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KYBERNET IKA — VOLUME 5 4 ( 2 0 1 8 ) , NUMBER 2 , PAGES 3 0 4 – 3 2 0

CONSENSUS SEEKING OF DELAYED HIGH-ORDER
MULTI-AGENT SYSTEMS WITH PREDICTOR-BASED
ALGORITHM

Cheng-Lin Liu and Fei Liu

This paper investigates the high-order consensus problem for the multi-agent systems with
agent’s dynamics described by high-order integrator, and adopts a general consensus algorithm
composed of the states’ coordination control. Under communication delay, consensus algorithm
in usual asynchronously-coupled form just can make the agents achieve a stationary consensus,
and sufficient consensus condition is obtained based on frequency-domain analysis. Besides,
a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring
agents’ states by a delay-related compensation part. In our proposed algorithm, a compensat-
ing delay is introduced to match the communication delay. Specially, the original high-order
consensus is regained when the compensating delay equals to the communication delay, but
cannot be achieved if the compensating delay is not equivalent to the communication delay.
Moreover, sufficient consensus convergence conditions are also obtained for the agents under our
predictor-based algorithm with different compensating delay. Numerical studies for multiple
quadrotors illustrate the correctness of our results.

Keywords: high-order multi-agent system, consensus, communication delay, predictor-
based consensus algorithm, multiple quadrotors

Classification: 93A14, 93C85

1. INTRODUCTION

Collective behavior caused by the distributed coordination control mechanism of multi-
ple autonomous agents has stimulated more and more researchers’ interests in various
fields, e. g., biology, physics, and engineering, etc [26]. As the simplest cooperative col-
lective behavior, consensus means that the outputs of several autonomous agents reach a
common value, and has attracted more and more attentions in recent years for its broad
applications in clock synchronization, sensor network, formation control of unmanned
systems, flocking and swarming, etc. So far, different consensus algorithms have been
proposed for multi-agent systems with agents’ dynamics modeled by single integrators
[19], double integrators [9], high-order integrators [5, 15, 20, 22, 23, 34, 40] and fractional-
order dynamics [35] respectively, and consensus criteria have been obtained for the agents
reaching asymptotic consensuses under fixed and switching interconnection topologies.
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Information transmission in a multi-agent network brings non-negligible communica-
tion delay between neighboring agents, and consensus algorithms subjected to communi-
cation delay are usually divided into synchronously-coupled and asynchronously-coupled
forms. In synchronously-coupled algorithm, self-delays introduced for each agent in the
coordination part equal the corresponding communication delays, while asynchronously-
coupled algorithm requires each agent to use its delayed state with the delay different
from the corresponding communication delay, or use its current state to compare with its
delayed neighboring agents’ states. Consensus convergence of synchronously-coupled al-
gorithm depends on the communication delay strictly for the multi-agent systems under
fixed [19, 29, 33, 37] or switched topologies [4, 6, 17, 24, 30, 32, 38]. With proper control
parameters, differently, the stationary consensus algorithms in asynchronously-coupled
form is convergent without any relationship to the communication delay value for the
first-order, second-order and high-order agents [10, 11, 12, 21, 27]. However, dynamical
consensus algorithm in asynchronously-coupled form just drives second-order or high-
order dynamic agents to reach the stationary consensus asymptotically [2, 14, 18, 25, 31],
and the consensus convergence is strictly dependent on the communication delay.

For the second-order multi-agent systems with dynamical consensus algorithm, some
compensation-based consensus algorithms, which are in the asynchronously-coupled
form accompanied with delayed state compensations, have been designed to regain the
original dynamical consensus [13, 16, 39]. Compared with usual synchronously-coupled
algorithm, interestingly, the compensation-based consensus algorithms in asynchronously-
coupled form tolerate higher communication delay [13]. Nevertheless, how to retrieve the
original dynamical consensus state of high-order multi-agent system with asynchronously-
coupled consensus algorithm has attracted little attention. For the high-order hetero-
geneous multi-agent systems, Tian and Zhang [25] modified the usual asynchronously-
coupled consensus algorithm by introducing self-delays to match the different communi-
cation delays, and necessary and sufficient consensus condition implied that high-order
consensus convergence did not require the self-delay of each agent to equal the corre-
sponding communication delay.

