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Abstract. We use the genus theory to prove the existence and multiplicity of solutions
for the fractional p-Kirchhoff problem
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[

M

(
∫

Q

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)]p−1

(−∆)spu = λh(x, u) in Ω,

u = 0 on R
N \ Ω,

where Ω is an open bounded smooth domain of RN , p > 1, N > ps with s ∈ (0, 1) fixed,

Q = R
2N \ (CΩ×CΩ), λ > 0 is a numerical parameter, M and h are continuous functions.

Keywords: existence results; genus theory; fractional p-Kirchhoff problem

MSC 2010 : 35A15, 34A08, 35B38

1. Introduction

The purpose of this work is to investigate the existence and multiplicity of solutions

of the fractional p-Kirchhoff problem

(1)







−
[

M

(
∫

Q

|u(x)− u(y)|p
|x− y|N+ps

dxdy

)]p−1

(−∆)spu = λh(x, u) in Ω,

u = 0 on R
N \ Ω,

where p > 1, N > ps with s ∈ (0, 1) fixed, Ω ⊂ R
N is an open bounded smooth

domain, Q = R
2N \ (CΩ× CΩ) with CΩ = R

N \ Ω, λ > 0 is a numerical parameter

and M : R
+ → R

+, h : Ω × R → R are continuous functions that satisfy some
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suitable conditions which will be given later. Here (−∆)sp is the fractional p-Laplacian

operator which (up to normalization factors) can be defined as

(2) (−∆)spu(x) = 2 lim
ε→0+

∫

RN\B(x,ε)

|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|N+ps
dy

for x ∈ R
N , where B(x, ε) is the ball centered at x ∈ R

N with radius ε.

Fractional Laplacians have attracted much interest since they are connected with

different applications and sometimes from the mathematical point of view the non-

local character introduces difficulties that need some new approaches, see for in-

stance [11], [22] and the references therein. Also, these operators arise in many dif-

ferent contexts, such as optimization, finance, flame propagation, minimal surfaces

and water waves. For more details see [2].

The fractional Laplacian is nonlocal, that means that it does not act by pointwise

differentiation but by a global integral with respect to a singular kernel, which causes

the main difficulty when we want to study problems involving it. The fractional p-

Laplacian operator becomes the p-Laplacian when s = 1 and in this case, problem (1)

reduces to a p-Kirchhoff type problem, where different methods were proposed to

study the existence of solutions (see [1], [8], [12], [17] and references therein). A

natural question is whether or not the existence results obtained in this classical

context can be extended to the nonlocal framework of the fractional Laplacian type

operators. In this spirit, we study the existence of weak solutions for problem (1).

For more details about problems related to it see for example [4], [6], [23], [24]. To

the best of our knowledge, the literature for fractional Laplacian equations is still

expanding and rather young.

The natural space to look for solutions is the fractional Sobolev space W s,p
0 (Ω)

(see [11], [16]). To study problem (1), it is important to encode the boundary con-

dition u = 0 in R
N \Ω in the weak formulation. Inspired by [5], [13], [21], we define

the function space

X =
{

u : R
N → R, u is measurable, u|Ω ∈ Lp(Ω),

u(x)− u(y)

|x− y|N/p+s
∈ Lp(Q)

}

.

The space X is endowed with a norm defined as

(3) ‖u‖X = ‖u‖Lp(Ω) +

(
∫

Q

|u(x)− u(y)|p
|x− y|N+ps

dxdy

)1/p

and also

X0 = {u ∈ X : u = 0 a.e. in R
N \ Ω}
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with the norm

(4) ‖u‖ =

(
∫

Q

|u(x)− u(y)|p
|x− y|N+ps

dxdy

)1/p

,

which is equivalent to the norm in X (see [13], [16], [20]). We note that

C2
c (Ω) ⊆ X0

(see [16], Lemma 1.20). Thus, the spaces X and X0 are nonempty.

