-
tion of the corresponding quadratic matrix equations for regulator’s parameters. The
analysis of solvability of such equations with the help of the pseudo-inversion technique
was given. It was shown how this general mathematical approach can be constructively
applied to the stabilization of the excitable regime in the stochastic flow reactor.
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