In this paper, a general consensus algorithm, which just consists of the state coordina-
tion control parts, is proposed to solve the high-order consensus problem of multi-agent
systems composed of high-order integrators. With communication delay, we adopt the
usual asynchronously-coupled consensus algorithm and construct a predictor-based form
via multiplying the neighbor’s delayed state by a compensating delay-related matrix.
Based on frequency-domain analysis, final consensus behaviors and consensus conver-
gence conditions are analyzed for usual asynchronously-coupled consensus algorithm and
our predictor-based consensus algorithm respectively. Under the predictor-based algo-
rithm with the compensating delay different from the communication delay, the agents
just achieve an asymptotic stationary consensus. Furthermore, our proposed algorithm
can drive the agents to reach the original high-order dynamical consensus asymptotically
if the compensating delay equals the communication delay.
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2. PROBLEM DESCRIPTION

2.1. High-order agents and interconnection topology

Investigate the high-order dynamic agents given by

ξ̇i0(t) = ξi1(t),

ξ̇i1(t) = ξi2(t),

... (1)

ξ̇i(l−1)(t) = ui(t), i = 1, 2, . . . , n,

where ξi = [ξi0, ξi1, . . . , ξi(l−1)]
T ∈ Rl and ui ∈ R are the state and input of the agent i

respectively. The system (1) can be expressed in a multi-variable form as

ξ̇i = Aξi + bui, i = 1, 2, . . . , n, (2)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
... · · ·

. . . 0
0 0 · · · 0 1
0 0 · · · 0

 , b =


0
0
...
0
1

 .

Usually, a weighted digraph can describe the interconnection structure of the multi-
agent network (2), in which agents correspond to the nodes and information flow cor-
responds to a directed edge. A digraph G = (V, E ,A) consists of a set of vertices V =
{1, . . . , n}, a set of edges E ⊆ V ×V and a weighted adjacency matrix A = [aij ] ∈ Rn×n
with aij ≥ 0. A finite index set I = {1, 2, . . . , n} represents the node indexes. A directed
edge from i to j in G is denoted by eij = (i, j) ∈ E . Assume aij > 0 ⇔ eij ∈ E and
aii = 0 for all i ∈ I. Ni = {j ∈ V : (i, j) ∈ E} expresses the set of node i’s neighbors.
The degree matrix is defined as D = diag{

∑n
j=1 aij , i = 1, 2, . . . , n}, and the Laplacian

matrix is defined as L = D −A.

In G, the node j is said to be reachable from the node i if there exists a directed path
from i to j. Otherwise, j is not reachable from i. A globally reachable node is defined
as the node which is reachable from every other node in the digraph.

Assumption 2.1. The interconnection topology of the multi-agent systems (2) has a
globally reachable node, and each node has at least one neighboring node.

Under Assumption 2.1, 0 is a simple eigenvalue of L, i. e., rank(L) = n− 1, and the
other eigenvalues all have positive real parts [8]. In this paper, the eigenvalues of D−1L
are denoted as λi, i = 1, . . . , n, and we assume λ1 = 0. According to Greshgorin disk
theorem, Re(λi) > 0 and |λi − 1| ≤ 1, i = 2, . . . , n hold from the definitions of D and L.
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2.2. Dynamical consensus algorithm

For high-order multi-agent systems (2), we are going to focus on the following consensus
algorithm without stabilization control part [22, 34]

ui =
1

di
K

∑
j∈Ni

aij(ξj − ξi), i ∈ I, (3)

where K = [κ0, κ1, . . . , κl−1] with κm > 0,m = 0, 1, . . . , l − 1, Ni is the set of agent
i’s neighbors, aij > 0, j ∈ Ni is the coupling weight corresponding to the adjacency
element of A in the digraph G = (V, E ,A), and di =

∑
j∈Ni aij . It is obvious that the

dynamical algorithm (3) is reasonable under Assumption 2.1.

With the algorithm (3), the agents (2) can converge to a lth-order consensus
defined as

lim
t→∞

(ξim(t)− ξjm(t)) = 0, i, j ∈ I, m = 0, 1, . . . , l − 1,

and

lim
t→∞

ξim(t) 6= 0, i ∈ I, m = 0, 1, . . . , l − 1.