Denote by Lν(Ω) for ν ∈ [1, p⋆s] the Lebesgue space of measurable functions on Ω,

endowed with the norm |u|ν =
( ∫

Ω
|u(x)|ν dx

)1/ν
, which is denoted by |·|ν .

By [13], Lemma 2.4, the space (X0, ‖·‖) is a reflexive Banach space. These spaces
for the case p = 2 are studied in [20]. Note that in (3) and (4), the integrals can be

extended to all R2N since u = 0 a.e. in R
N \ Ω.

The aim of this work is to study the existence and multiplicity of solutions of the

p-Kirchhoff type problem in the fractional case, using the genus theory introduced by

Krasnoselskii (see [3], [15]). Inspired by the ideas given in [9], [10], where in [10] the

authors proved the existence and multiplicity of solutions to the following problem







−
[

M

(
∫

Ω

|∇u|p dx
)]p−1

∆pu = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded smooth domain of RN , N > p > 1, M and f are

continuous functions, we will use the same type of assumptions to prove the existence

and multiplicity of solutions to the p-Kirchhoff problem in the fractional case.

In view of our problem (1), we assume that:

(h1) |h(x, t)| 6 γ(x) + δ(x)|t|q−1 for any (x, t) ∈ Ω× R,

where γ ∈ Lν1(Ω), δ ∈ Lν2(Ω) for some positive numbers ν1, ν2, q with

ν1 >
p⋆s

p⋆s − 1
, ν2 >

p⋆s
p⋆s − q

, q ∈ [1, p⋆s),(h2)

h(x, t) = −h(x,−t) ∀ t ∈ R, ∀x ∈ Ω,

and

(h3) H(x, u) =

∫ u

0

h(x, t) dt > 0 for every (x, u) ∈ Ω× R \ {0}.

Also, we assume that M satisfies the following condition:
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There are positive constants A0, A1, B0, B1 and α, with α > q/p such that:

(M) A0 +A1t
α 6 [M(t)]p−1 6 B0 +B1t

α ∀ t > 0.

The contents of the paper are: In Section 2, we present preliminaries with the

main tools on fractional Sobolev spaces and genus theory. In Section 3, we introduce

a variational setting of the problem and we prove Theorem 1.1.

Our main result can be stated as follows.

Theorem 1.1. Assume that (h1), (h2), (h3) and (M) are satisfied. Then for any

k ∈ N there exists λk such that when λ > λk, problem (1) has at least k distinct

pairs of nontrivial solutions.

2. Preliminary results

In this section, we collect some information to be used in the paper. Suppose

that Ω is an open domain of RN , s ∈ (0, 1), p ∈ [1,∞). Define the fractional Sobolev

space W s,p(Ω) as

W s,p(Ω) =
{

u ∈ Lp(Ω):
|u(x)− u(y)|
|x− y|N/p+s

∈ Lp(Ω× Ω)
}

endowed with the norm

‖u‖W s,p(Ω) =

(
∫

Ω

|u|p dx+

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|N+ps

dxdy

)1/p

,

where the term

[u] =

(
∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|N+ps

dxdy

)1/p

is the so-called Gagliardo (semi) norm of u. W s,p
0 (Ω) denotes the closure of C∞

0 (Ω)

with respect to the norm ‖·‖W s,p(Ω). To study fractional Sobolev spaces in detail, we

refer to [16], [11]. We remark that the norm in (3) and the Gagliardo norm are not

the same because Ω×Ω is strictly contained in Q (this makes the classical fractional

Sobolev space approach not sufficient for studying the problem).

In order to prove our main result, we need the following propositions:

Proposition 2.1 ([16]). If Ω has a continuous boundary, then the embedding

X0 →֒ Lν(Ω) is compact for any ν ∈ [1, p⋆s) and continuous for ν = p⋆s.
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Proposition 2.2 ([16]). Let p ∈ [1,∞), s ∈ (0, 1) and let Ω be a smooth open set

in R
N . Then the embedding

W 1,p(Ω) →֒ W s,p(Ω)

is continuous. Hence, there exists a constant c(N, s, p) > 1 such that

‖u‖W s,p(Ω) 6 c(N, s, p)‖u‖W 1,p(Ω)

for any u ∈ W 1,p(Ω).

