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The universal Banach space with

a K-suppression unconditional basis

Taras Banakh, Joanna Garbulińska-Wȩgrzyn

Abstract. Using the technique of Fräıssé theory, for every constant K ≥ 1, we
construct a universal object UK in the class of Banach spaces possessing a nor-
malized K-suppression unconditional Schauder basis.

Keywords: 1-suppression unconditional Schauder basis; rational spaces; isometry

Classification: 46B04, 46M15, 46M40

1. Introduction

A Banach space X is complementably universal for a given class of Banach
spaces if X belongs to this class and every space from the class is isomorphic to
a complemented subspace of X .

In 1969 A. Pe lczyński in [11] constructed a complementably universal Banach
space for the class of Banach spaces with a Schauder basis. In 1971 M. I. Kadec in
[7] constructed a complementably universal Banach space for the class of spaces
with the bounded approximation property (BAP). In the same year A. Pe lczyński
in [12] showed that every Banach space with BAP is complemented in a space with
a basis. A. Pe lczyński and P. Wojtaszczyk in [13] constructed a universal Banach
space for the class of spaces with a finite-dimensional decomposition. Applying
Pe lczyński’s decomposition argument, see [10], one immediately concludes that all
three universal spaces are isomorphic. It is worth mentioning a negative result of
W. B. Johnson and A. Szankowski, see [6], saying that no separable Banach space
can be complementably universal for the class of all separable Banach spaces. In
[4] the second author constructed an isometric version of the Kadec-Pe lczyński-
Wojtaszczyk space. The universal Banach space from [4] was constructed using
the general categorical technique of Fräıssé limits, see [8]. This method was also
applied by W. Kubís and S. Solecki in [9] for constructing the Gurarĭı space, see [5],
which possesses the property of extension of almost isometries, which implies the
universality property that is stronger than the standard universality property of
the Banach spaces l∞ or C[0, 1].
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In this paper we apply the categorical method of Fräıssé limits for construct-
ing a universal space UK in the class of Banach spaces with a normalized K-
suppression unconditional Schauder basis. The universal space constructed by
this method has a nice property of extension of almost isometries, which is better
than just the standard universality, established in the papers of A. Pe lczyński,
see [11], and G. Schechtman, see [14], (who gave a short alternative construction
of universal space for class of Banach spaces with an unconditional bases). We
also prove that the universal space UK is isomorphic to the complementably uni-
versal space U for Banach spaces with unconditional basis, which was constructed
by A. Pe lczyński in [11].

2. Preliminaries

All Banach spaces considered in this paper are separable and over the field R

of real numbers.

2.1 Definitions. Let X be a Banach space with a Schauder basis (en)∞n=1 and
let (e∗n)∞n=1 be the corresponding sequence of coordinate functionals. The basis
(en)∞n=1 is called K-supression for a real constant K if for every finite subset F ⊂ N

the projection prF : X → X , prF : x 7→
∑

n∈F e
∗
n(x) · en, has norm ‖prF ‖ ≤ K.

It is well-known, see [1, 3.1.5], that each K-suppression Schauder basis (en)∞n=1

is unconditional. So for any x ∈ X and any permutation π of N the series
∑∞

n=1 e
∗
π(n)(x) · eπ(n) converges to x. This means that we can forget about the

ordering and think of a K-suppression basis of a Banach space as a subset ß ⊂ X
such that for some bijection e : N → ß the sequence (e(n))∞n=1 is a K-suppression
Schauder basis for X .

More precisely, by a normalized K-suppression basis for a Banach space X we
shall understand a subset ß ⊂ X for which there exists a family {e∗b}b∈ß ⊂ X of
continuous functionals such that

◦ ‖b‖ = 1 = e
∗
b (b) for any b ∈ ß;

◦ e
∗
b(b′) = 0 for every b ∈ ß and b′ ∈ ß \ {b};

◦ x =
∑

b∈ß e
∗
b(x) · b for every x ∈ X ;

◦ for any finite subset F ⊂ ß the projection prF : X → X , prF : x 7→
∑

b∈F e
∗
b(x) · b, has norm ‖prF ‖ ≤ K.