Subjected to non-negligible communication delay, the algorithm (3) becomes

ui(t) =
1

di
K

∑
j∈Ni

aij(ξj(t− τ)− ξi(t)), i ∈ I, (4)

where τ > 0 is the communication delay.

Remark 2.2. Based on current literature [14, 18, 25, 31], the asynchronously-coupled
form (4) change the original lth-order consensus behavior of the high-order agents (2)
without communication delay, and may brings rigorous collective behaviors including
stationary consensus seeking, periodic synchronous oscillation, etc.

Inspired by the compensation-based algorithms in [13, 16, 39], we modify the consen-
sus algorithm (4) into a predictor-based form as follows

ui(t) =
1

di
K

∑
j∈Ni

aij(e
Aτ0ξj(t− τ)− ξi(t)), i ∈ I, (5)

where the constant τ0 > 0 named compensating delay matches the communication delay
τ , and the predictive factor eAτ0 is

eAτ0 =


1 τ0

1
2τ

2
0 · · · 1

(l−1)!τ
l−1
0

0 1 τ0 · · · 1
(l−2)!τ

l−2
0

...
...

. . .
. . .

...
0 0 · · · 1 τ0
0 0 · · · 0 1

 .
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Remark 2.3. For the general linear time-invariant system with input delay, predictor
feedback controllers have been extensively used since the system’s closed-loop response
is idealized as if there were no input delay [1], and the related results can be extended
to the linear multi-agent systems with input delay. Unlike the usual predictor feedback
controller, we simply introduce a predictor-based factor into the general asynchronously-
coupled consensus algorithm to obtain better delay robustness than the synchronously-
coupled consensus algorithm in this paper.

3. MAIN RESULTS

Firstly, we consider the consensus algorithm (3) without communication delay, and the
closed-loop form of the agents (2) driven by (3) is

ξ̇i = Aξi +
1

di
bK

∑
j∈Ni

aij(ξj − ξi), i ∈ I. (6)

The following consensus criterion is gained from some existing works [22, 34].

Theorem 3.1. (Ren et al. [22], Yu et al. [34]) Under Assumption 2.1, the multi-agent
system (6) achieves a lth-order consensus if and only if A − λibK,∀i ∈ {2, . . . , n} is
a Hurwitz matrix.

Now, we take the closed-loop form of the agents (2) and our proposed algorithm (5)
into account.

ξ̇i(t) = Aξi(t) +
1

di
bK

∑
j∈Ni

aij(e
Aτ0ξj(t− τ)− ξi(t)), i ∈ I. (7)

It is apparent that the system (7) with τ0 = 0 corresponds to the agents (2) with the
usual asynchronously-coupled consensus algorithm (4).

By taking the Laplace transforms of the above system, we get the characteristic
equation of the system (7) about ξ0(t) = [ξ10(t), ξ20(t), . . . , ξn0(t)]T as

det(slI −KeAτ0Γ(s)D−1Ae−sτ +KΓ(s)I) = 0, (8)

where Γ(s) = [1, s, . . . , sl−2, sl−1]T . The equation (8) is rewritten as

det(slI +KΓ(s)D−1L+ (KΓ(s)−KeAτ0Γ(s)e−sτ )D−1A) = 0,

which equals

n∏
i=1

(sl + λiKΓ(s) + (1− λi)(KΓ(s)−KeAτ0Γ(s)e−sτ )) = 0.

We investigate the roots of the following equation

sl + λiKΓ(s) + (1− λi)(KΓ(s)−KeAτ0Γ(s)e−sτ ) = 0 (9)

with i = 1, 2, . . . , n.
From the consensus analysis in [13], the final consensus behavior of agents (7) is

determined by the equation (9) with λ1 = 0, while the equation (9) with λi = 2, . . . , n
determines whether the agents (7) could achieve an asymptotic consensus.
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3.1. Final collective behavior under predictor-based algorithm

When λ1 = 0, the equation (9) becomes

sl +KΓ(s)−KeAτ0Γ(s)e−sτ = 0. (10)