We also recall some preliminaries on genus theory (see for instance [14], [19]).

Definition 2.1. Let E be a real Banach space. Define the following set

Λ(E) = {A ⊂ E : A is closed, A 6= ∅, 0 /∈ A and −A = A}.

If A ∈ Λ(E), we call the genus of A the number γ(A) defined as

γ(A) = inf{n > 1: ∃ϕ : A → R
n \ {0} continuous and odd}.

For the sake of convenience, γ(∅) = 0. As always, if such an integer n does not

exist, we have γ(A) = ∞.

Theorem 2.1 ([14]). Let E = R
N and Ω be an open, bounded and symmetric

subset of E with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 2.1. Let S be the unit sphere in E. Then

(1) γ(SN−1) = N ,

(2) if E is of infinite dimension and separable, we have γ(S) = ∞.

Now, we list the essential properties of the genus that we will be using in the proof

of Theorem 1.1.

Proposition 2.3 ([14]). Let A, A1, A2 ∈ Λ. Then:

⊲ γ(A) > 0, γ(A) = 0 ⇔ A = ∅,
⊲ if A1 ⊂ A2, then γ(A1) 6 γ(A2),

⊲ γ(A1 ∪A2) 6 γ(A1) + γ(A2),

⊲ if there exists an odd map g ∈ C(A1, A2), then γ(A1) 6 γ(A2),

⊲ if there exists an odd homeomorphism g : A1 → A2, then γ(A1) = γ(A2).
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In order to prove the Palais-Smale compactness condition, we recall the following

definition:

Definition 2.2. Let E be a Banach space and let J ∈ C1(E,R). If a sequence

(un) ⊂ E for which (J(un)) is bounded and J
′(un) → 0 when n → ∞ in E′, possesses

a convergent subsequence, then we say that J satisfies the Palais-Smale condition

(denoted as (PS)).

We now state a theorem due to Clarke.

Theorem 2.2 ([7], [19]). Let J ∈ C1(E,R) be a functional satisfying the Palais-

Smale condition. Also suppose that:

⊲ J is bounded from below and even,

⊲ there is a compact set K ∈ Λ such that γ(K) = k and sup
u∈K

J(u) < J(0).

Then J possesses at least k pairs of distinct critical points and their corresponding

critical values are less than J(0).

3. Main result

In this section we will discuss the existence of weak solutions for problem (1).

Definition 3.1. We say that u is a weak solution of problem (1) if u satisfies

[M(‖u‖p)]p−1

∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(v(x) − v(y)) dxdy

= λ

∫

Ω

h(x, u)v dx

for all v ∈ X0.

Looking for a solution of problem (1) is equivalent to finding a critical point of

the associated Euler-Lagrange functional J : X0 → R defined as

J(u) =
1

p
M⋆(‖u‖p)− λ

∫

Ω

H(x, u(x)) dx,

where M⋆(t) =
∫ t

0 [M(τ)]p−1 dτ .

Note that J is a C1(X0,R) functional and

J ′(u)v = [M(‖u‖p)]p−1

∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
(v(x) − v(y)) dxdy

− λ

∫

Ω

h(x, u)v dx

for any v ∈ X0. Thus, critical points of J are weak solutions of (1).
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To prove Theorem 1.1, we will need the following two lemmas.

Lemma 3.1. J is bounded from below.

P r o o f. Using conditions (M), (h1), Proposition 2.1 and Hölder’s inequality, we

have

J(u) >
1

p

∫ ‖u‖p

0

(A0 +A1τ
α) dτ − λ

∫

Ω

γ(x)|u(x)| dx− λ

∫

Ω

δ(x)
|u(x)|q

q
dx

>
A0

p
‖u‖p + A1

p(α+ 1)
‖u‖p(α+1) − λ|γ|ν1 |u|ν′

1
− λ

q
|δ|ν2 |u|qqν′

2

>
A0

p
‖u‖p + A1

p(α+ 1)
‖u‖p(α+1) − λc1‖u‖ − λc2‖u‖q,

where c1 = c3|γ|ν1 , c2 = cq4|δ|ν2q−1 and c3, c4 are constants of continuous embeddings

ofX0 in L
ν(Ω) for all ν ∈ [1, p⋆s]. Since α > qp−1, we get p(α+1) > q, so J is bounded

from below. �

Lemma 3.2. J satisfies the (PS) condition.