The equality x =
∑

b∈ß e
∗
b(x) · b in the third item means that for every ε > 0 there

exists a finite subset F ⊂ ß such that
∥

∥x −
∑

b∈E e
∗
b(x) · b

∥

∥ < ε for every finite
subset E ⊂ ß containing F .

By a K-based Banach space we shall understand a pair (X, ßX) consisting of
a Banach space X and a normalized K-suppression basis ßX for X . By a based

Banach space we understand a K-based Banach space for some K ≥ 1. We shall
say that a based Banach space (X, ßX) is a subspace of a based Banach space
(Y, ßY ) if X ⊆ Y and ßX = X ∩ ßY .

For a Banach space X by ‖·‖X we denote the norm of X and by BX :=
{x ∈ X : ‖x‖X ≤ 1} the closed unit ball of X .
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A finite dimensional based Banach space (X, ßX) is called rational if its unit
ball BX is a convex polyhedron spanned by finitely many vectors with rational
coordinates in the basis ßX . A based Banach space X is called rational if each
finite-dimensional based subspace of X is rational.

2.2 Categories. Let K be a category. For two objects A,B of the category K, by
K(A,B) we will denote the set of all K-morphisms from A to B. A subcategory of
K is a category L such that each object of L is an object of K and each morphism
of L is a morphism of K. Morphisms and isomorphisms of a category K will be
called K-morphisms and K-isomorphisms, respectively.

A subcategory L of a category K is full if each K-morphism between objects of
the category L is an L-morphism. A subcategory L of a category K is cofinal in
K if for every object A of K there exists a K-morphism f : A → B to an object B
of L.

A category K has the amalgamation property if for every objects A,B,C of K
and K-morphisms f : A → B and g : A → C there exist an object D of K and
K-morphisms f ′ : K → D and g′ : C → D such that f ′ ◦ f = g′ ◦ g.

In this paper we shall work in the category B, whose objects are based Banach
spaces and morphisms are linear continuous operators T : X → Y between based
Banach spaces (X, ßX) and (Y, ßY ) such that T (ßX) ⊆ ßY .

A morphism T : X → Y of the category B is called an isometry (or else an
isometry morphism) if ‖T (x)‖Y = ‖x‖X for any x ∈ X . By BI we denote the
category whose objects are based Banach spaces and morphisms are isometry
morphisms of based Banach spaces. The category BI is a subcategory of the
category B.

For any real number K ≥ 1 let BK (or BIK) be the category whose objects
are K-based Banach spaces and morphisms are (isometry) B-morphisms between
K-based Banach spaces. So, BK and BIK are full subcategories of the categories
B and BI, respectively.

By FIK we denote the full subcategory of BIK , whose objects are finite-
dimensional K-based Banach spaces, and by RIK the full subcategory of FIK
whose objects are rational finite-dimensional K-based Banach spaces. So, we have
the inclusions RIK ⊂ FIK ⊂ BIK of categories.

From now on we assume that K ≥ 1 is some fixed real number.

2.3 Amalgamation. In this section we prove that the categories FIK and RIK

have the amalgamation property.

Lemma 2.1 (Amalgamation lemma). Let X , Y , Z be finite-dimensional K-based

Banach spaces and j : Z → X , i : Z → Y be BI-morphisms. Then there exist

a finite-dimensional K-based Banach space W and BI-morphisms j′ : Y → W
and i′ : X → W such that the diagram

Y
j′
// W

Z
j
//

i

OO

X
i′
OO

is commutative.
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Moreover, if the K-based Banach spaces X , Y , Z are rational, then so is the

K-based Banach space W .