By computing, we obtain

eAτ0Γ(s) =



1 + τ0s+ · · ·+ τ l−1
0

(l−1)!s
l−1

s+ τ0s
2 + · · ·+ τ l−2

0

(l−2)!s
l−1

...
sl−2 + τ0s

l−1

sl−1


, (11)

so the equation (10) is rewritten as

sl +K(s)



esτ − (1 + τ0s+ · · ·+ τ l−1
0

(l−1)!s
l−1)

esτ − (1 + τ0s+ · · ·+ τ l−2
0

(l−2)!s
l−2)

...
esτ − (1 + τ0s)

esτ − 1


e−sτ = 0, (12)

where K(s) = [κ0, κ1s, · · · , κl−2s
l−2, κl−1s

l−1].
Based on the Taylor series of esτ at s = 0, the equation (12) can be reformulated as

follows.

s(sl−1+K(s)



(τ − τ0) + · · ·+ τ l−1−τ l−1
0

(l−1)! sl−2 + 1
l!τ

lsl−1 + 1
(l+1)!τ

l+1sl + · · ·

(τ − τ0) + · · ·+ τ l−2−τ l−2
0

(l−2)! sl−3 + 1
(l−1)!τ

l−1sl−2 + 1
l!τ

lsl−1 + · · ·
...

(τ − τ0) + 1
2!τ

2s+ 1
3!τ

3s2 + · · ·
τ + 1

2!τ
2s+ · · ·


e−sτ ) = 0,

(13)

Remark 3.2. Obviously, the equation (13) has only one root at s = 0 when τ0 6= τ .
When τ0 = τ , the equation (13) becomes

sl(1 +K


1
l!τ

l + 1
(l+1)!τ

l+1s+ · · ·
1

(l−1)!τ
l−1 + 1

l!τ
ls+ · · ·

...
1
2!τ

2 + 1
3!τ

3s+ · · ·
τ + 1

2!τ
2s+ · · ·

 e−sτ ) = 0. (14)

Evidently, the above equation (14) has only l roots at s = 0 with τ > 0. It should be
pointed out that we just consider the case τ0 ≤ τ in our paper.
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Now, we present sufficient conditions, which are relatively conservative but easy to
calculate proper delay bounds numerically, for checking the final consensus behavior.

Proposition 3.3. With τ0 = 0 and κm > 0,m = 0, 1, . . . , l − 1, the roots of (10) all lie
on the open left half complex plane except for one root at s = 0, i. e., the agents (7)

just can converge to a stationary consensus asymptotically if possible, if (1−σ−e−jωτ )n(jω)
(jω)l+σn(jω)

does not enclose the point (−1, j0) with ω ∈ R except for ω = 0, where n(s) = KΓ(s) =
κ0 + κ1s+ · · ·+ κl−1s

l−1, and sl + σn(s) is Hurwitz for some σ ∈ C.

P r o o f . The equation (10) with τ0 = 0 is rewritten as

sl + n(s)(1− e−sτ ) = 0, (15)

which equals

1 +
(1− σ − e−sτ )n(s)

sl + σn(s)
= 0.

According to the above analysis, the equation (15) has one root at s = 0, so Proposition
3.3 holds in the light of the Nyquist stability criterion. �

In Proposition 3.3, the parameter σ is chosen arbitrarily to guarantee that sl +σn(s)
is Hurwitz. In addition, the analysis method for Proposition 3.3 can be applied into the
equation (10) with 0 < τ0 6= τ and τ0 = τ .

Proposition 3.4. The roots of (10) with 0 < τ0 6= τ and κm > 0, m = 0, 1, . . . , l −
1 all lie on the open left half complex plane except for one root at s = 0, i. e., the
agents (7) just can converge to a stationary consensus asymptotically if possible, if
(1−σ)n(jω)−(n(jω)+∆n(s))e−jωτ

(jω)l+σn(jω)
does not enclose the point (−1, j0) with ω ∈ R except for

ω = 0, where sl + σn(s) is Hurwitz for some σ ∈ C, and ∆n(s) = κ0τ0s + ( 1
2κ0τ

2
0 +

κ1τ0)s2 + · · ·+ ( 1
(l−1)!κ0τ

l−1
0 + 1

(l−2)!κ1τ
l−2
0 + · · ·+ κl−2τ0)sl−1.

P r o o f . From (11), the equation (10) with 0 < τ0 6= τ is reformulated as

sl + n(s)− (n(s) + ∆n(s))e−sτ = 0,

which equals

1 +
(1− σ)n(s)− (n(s) + ∆n(s))e−sτ

sl + σn(s)
= 0.

