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Abstract. The non-conforming linear (P1) triangular FEM can be viewed as a kind of
the discontinuous Galerkin method, and is attractive in both the theoretical and practical
purposes. Since various error constants must be quantitatively evaluated for its accurate
a priori and a posteriori error estimates, we derive their theoretical upper bounds and
some computational results. In particular, the Babuška-Aziz maximum angle condition is
required just as in the case of the conforming P1 triangle. Some applications and numerical
results are also included to see the validity and effectiveness of our analysis.
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1. Introduction

As a well-known alternative to the conforming linear (P1) triangular finite element

for approximation of the first-order Sobolev space (H1), the non-conforming P1 ele-

ment is considered a classical discontinuous Galerkin finite element [4] and has var-

ious interesting properties from both the theoretical and practical standpoints [11],

[28]. In particular, its a priori error analysis was performed in a fairly early stage of

1 This paper is a revision of the original one [23] in the proceedings of APCOM’07 confer-
ence in conjunction with EPMESC XI. It exists in a digital version only and is not easy
to find.
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mathematical analysis of FEM (Finite Element Method), and recently a posteriori

error analysis has been rapidly developing as well. For accurate error estimation

of such an FEM, various error constants must be evaluated quantitatively [2], [6],

[8], [11].

Based on our preceding works on the constant (P0) and the conforming P1 triangles

[17], [18], we here give some results for error constants required for the analysis of

the non-conforming P1 triangle. More specifically, we first summarize a priori error

estimation of the present non-conforming FEM, where several error constants appear.

In this process, we use the lowest-order Raviart-Thomas triangular H(div) element

to deal with the inter-element discontinuity of the approximate functions [9], [19].

Then we introduce some constants related to a reference triangle, some of which are

popular in the P0 and the conforming P1 cases. We give some theoretical results for

the upper bounds of such constants. Finally, we include some numerical results to

support the validity of such upper bounds. Our results can be effectively used in

the quantitative a priori and a posteriori error estimates for the non-conforming P1

triangular FEM.

2. A priori error estimation

We here summarize a priori error estimation of the non-conforming P1 triangular

FEM. Let Ω be a bounded convex polygonal domain in R
2 with boundary ∂Ω, and

let us consider a weak formulation of the Dirichlet boundary value problem for the

Poisson equation: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) such that

(2.1) (∇u,∇v) = (f, v) ∀ v ∈ H1
0 (Ω).

Here, L2(Ω) and H
1
0 (Ω) are the usual Hilbertian Sobolev spaces associated to Ω,

∇ is the gradient operator, and (·, ·) stands for the inner products for both L2(Ω)

and L2(Ω)
2. It is well known that the solution exists uniquely in H1

0 (Ω) and also

belongs to H2(Ω).

Let us consider a regular family of triangulations {T h}h>0 of Ω, to which we asso-

ciate the non-conforming P1 finite element spaces {V h}h>0. Each V
h is constructed

over a certain T h, and the functions in V h are linear in each K ∈ T h with con-

tinuity only at midpoints of edges, and also vanish at the midpoints on the ∂Ω to

approximate the homogeneous Dirichlet condition [11], [28]. Then the finite element

solution uh ∈ V h is determined, for a given f ∈ L2(Ω), by

(2.2) (∇huh,∇hvh) = (f, vh) ∀ vh ∈ V h,
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where ∇h is the “non-conforming” or discrete gradient defined as an L2(Ω)
2-valued

operator by the element-wise relations (∇hv)|K = ∇(v|K) for all v ∈ V h+H1(Ω) and

for allK ∈ T h. Equation (2.2) is formally of the same form as in the conforming case,

so that, for the error analysis, it is natural to consider an appropriate interpolation

operator Πh, e.g., the Crouzeix-Raviart interpolation, fromH1
0 (Ω) (or its intersection

with some other spaces) to V h. However, the situation is not so simple. That is,

using the Green formula, we have

(2.3) (∇huh,∇hvh) = (∇hu,∇hvh)−
∑

K∈T h

∫

∂K

vh
∂u

∂n

∣∣∣
∂K

dγ ∀ vh ∈ V h,

where ∂u
∂n |K denotes the trace of the derivative of u in the outward normal direction

of ∂K, and dγ is the infinitesimal element of ∂K. Conventional efforts of error

analysis have been focused on the estimation of the second term on the right-hand

side of (2.3), which is absent in the conforming case. To cope with such difficulty, we

introduce the lowest-order Raviart-Thomas triangular H(div) finite element space

Wh associated to each T h (see [9], [19]). Then, noticing that the normal component

of for all qh ∈Wh is constant and continuous along each inter-element edge, we can

derive

(2.4) (qh,∇hvh) + (div qh, vh) = 0.

From (2.2) and (2.4),

(2.5) (∇huh,∇hvh) = (qh,∇hvh) + (div qh + f, vh).

By puting −(∇u,∇hvh) on both sides of (2.6), we have, for any qh ∈ Wh, vh ∈ V h,

(2.6) (∇huh −∇u,∇hvh) = (qh −∇u,∇hvh) + (div qh + f, vh).