Proof: We shall prove this lemma in the special case when the isometries i, j
are identity inclusions; the general case is analogous but has more complicated
notation. Our assumptions on i, j ensure that Z = X ∩ Y and ßZ = ßX ∩ ßY ,
where ßX , ßY , ßZ are the normalized K-suppression bases of the K-based Banach
spaces X,Y, Z. It follows from ßZ = ßX ∩ ßY that the coordinate functionals of
the bases ßX and ßY agree on the intersection Z = X ∩ Y .

Consider the direct sum X ⊕ Y of the Banach spaces X , Y endowed with the
norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y . Let W = (X ⊕ Y )/∆ be the quotient space of
X ⊕ Y by the subspace ∆ = {(z,−z) : z ∈ Z}.

We define linear operators i′ : X → W and j′ : Y → W by i′(x) = (x, 0) + ∆
and j′(y) = (0, y) + ∆.

Let us show i′ and j′ are isometries. Indeed, for every x ∈ X

‖i′(x)‖W = dist((x, 0),∆) ≤ ‖(x, 0)‖ = ‖x‖X + ‖0‖Y = ‖x‖X .

On the other hand, for every z ∈ Z

‖(x, 0) − (z,−z)‖ = ‖(x− z, z)‖ = ‖x− z‖X + ‖z‖Y

= ‖x− z‖X + ‖z‖X ≥ ‖x− z + z‖X = ‖x‖X

and hence ‖x‖X ≤ infz∈Z ‖(x, 0) − (z,−z)‖ = ‖i′(x)‖W . Therefore ‖i′(x)‖W =
‖x‖X . Similarly, we can show that j′ is an isometry.

We shall identify X and Y with their images i′(X) and j′(Y ) in W . In this case
we can consider the union ßW := ßX ∪ ßY and can show that ßW is a normalized
Schauder basis for the (finite-dimensional) Banach space W . Let {e∗b}b∈ßW ⊂ W ∗

be the sequence of coordinate functionals of the basis ßW .
Let us show that the basis ßW is K-suppression. Given any subset D of ßW

we should prove that the projection prD : W → W , prD : w 7→
∑

b∈D e
∗
b(w)b, has

norm ‖prD‖ ≤ K.
Write the set D as D = DZ ∪DX ∪DY , where DZ = D ∩ ßZ = D ∩ ßX ∩ ßY ,

DX = D\ßY and DY = D\ßX .
Taking into account that the bases ßX and ßY are K-suppression, for any

w ∈ W we obtain:

‖prD(w)‖W = inf{‖x‖X + ‖y‖Y : x ∈ X, y ∈ Y, x + y = prD(w)}

= inf{‖prDX
(w) + z′‖X + ‖z′′ + prDY

(w)‖Y :

z′, z′′ ∈ Z, z′ + z′′ = prDZ
(w)}

≤ inf{‖prDX
(w) + z′‖X + ‖z′′ + prDY

(w)‖Y :

z′, z′′ ∈ prDZ
(Z), z′ + z′′ = prDZ

(w)}
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= inf{‖prDX
(w) + prDZ

(z′)‖X + ‖prDZ
(z′′) + prDY

(w)‖Y :

z′, z′′ ∈ Z, z′ + z′′ = prßZ (w)}

≤ K inf{‖prßX\ßZ (w) + z′‖X + ‖z′ + prßY \ßX (w)‖Y :

z′, z′′ ∈ Z, z′ + z′′ = prßZ (w)}

= K inf{‖x‖X + ‖y‖Y : x + y = w} = K‖w‖W .

If the finite-dimensional based Banach spaces X and Y are rational, then so is
their sum X ⊕ Y and so is the quotient space W of X ⊕ Y . �

3. B-universal based Banach spaces

Definition 3.1. A based Banach space U is defined to be B-universal if each
based Banach space X is B-isomorphic to a based subspace of U .

Definition 3.1 implies that each B-universal based Banach space is comple-
mentably universal for the class of Banach spaces with unconditional basis. Re-
formulating Pe lczyński’s uniqueness Theorem 3, see [11], we obtain the following
uniqueness result.