Proposition 3.4 holds obviously. �

Proposition 3.5. The roots of (10) with τ0 = τ and κm > 0,m = 0, 1, . . . , l−1 all lie on
the open left half complex plane except for l roots at s = 0, i. e., the agents (7) just can

achieve an asymptotic lth-order consensus if possible, if (1−σ)n(jω)−(n(jω)+∆n̂(jω))e−jωτ

(jω)l+σn(jω)

does not enclose the point (−1, j0) with ω ∈ R except for ω = 0, where sl + σn(s) is
Hurwitz for some σ ∈ C, and ∆n̂(s) = κ0τs + ( 1

2κ0τ
2 + κ1τ)s2 + · · · + ( 1

(l−1)!κ0τ
l−1 +

1
(l−2)!κ1τ

l−2 + · · ·+ κl−2τ)sl−1.
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Proposition 3.5 is easily proved analogous to Proposition 3.4.

Remark 3.6. To regain the original high-order consensus behavior under our predictor-
based algorithm, the compensating delay τ0 must equal the communication delay, so the
concrete value of communication delay should be known. When the delay value is
unknown, hence, we will get the estimation of the communication delay by designing an
adaptive delay estimator in our future work.

3.2. Consensus convergence criteria

In this section, we will mainly obtain the consensus criteria for the multi-agent systems
(7) by analyzing the roots of the equation (9) for i = 2, . . . , n.

The equation (9) is rewritten as

sl + λin(s) + (1− λi)(n(s)− (n(s) + ∆n(s))e−sτ ) = 0, i = 2, . . . , n. (16)

To continue the consensus analysis, we make the following assumption.

Assumption 3.7. Under Assumption 2.1, the sufficient and necessary consensus con-
ditions in Theorem 3.1 hold.

Theorem 3.8. With τ0 = 0, Proposition 3.3 and Assumption 3.7 hold. Define

Mi(s) = s
(1− λi)n(s)

sl + λin(s)
, i = 2, . . . , n. (17)

The agents (7) achieve an asymptotic stationary consensus, if

τ |Mi(jω)| < 1, i = 2, . . . , n (18)

holds for ω ∈ R.

P r o o f . Since Assumption 3.7 establishes, we obtain that the zeros of sl + λin(s), i =
2, . . . , n all lie on the open left half complex plane. With τ0 = 0, the equation (16)
equals

1 +Mi(s)
(1− e−sτ )

s
= 0, i = 2, . . . , n. (19)

Obviously, (1−e−sτ )
s and Mi(s) both have no poles in the open right half complex plane.

For maxω∈[0,∞) | e
−jωτ−1

jω | < τ , we achieve that

|Mi(jω)
(1− e−jωτ )

jω
| = |Mi(jω)|| (1− e−jωτ )

jω
|

< τ |Mi(jω)|
< 1

holds for ω ∈ R based on (18). Thus, the Nyquist curve Mi(jω) (1−e−jωτ )
jω does not enclose

the point (−1, j0), i. e., the roots of (19) all lie on the open left half complex plane. From
Proposition 3.3, thus, the agents in the system (7) converge to a stationary consensus
asymptotically. Theorem 3.8 is proved. �
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Theorem 3.9. With 0 < τ0 6= τ , Proposition 3.4 and Assumption 3.7 hold. Let

M̄i(s) =
(1− λi)sl

sl + λin(s)
, i = 2, . . . , n, (20)

and the agents (7) converge to a stationary consensus asymptotically, if

|n(jω)− (n(jω) + ∆n(jω))e−jωτ

(jω)l
| < 1

|M̄i(jω)|
, i = 2, . . . , n (21)

holds for ω ∈ R.

P r o o f . Analogous to the proof in Theorem 3.8, Assumption 3.7 ensures that the
polynomial sl + λin(s) has all its zeros on the open left half complex plane. More-
over, Proposition 3.4 guarantees that the agents (7) can only converge to a stationary
consensus asymptotically.

Next, reformulate the equation (16) as

1 + M̄i(s)
n(s)− (n(s) + ∆n(s))e−sτ

sl
= 0, i = 2, . . . , n. (22)

If the condition (21) holds, the roots of (22) all lie on the open left half complex plane.
Therefore, the agents in the system (7) converge to a stationary consensus asymptoti-
cally. Theorem 3.9 is proved. �

In addition, the results in Theorem 3.9 can be extended to the case τ0 = τ directly.