P r o o f. Let (un) be a Palais-Smale sequence for J , that is (J(un)) is bounded

and J ′(un) → 0 when n → ∞ in X ′
0. Thus, there exists a positive constant c such

that

|J(un)| 6 c ∀n ∈ N.

Using the above lemma, we obtain

c > J(un) >
A0

p
‖un‖p +

A1

p(α+ 1)
‖un‖p(α+1) − λc1‖un‖ − λc2‖un‖q.

Since α > qp−1, we have p(α+ 1) > q and then we conclude that the sequence (un)

is bounded in X0. Thus, passing to a subsequence if necessary, still denoted by (un),

we have

(5) ‖un‖p → t0

and there exists u ∈ X0 such that

un ⇀ u in X0,(6)

un → u in Lν(Ω), ∀ ν ∈ [1, p⋆s),

un(x) → u(x) a.e. x ∈ Ω.
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If t0 = 0, then the proof is finished. If t0 > 0, then from (5) and since M is a

continuous function we get

(7) M(‖un‖p) → M(t0)

as n → ∞. Thus, for n sufficiently large, M(‖un‖p) > c > 0 for a constant c.

Let us now consider the sequence

Pn = J ′(un)un + λ

∫

Ω

h(x, un)un dx− J ′(un)u − λ

∫

Ω

h(x, un)u dx.

From (h1), the Lebesgue dominated convergence theorem and Proposition 2.1 we get

∫

Ω

h(x, un)un dx →
∫

Ω

h(x, u)u dx,

∫

Ω

h(x, un)u dx →
∫

Ω

h(x, u)u dx,

so we have that Pn → 0 as n → ∞ and it is easy to see that

Pn = [M(‖un‖p)]p−1‖un‖p

− [M(‖un‖p)]p−1

∫

Q

|un(x) − un(y)|p−2(un(x) − un(y))

|x− y|N+ps
(u(x)− u(y)) dxdy.

Also, we set

Sn = − [M(‖un‖p)]p−1

[
∫

Q

|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|N+ps
(un(x)− un(y)) dxdy

−
∫

Q

|u(x)− u(y)|p
|x− y|N+ps

dxdy

]

.

By the weak convergence of the sequence (un), we obtain that Sn → 0. Hence

Pn + Sn = [M(‖un‖p)]p−1

∫

Q

[ |un(x)− un(y)|p−2(un(x)− un(y))

|x− y|N+ps

− |u(x)− u(y)|p−2(u(x) − u(y))

|x− y|N+ps

]

((un(x) − un(y))− (u(x) − u(y))) dxdy.

Using the elementary inequalities from [18], we have for all x, y ∈ R,

(8) (|x|p−2x− |y|p−2y)(x− y) > cp|x− y|p if p > 2,
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or

(9) (|x|p−2x− |y|p−2y)(x− y) > cp
|x− y|2

(|x|+ |y|)2−p
if 2 > p > 1.

We distinguish two cases:

Case 1 : If p > 2, then using (8) we obtain

Pn + Sn > (c)p−1cp

∫

Q

|(un(x) − u(x))− (un(y)− u(y))|p
|x− y|N+ps

dxdy,

and then

Pn + Sn > (c)p−1cp‖un − u‖p.

Thus, we conclude that ‖un − u‖ → 0 as n → ∞ in X0.