Theorem 3.2 (Pe lczyński). Any two B-universal based Banach spaces are

B-isomorphic.

A B-universal based Banach space U was constructed by A. Pe lczyński in [11].
In the following sections we shall apply the technique of Fräıssé limits to construct
many B-isomorphic copies of the Pe lczyński’s B-universal space U.

4. RIK-universal based Banach spaces

Definition 4.1. A based Banach space X is called RIK-universal if for any
rational finite-dimensional K-based Banach space A, any isometry morphism
f : Λ → X defined on a based subspace Λ of A can be extended to an isome-
try morphism f̄ : A → X .

We recall that RIK denotes the full subcategory of BI whose objects are
rational finite-dimensional K-based Banach spaces. Obviously, up to isomorphism
the category RIK contains countably many objects. By Lemma 2.1, the category
RIK has the amalgamation property. We now use the concepts from [8] for
constructing a “generic” sequence in RIK .

A sequence (Xn)n∈ω of objects of the category BIK is called a chain if each
K-based Banach space Xn is a subspace of the K-based Banach space Xn+1.

Definition 4.2. A chain of (Un)n∈ω of objects of the category RIK is Fräıssé if
for any n ∈ ω and RIK-morphism f : Un → Y there exist m > n and an RIK-
morphism g : Y → Um such that g ◦ f : Un → Um is the identity inclusion of Un

to Um.
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Definition 4.2 implies that the Fräıssé sequence {Un}n∈ω is cofinal in the cat-
egory RIK in the sense that each object A of the category FIK admits an RIK-
morphism A → Un for some n ∈ ω. This means that the category RIK is
countably cofinal.

The name “Fräıssé sequence”, as in [8], is motivated by the model-theoretic
theory of Fräıssé limits developed by R. Fräıssé in [3]. One of the results in [8] is
that every countably cofinal category with amalgamation has a Fräıssé sequence.
Applying this general result to our category RIK we get:

Theorem 4.3 ([8], Theorem 3.7). The category RIK has a Fräıssé sequence.

From now on, we fix a Fräıssé sequence (Un)n∈ω in RIK , which can be assumed
to be a chain of finite-dimensional rational K-based Banach spaces. Let UK be
the completion of the union

⋃

n∈ω Un and ßUK
=

⋃

n∈ω ßUn
⊂ UK .

Theorem 4.4. The pair (UK , ßUK
) is an RIK-universal rational K-based Banach

space.

Proof: First we show that ßUK
=

⋃

n∈ω ßUn
is a normalized K-suppression basis

for UK . The fact that ßUK
is an unconditional Schauder basis with suppression

constant K follows from Lemma 6.2 and Fact 6.3 in [2]. For each n the spaces Un

are K-based Banach spaces, so ‖b‖ = 1 for every b ∈ ßUn
. This shows that the

basis ßUK
is normalized.

The based Banach space (UK , ßUK
) is rational, since each finite-dimensional

based subspace of (UK , ßUK
) is contained in some rational based Banach space

(Un, ßUn
) and hence is rational.

The RIK-universality of the based Banach space (UK , ßUK
) follows from the

construction and [8, Proposition 3.1]. �

To shorten notation, let UK is the RIK-universal rational K-based Banach
space (UK , ßUK

). The following theorem shows that such space is unique up to
BI-isomorphism.

Theorem 4.5. Any RIK-universal rational K-based Banach spaces X , Y are

BI-isomorphic, which means that there exists a linear bijective isometry X → Y
preserving the bases of X and Y .

Proof: By definition, the rational K-based Banach spaces X,Y can be written as
the completions of unions

⋃

n∈ω Xn and
⋃

n∈ω Yn of chains (Xn)n∈ω and (Yn)n∈ω

of rational finite-dimensional K-based Banach spaces such that X0 = {0} and
Y0 = {0} are trivial K-based Banach spaces.