Theorem 3.10. With τ0 = τ , Proposition 3.5 and Assumption 3.7 hold. The agents
(7) achieve a lth-order consensus asymptotically, if

|n(jω)− (n(jω) + ∆n̂(jω))e−jωτ

(jω)l
| < 1

|M̄i(jω)|
, i = 2, . . . , n (23)

holds for ω ∈ R, where M̄i(s) is defined in (20).

Remark 3.11. Intuitively, introducing compensating delay reduces the communication
delay robustness from the conditions (21) and (23) in Theorem 3.9 and Theorem 3.10
respectively, i. e., the predictor-based consensus algorithm (5) tolerate smaller commu-
nication delay than the usual asynchronously-coupled algorithm (4), and we will demon-
strate this property in the following numerical studies.

Remark 3.12. In this paper, we just consider the predictor-based consensus algorithm
in continuous-time form (5), so we will make some further investigation on our proposed
algorithm with sampled date in the light of the consensus analysis of second-order multi-
agent systems with sampled data [36, 7].

4. NUMERICAL SIMULATION FOR QUADROTORS

In this section, we take the quadrotor (see Figure 1) as the investigation object, and
extend the above theoretical results to the consensus problem of multiple quadrotors
with communication delay.
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ϕ

θ φ

Fig. 1. Quadrotor aircraft.

The quadrotor’s dynamics are given by [3, 28]

ẍi = ui1(cosφi sin θi cosψi + sinφi sinψi),

ÿi = ui1(cosφi sin θi sinψi − sinφi cosψi), (24)

z̈i = ui1(cosφi cos θi)− g,
θ̈i = ui2, φ̈ = ui3, ψ̈i = ui4,

where xi, yi and zi denote the position of the quadrotor center of gravity in the earth-
frame, θi, φi and ψi are the pitch, roll and yaw angles, and g is the gravity constant. ui1
is the linear acceleration applied to the quadrotor in the z direction, ui2, ui3 and ui4 are
respectively the angular accelerations for θi, φi and ψi respectively.

The quadrotor model (24) can be simplified as follows [3]. To decouple the zi and
xi − yi axes, one can assume that in hovering condition, ui1 ≈ g in the xi and yi
directions. Furthermore, by assuming small angles θi and φi and a constant yaw angle
ψi (for instance ψi = 0), (24) can be rewritten as:

ξ̇ix = Aξix + bûi2, (25)

ξ̇iy = Aξiy + bûi3, (26)

in which

ξix = [xi, vix, θ̂i, ωiθ]
T , θ̂i = gθi, ûi2 = gui2,

ξiy = [yi, viy, φ̂i, ωiφ]T , φ̂i = −gφi, ûi3 = −gui3,

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , b =


0
0
0
1

 .
Thus, ûi2 and ûi3 are designed as the consensus algorithms (3), (4) and (5) respectively,
and we get ui2 = 1

g ûi2 and ui3 = − 1
g ûi3 from the definitions. Since the coordinates

of x and y have the same dynamics, we just investigate the consensus control of the
coordinate x in this section and the consensus problem of y can be studied in the same
way.
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Now, investigate a multi-agent network with six quadrotors given by (25) and the
interconnection topology is shown in Figure 2. Obviously, each agent has at least one
neighboring agent and the set of globally reachable nodes is {1,2,3,4,5,6}.

6

1

2

3

4

5

Fig. 2. Interconnection topology of six agents.

The values of coupling weights determine the eigenvalues of the Laplacian matrix, and
affect the consensus convergence rate according to Theorem 3.1 [22, 34]. In this paper,
we mainly study the delay effect on the consensus convergence, and donot analyze how
the different coupling weights and control parameters affect the consensus performance.
Then, we choose a set of positive weights as: a12 = 0.7, a13 = 0.3, a15 = 0.5, a23 =
0.3, a34 = 0.6, a41 = 0.4, a45 = 1.0, a56 = 0.2, a61 = 0.8, and we get the eigenvalues
of D−1L as λ1 = 0, λ2 = 1.7238, λ3 = 1.4506 + j0.7659, λ4 = 1.4506 − j0.7659, λ5 =
0.6853 + j0.6933, λ6 = 0.6853− j0.6933. For simplicity, the control parameter is chosen
as K = κ ∗ [1, 4, 6, 4]T , in which κ guarantees that the condition in Theorem 3.1 hold.