Case 2 : If 1 < p < 2, then by (9) we get

(10) [(|x|p−2x− |y|p−2y)(x− y)]p/2 > c⋆p
|x− y|p

(|x|p + |y|p)(2−p)/2
,

where c⋆p = c
p/2
p /

√
2. Then using (10), we have

c⋆p|(un(x) − un(y))− (u(x) − u(y))|p(11)

6 (|un(x) − un(y)|p + |u(x) − u(y)|p)1−p/2

× [(|un(x)− un(y)|p−2(un(x)− un(y))− |u(x)− u(y)|p−2(u(x)− u(y)))

× ((un(x)− un(y))− (u(x)− u(y)))]p/2.

Dividing the two sides of inequality (11) by |x − y|N+ps and integrating on Q, we

obtain from Hölder’s inequality

c⋆p

∫

Q

|(un(x) − un(y))− (u(x) − u(y))|p
|x− y|N+ps

dxdy

6

[
∫

Q

( |un(x)− un(y)|p
|x− y|N+ps

+
|u(x)− u(y)|p
|x− y|N+ps

)

dxdy

](2−p)/2

×
[
∫

Q

( |un(x) − un(y)|p−2(un(x) − un(y))− |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps

)

×
(

(un(x)− un(y))− (u(x)− u(y))
)

dxdy

]p/2

.

Then

c⋆p̺
p/2
n ‖un − u‖p 6 [‖un‖p + ‖u‖p](2−p)/2(Pn + Sn)

p/2,
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where ̺n = [M(‖un‖p)]p−1. Since Pn + Sn → 0 as n → ∞ and using (7) and the

fact that [‖un‖p + ‖u‖p] is bounded, we obtain

‖un − u‖ → 0 as n → ∞.

In both cases we deduce that (un) satisfies the (PS) condition. �

P r o o f of Theorem 1.1. Using Lemma 1.24 in [16], we have

X0 = {u ∈ W s,p(RN ) : u = 0 a.e. in CΩ},

and set

S = {u ∈ W 1,p(RN ) : u = 0 a.e. in CΩ}.

Clearly, by Proposition 2.2, we have S ⊂ X0. Let {e1, e2, . . .} be a Schauder basis
of the space S and for each k ∈ N consider Xk the subspace of S generated by the k

vectors {e1, e2, . . . , ek}. For ̺ > 0 consider

Kk(̺) =

{

u ∈ Xk : ‖u‖2 =
k
∑

i=1

ξ2i = ̺2
}

.

It follows from hypothesis (h3) that
∫

ΩH(x, u(x)) dx > 0 for any u ∈ Kk(̺). Then

µk = inf
u∈Kk(̺)

∫

Ω

H(x, u(x)) dx

is strictly positive, because Kk(̺) is compact. Let

λk =
1

µk

(B0

p
̺p +

B1̺
p(α+1)

p(α+ 1)

)

,

and note λk > 0. Then using (M), for λ > λk and for any u ∈ Kk(̺) we have

J(u) 6
B0

p
̺p +

B1̺
p(α+1)

p(α+ 1)
− λµk <

B0

p
̺p +

B1̺
p(α+1)

p(α+ 1)
− λkµk = 0,

which implies that

sup
Kk(̺)

J(u) < 0 = J(0).

On the other hand, we consider the following odd homeomorphism χ : Kk(̺) → Sk−1

defined as χ(u) = (θ1, θ2, . . . , θk), where S
k−1 is the sphere in Rk. From Theorem 2.1

and Proposition 2.3, we conclude that γ(Kk(̺)) = k. Moreover, from (h2), J is even.

Thanks to Theorem 2.2, J has at least k ditinct pairs of nontrivial solutions. �
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E x am p l e 3.1. We consider Ω ⊂ R
N an open bounded smooth domain, s = 1

2 ,

N > 1, q ∈ [1, 2⋆1/2) and α > 1
2q. Set h(x, t) = δ(x)t|t|q−2 and M(t) = 1 + tα. Then

for any k ∈ N there exists λk such that when λ > λk, the problem
{

−(1 + ‖u‖2α)(−∆)1/2u = λδ(x)|u|q−2u in Ω,

u = 0 in R
N/Ω,

has at least k distinct pairs of nontrivial solutions.
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