We define inductively sequences of RIK-morphisms {fk}k∈ω, {gk}k∈ω and in-
creasing number sequences (nk), (mk) such that the following conditions are sat-
isfied for every k ∈ ω:

(1) fk : Xnk−1
→ Ymk

and gk : Ymk
→ Xnk

are morphisms of category RIK ;

(2) fk+1 ◦ gk = id ↾ Ymk
and gk+1 ◦ fk+1 = id ↾ Xnk

.
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We start the inductive construction letting n0 = 0 = m0 and f0 : X0 → Y0,
g0 : Y0 → X0 be the unique isomorphisms of the trivial K-based Banach spaces
X0 and Y0. To make an inductive step, assume that for some k ∈ ω, the numbers
nk, mk and RIK-morphisms fk : Xnk−1

→ Ymk
, gk : Ymk

→ Xnk
have been con-

structed. By Definition 4.1, the BI-morphism g−1
k : gk(Ymk

) → Y defined on the
based subspace gk(Ymk

) of the rational finite-dimensional K-based Banach space
Xnk

extends to a BI-morphism fk+1 : Xnk
→ Y . So, fk+1 ◦ gk = id ↾ Ymk

.
Since fk+1(ßXnk

) ⊂ ßY =
⋃

i∈ω ßYi
, there exists a number mk+1 such that

fk+1(ßXnk
) ⊂ ßYmk+1

and hence fk+1(Xnk
) ⊂ Ymk+1

. Since the based space

Y is rational, its based subspace Ymk+1
is an object of the category RIK and the

morphism fk+1 : Xnk
→ Ymk+1

is an RIK-morphism.
By analogy we can use the RIK-universality of the based Banach space X to

find a number nk+1 > nk and an RIK-morphism gk+1 : Ymk+1
→ Xnk+1

such that
gk+1 ◦ fk+1 is the identity inclusion Xnk

in Xnk+1
. This completes the inductive

step.
After completing the inductive construction consider two isometries f :

⋃

n∈ω Xn →
⋃

m∈ω Ym and g :
⋃

m∈ω Ym →
⋃

n∈ω Xn such that f ↾ Xnk
= fk+1

and g ↾ Ymk
= gk for every k ∈ ω.

By the uniform continuity, the isometries f , g extend to isometries f̄ : X → Y
and ḡ : Y → X .

The condition (2) of the inductive construction implies that f̄ ◦ ḡ = idY and
ḡ◦ f̄ = idX , so f and g are isometric isomorphisms of the Banach spaces X and Y .
Since the isometries gk : Ymk

→ Xnk
are morphisms of based Banach spaces, we

get

g(ßY ) = g

(

⋃

k∈ω

ßYmk

)

=
⋃

k∈ω

g(ßYmk
) =

⋃

k∈ω

gk(ßYmk
) ⊂

⋃

k∈ω

ßXnk
= ßX .

By analogy we can show that f(ßX) ⊂ ßY . So, f and g are BI-isomorphisms. �

5. Almost FIK-universality

By analogy with the RIK-universal based Banach space, one can try to intro-
duce a FIK-universal based Banach space. However such notion is vacuous as each
based Banach space has only countably many finite-dimensional based subspaces
whereas the category FIK contains continuum many pairwise non BI-isomorphic
2-dimensional based Banach spaces. A “right” definition is that of an almost
FIK-universal based Banach space, introduced with the help of ε-isometries.

For a positive real number ε, a linear operator f : X → Y between Banach
spaces X and Y is called an ε-isometry if

(1 + ε)−1‖x‖X < ‖f(x)‖Y < (1 + ε)‖x‖X
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for every x ∈ X\{0}. This definition implies that each ε-isometry is an injective
linear operator.

A morphism of the category B of based Banach spaces is called an ε-isometry

B-morphism if it is an ε-isometry of the underlying Banach spaces.

Definition 5.1. A based Banach space X called almost FIK-universal if for any
ε > 0 and finite dimensional K-based Banach space A, any ε-isometry B-mor-
phism f : Λ → X defined on a based subspace Λ of A can be extended to an
ε-isometry B-morphism f̄ : A → X .