By choosing κ = 3, i. e., K = 3 ∗ [1, 4, 6, 4]T , the high-order agents converge to the
4rd-consensus asymptotically (see Figure 3).
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Fig. 3. Consensus convergence without communication delay.
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Under non-negligible communication delay, we get τ < 0.0684(s) from Proposition 3.3
and the condition (18) in Theorem 3.8 with K = 3 ∗ [1, 4, 6, 4]T . Then, the agents (25)
with asynchronously-coupled consensus algorithm (4) converge to a stationary consensus
(see Figure 4). By simulation, the largest communication delay that the system can
tolerate is τmax = 0.96(s).
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Fig. 4. Asynchronously-coupled consensus convergence with

communication delay.

Investigating the agents (25) under the predictor-based consensus algorithm (5) with
0 < τ0 6= τ , we choose τ0 = 0.05(s) and obtain τ < 0.0675(s) from Proposition 3.4 and
the condition (21) in Theorem 3.9 with K = 3∗ [1, 4, 6, 4]T , i. e., the agents (25) converge
to a stationary consensus asymptotically (see Figure 5). To show the effect of introducing
the delay-dependent compensation part, we consider the relationship between the com-
munication delay and the compensating delay. With the control gain K = 3 ∗ [1, 4, 6, 4],
the largest communication delay τ that the agents (25) with (5) can tolerate decreases
as the compensating delay increases by numerical simulation (see Figure 6), i. e., there
is a trade-off between the communication delay and the compensating delay.

For the agents (25) with the predictor-based consensus algorithm (5) with τ0 = τ ,
the bound of the communication delay is τ ∈ [0, 0.066](s) from Proposition 3.5 and the
condition (23) in Theorem 3.10, i. e., the agents (25) with (5) can reach the original
4rd-order consensus asymptotically (see Figure 7). To illustrate the effectiveness of our
proposed algorithm compared with that of synchronously-coupled consensus algorithm,
let K = κ ∗ [1, 4, 6, 4], and Figure 8 shows the largest communication delay that the
two algorithms can tolerate with different κ. As expected, predictor-based consensus
algorithm bear larger communication delay than synchronously-coupled consensus algo-
rithm.

It should be pointed out that the numerical simulation results above are just for the
linearized model of quadrotors (23), but our future research will focus on the practical
experiments of the coordination control of multiple quadrotors.
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Fig. 5. Stationary consensus convergence of predictor-based

algorithm with 0 < τ0 6= τ .
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5. CONCLUSION

For the multi-agent systems composed of high-order integrators, we adopt the normal dy-
namical consensus algorithm, which just consists of the state coordination control parts
without any state stabilization part, to deal with the high-order consensus problem.
Subjected to non-negligible communication delay, usual asynchronously-coupled con-
sensus algorithm is adopted, and a predictor-based consensus algorithm is constructed
via multiplying the neighbor’s delayed state by a compensating delay-related matrix.
By using frequency-domain analysis, the high-order agents, which are driven by usual
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Fig. 7. 4th-order consensus convergence of predictor-based algorithm

with τ0 = τ .
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Fig. 8. Delay bound with different κ.

asynchronously-coupled algorithm or the predictor-based algorithm with compensating
delay distinct from the communication delay, cannot achieve the original high-order
consensus behavior, but reach a stationary consensus asymptotically if possible. Fortu-
nately, the predictor-based algorithm with the compensating delay equalling the com-
munication delay can drive the high-order agents to regain the high-order consensus.
In addition, consensus convergence conditions are obtained for usual asynchronously-
coupled consensus algorithm and our predictor-based consensus algorithm respectively.
When the compensating delay is not equivalent to the communication delay, naturally,
there exists a trade-off between the compensating delay and the largest communica-
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tion delay that the agents can bear. Importantly, the predictor-based consensus algo-
rithm in asynchronously-coupled form can bear larger communication delay than the
synchronously-coupled consensus algorithm.
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