Theorem 5.2. Any RIK-universal rational K-based Banach space X is almost

FIK-universal.

Proof: We shall use the fact that the norm of any finite-dimensional based
Banach space can be approximated by a rational norm (which means that its
unit ball coincides with the convex hull of finitely many points having rational
coordinates in the basis).

To prove that X is almost FIK-universal, take any ε > 0, any finite-dimensional
K-based Banach space A and an ε-isometry B-morphism f : Λ → X defined on
a based subspace Λ of A. We recall that by ‖·‖A and ‖·‖Λ we denote the norms
of the Banach spaces A and Λ. The morphism f determines a new norm ‖·‖′Λ
on Λ, defined by ‖a‖′Λ = ‖f(a)‖X for a ∈ Λ. Since X is rational and K-based,
‖·‖′Λ is a rational norm on Λ such that ‖prF (a)‖′Λ ≤ K‖a‖′Λ for every a ∈ Λ
and every subset F ⊂ ßΛ. Taking into account that f is an ε-isometry, we
conclude that (1 + ε)−1 < ‖a‖′Λ < (1 + ε) for every a ∈ Λ with ‖a‖Λ = 1. By
the compactness of the unit sphere in Λ, there exists a positive δ < ε such that
(1 + δ)−1 < ‖a‖′Λ < (1 + δ) for every a ∈ Λ with ‖a‖Λ = 1. This inequality
implies (1 + δ)−1BΛ ⊂ B′

Λ ⊂ (1 + δ)BΛ, where BΛ = {a ∈ Λ: ‖a‖Λ ≤ 1} and
B′

Λ = {a ∈ Λ: ‖a‖′Λ ≤ 1} are the closed unit balls of Λ in the norms ‖·‖Λ and
‖·‖′Λ. Choose δ′ such that δ < δ′ < ε. Also choose a nonnegative real number
c ≤ K − 1 such that K − c is rational and K/(K − c) < 1 + δ.

Let BA = {a ∈ A : ‖x‖A ≤ 1} be the closed unit ball of the Banach space A.
Choose a rational polyhedron P in A such that P = −P and (1 + δ′)−1BA ⊂
P ⊂ (1 + δ)−1BA. Next consider the convex hull B′

A := conv(P ′) of the set P ′ =
B′

Λ ∪ P ∪
⋃

F⊂ßA
(K − c)−1prF (P ) and observe that B′

A is a rational polyhedron

in the based Banach space A. Taking into account that P ⊂ (1 + δ)−1BA, B′
Λ ⊂

(1 + δ)BΛ ⊂ (1 + δ)BA, and A is a K-based Banach space, we conclude that

P ′ ⊂ B′
Λ ∪

1

1 + δ

(

BA ∪
⋃

F⊂ßA

1

K − c
prF (BA)

)

= B′
Λ ∪

1

1 + δ

(

BA ∪
K

K − c
BA

)

= B′
Λ ∪

1

1 + δ

K

K − c
BA ⊂ (1 + δ)BΛ ∪

1

1 + δ
(1 + δ)BA ⊂ (1 + δ)BA

and hence
1

1 + δ′
BA ⊂ P ⊂ B′

A := conv(P ′) ⊂ (1 + δ)BA.
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The convex symmetric set B′
A := conv(P ′) determines a rational norm ‖·‖′A on

A whose unit ball coincides with B′
A. We claim that the base ßA of the Banach

space A′ := (A, ‖·‖′A) is K-suppression. Indeed, for any set F ⊂ ßA we have

prF (P ′) = prF (B′
Λ) ∪ prF (P ) ∪

⋃

E⊂ßA

1

K − c
prF ◦ prE(P )

⊂ KB′
Λ ∪ (K − c)P ′ ∪ P ′ ⊂ K P ′

and hence

prF (B′
A) = prF (conv(P ′)) = conv(prF (P ′))

⊂ conv(K P ′) = K conv(P ′) = KB′
A,

which means that the projection prF : A′ → A′ has norm less than or equal to K
and A′ is a K-based Banach space.

It remains to check that ‖a‖′A = ‖a‖′Λ for each a ∈ Λ, which is equivalent to
the equality B′

A ∩ Λ = B′
Λ. The inclusion B′

Λ ⊂ B′
A ∩ Λ is evident. To prove the

reverse inclusion B′
Λ ⊃ B′

A ∩ Λ observe that

Λ ∩B′
A = Λ ∩ conv(P ′) ⊂ Λ ∩ conv

(

B′
Λ ∪

1

1 + δ
BA

)

= Λ ∩
{

tλ + (1 − t)a : t ∈ [0, 1], λ ∈ B′
Λ, a ∈

1

1 + δ
BA

}

=
{

tλ + (1 − t)a : t ∈ [0, 1], λ ∈ B′
Λ, a ∈

1

1 + δ
(Λ ∩BA)

}

⊂ conv(B′
Λ ∪B′

Λ) = B′
Λ.

The inclusions (1 + δ′)
−1

BA ⊂ B′
A ⊂ (1 + δ)BA imply the strict inequality

(1) (1 + ε)−1‖a‖A < ‖a‖′A < (1 + ε)‖a‖A

holding for all a ∈ A\{0}.
Let Λ′ and A′ be the K-based Banach spaces Λ and A endowed with the

new rational norms ‖·‖′Λ and ‖·‖′A, respectively. It is clear that Λ′ ⊂ A′. The
definition of the norm ‖·‖′Λ ensures that f : Λ′ → X is a BI-morphism. Using
the RIK-universality of X , extend the isometry morphism f : Λ′ → X to an
isometry morphism f̄ : A′ → X . The inequalities (1) ensure that f̄ : A → X is an
ε-isometry B-morphism from A, extending the ε-isometry f . This completes the
proof of the almost FIK-universality of X . �

Theorem 5.3. Let X and Y be almost FIK-universal K-based Banach spaces

and ε > 0. Each ε-isometry B-morphism f : X0 → Y defined on a finite-

dimensional based subspace X0 of the K-based Banach space X can be extended

to an ε-isometry B-isomorphism f̄ : X → Y .
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Proof: Fix a positive real number ε. Using the compactness of the unit sphere
of the finite dimensional Banach space X0, we can find a positive δ < ε such that
f is a δ-isometry. Write X and Y as the completions of the unions

⋃

n∈ω Xn

and
⋃

n∈ω Yn of chains of finite dimensional K-based Banach spaces such that
Y0 = f(X0). We define inductively sequences of B-morphisms {fk}k∈ω , {gk}k∈ω

and increasing number sequences (nk), (mk) such that n0 = m0 = 0, f0 = f and
the following conditions are satisfied for every k ∈ ω:

(1) fk : Xnk−1
→ Ymk

and gk : Ymk
→ Xnk

are δ-isometry B-morphisms;

(2) fk+1 ◦ gk = id ↾ Ymk
and gk+1 ◦ fk+1 = id ↾ Xnk

.

To make the inductive step assume that for some k ∈ ω, the numbers nk, mk

and δ-isometries fk : Xnk−1
→ Ymk

, gk : Ymk
→ Xnk

have been constructed. Def-
inition 5.1 of almost FIK-universality of the based Banach space Y yields a δ-
isometry B-morphism fk+1 : Xnk

→ Y such that fk+1 | gk(Ymk
) = g−1

k | gk(Ymk
)

and hence fk+1 ◦ gk = id ↾ Ymk
. Since fk+1(ßXnk

) is a finite subset of the basis

ßY =
⋃

i∈ω ßYi
of Y , there exists a number mk+1 > mk such that fk+1(ßXnk

) ⊂

ßYmk+1
and hence fk+1(Xnk

) ⊂ Ymk+1
.

By analogy, we can use the almost FIK-universality of the based Banach space
X and find a number nk+1 > nk and a δ-isometry B-morphism gk+1 : Ymk+1

→
Xnk+1

such that gk+1 ◦ fk+1 = id ↾ Xnk
. This completes the inductive step.

After completing the inductive construction consider two δ-isometries f̃ :
⋃

n∈ω Xn →
⋃

m∈ω Ym and g̃ :
⋃

m∈ω Ym →
⋃

n∈ω Xn such that for every k ∈ ω,

f̃ ↾ Xnk
= fk+1 and g̃ ↾ Ymk

= gk. The condition (2) of the inductive construc-

tion implies that f̃ ◦ g̃ and g̃ ◦ f̃ are the identity maps of
⋃

n∈ω Xn and
⋃

m∈ω Ym,
respectively.

Using the uniform continuity, the δ-isometries f̃ , g̃ extend to ε-isometries
f̄ : X → Y and ḡ : Y → X such that f̄ ◦ ḡ = idY and ḡ ◦ f̄ = idX . Taking
into account that fn and gn are B-morphisms, we can show (repeating the ar-

gument from the proof of Theorem 4.5) that the operators f̃ and g̃ preserve the
bases of the K-based Banach spaces X and Y and hence are B-isomorphisms. �

Corollary 5.4. For any almost FIK-universal K-based Banach spaces X and Y
and any ε > 0 there exists an ε-isometry B-isomorphism f : X → Y .

Theorem 5.5. Let U be an almost FIK-universal K-based Banach space. For

any ε > 0 and any K-based Banach space X there exists an ε-isometry B-mor-

phism f : X → U .

Proof: Write X as the completion of the union
⋃

n∈ω Xn of a chain of finite
dimensional K-based Banach subspaces Xn of X such that X0 = {0}. Fix a pos-
itive real number ε and choose any δ < ε. We shall define inductively a sequence
of δ-isometry B-morphisms (fk : Xk → U)∞k=0 such that fk ↾ Xk−1 = fk−1 for
every k > 0.
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We set f0 = 0. Suppose that for some k ∈ ω a δ-isometry B-morphism
fk : Xk → U has already been constructed. Using the definition of the al-
most FIK-universality of the space U , we can find a δ-isometry B-morphism
fk+1 : Xk+1 → U such that fk+1 ↾ Xk = fk. This completes the inductive step.

After completing the inductive construction consider the δ-isometry f such
that f ↾ Xk = fk for every k ∈ ω; f :

⋃

k∈ω Xk → U .

By the uniform continuity, the δ-isometry f extends to an ε-isometry f̄ : X → U
such that

f(ßX) = f
(

⋃

k∈ω

BXk

)

=
⋃

k∈ω

f(BXk
) =

⋃

k∈ω

fk(BXk
) ⊂ ßU,

which means that f is a BK-morphism. �

Corollary 5.6. Each almost FIK-universal K-based Banach space U is B-uni-

versal.

Proof: Given a based Banach space X , we need to prove that X is B-isomorphic
to a based subspace of U . Denote by X1 the based Banach space X endowed with
the equivalent norm

‖x‖1 = sup
F⊂ßX

‖prF (x)‖.

It is easy to check that X1 is a 1-based Banach space. By Theorem 5.5, for
ε = 1/2 there exists an ε-isometry B-morphism f : X1 → U . Then f is a B-iso-
morphism between X and the based subspace f(X) = f(X1) of the based Banach
space U . �

Corollary 5.6 combined with the Uniqueness Theorem 3.2 of Pe lczyński implies

Corollary 5.7. Each almost FIK-universal K-based Banach space UK is B-iso-

morphic to the B-universal space U of Pe lczyński.

Combining Corollary 5.7 with Theorem 5.2, we get another model of the
B-universal Pe lczyński’s space U.

Corollary 5.8. Each RIK-universal rational K-based Banach space UK is

B-isomorphic to the B-universal Pe lczyński’s space U.
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