Then by Lemma 6 of [15], a refinement of Strang’s second lemma [11], we have2

(2.7) ‖∇u−∇huh‖2 = inf
vh∈V h

‖∇u−∇hvh‖2

+
[

sup
wh∈V h\{0}

(qh −∇u,∇hwh) + (div qh + f, wh)

‖∇hwh‖
]2
,

2 The proof restricted to (2.2) is simple. Let Ph be the projection that projects V to V
h,

with respect to (∇h·,∇h·). Then ‖∇huh−∇u‖2 = ‖∇hPhu−∇u‖2+‖∇h(uh−Phu)‖
2.

Noticing that ‖∇h(uh − Phu)‖
2 = (∇h(uh − Phu),∇huh −∇u) and applying (2.6), we

can easily get (2.7).
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where ‖·‖ stands for the norms of both L2(Ω) and L2(Ω)
2. Using the Fortin operator

ΠF
h : H(div; Ω) ∩H1/2+δ(Ω)2 → Wh (δ > 0) (cf. [9]) and the orthogonal projection

Qh : L2(Ω) → Xh := space of step functions over T h, we obtain the a priori error

estimate

(2.8) ‖∇u−∇huh‖2 6 inf
vh∈V h

‖∇u−∇hvh‖2

+
[
‖∇u−ΠF

h∇u‖+ sup
wh∈V h\{0}

(f −Qhf, wh −Qhwh)

‖∇hwh‖
]2
,

where qh in (2.7) is taken as Π
F
h∇u.

We can obtain a more concrete error estimate in terms of the mesh parameter

h∗ > 0 (see the definition of h∗ in (2.47); h will be used with a different meaning later)

by deriving estimates such as for all v ∈ H1
0 (Ω)∩H2(Ω) and for all g ∈ H1(Ω)+V h,

‖v −Πhv‖ 6 γ0h
2
∗|v|2, ‖∇v −∇hΠhv‖ 6 γ1h∗|v|2,(2.9)

‖∇v −ΠF
h∇v‖ 6 γ2h∗|v|2, ‖g −Qhg‖ 6 γ3h∗‖∇hg‖,

where |·|k denotes the standard semi-norm of Hk(Ω), k ∈ N, and γi’s are positive

error constants dependent only on {T h}h>0.

Then we obtain, for the solution u ∈ H1
0 (Ω) ∩H2(Ω),

‖∇u−∇huh‖ 6

{
h∗

√
γ21 |u|22 + (γ2|u|2 + γ3‖f‖)2 for f ∈ L2(Ω),

h∗
√
γ21 |u|22 + (γ2|u|2 + γ23h∗|f |1)2 for f ∈ H1(Ω),

where the term |u|2 can be bounded as |u|2 6 ‖f‖ for the considered Ω.

We can also use Nitsche’s trick to evaluate the a priori L2 error of uh (see [11],

[20]). That is, let us define ψ ∈ H1
0 (Ω)(∩H2(Ω)) for eh := u− uh by

(∇ψ,∇v) = (eh, v) ∀ v ∈ H1
0 (Ω),

Then for all vh ∈ V h and for all qh, q̃h ∈ Wh, by noticing





‖eh‖2 = (eh, eh) = (div q̃h + eh, eh) + (q̃h,∇he
h)

(−∇hvh,∇he
h) + (∇hvh,∇u) + (−vh, f) = 0

(−∇ψ,∇u− qh) + (ψ, div qh + f) = 0

(∇hvh,−qh) + (vh, div qh) = 0

we have
‖eh‖2 = (q̃h −∇hvh,∇he

h) + (∇hvh −∇ψ,∇u− qh)

+ (ψ − vh, div qh + f) + (div q̃h + eh, eh).
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Substituting vh = Πhψ, qh = ΠF
h∇u and q̃h = ΠF

h∇ψ above, we find

‖eh‖2 = (ΠF
h∇ψ −∇ψ +∇ψ −∇hΠhψ,∇he

h) + (∇Πhψ −∇ψ,∇u−ΠF
h∇u)

+ (ψ −Πhψ, f −Qhf) + (eh −Qhe
h, eh −Qhe

h),

since div qh = divΠF
h∇u = −Qhf and div q̃h = divΠF

h∇ψ = −Qhe
h. Then we have,

by (2.9) as well as the relations |u|2 6 ‖f‖ and |ψ|2 6 ‖eh‖,

‖eh‖2 6 [(γ1 + γ2)h∗‖∇he
h‖+ (γ0 + γ1γ2)h

2
∗‖f‖]‖eh‖+ γ23h

2
∗‖∇he

h‖2,

where the term γ0h
2
∗‖f‖ ·‖eh‖ can be replaced by γ0γ3h3∗|f |1‖eh‖ if f ∈ H1(Ω). This

may be considered a quadratic inequality for eh, and solving it gives an expected

order estimate ‖u− uh‖ = ‖eh‖ = O(h2∗):

‖eh‖ 6
h∗
2

(
A1 +

√
A2

1 + 4A2

)
,

A1 := (γ1 + γ2)‖∇he
h‖+ (γ0 + γ1γ2)h∗‖f‖,

A2 := γ23h∗‖∇he
h‖2.

Relation to Raviart-Thomas mixed FEM. We have already introduced the

Raviart-Thomas space Wh for auxiliary purposes. But it is well known that the

present non-conforming FEM is closely related to the Raviart-Thomas mixed FEM

[3], [25]. Here we will summarize the implementation of such a mixed FEM by slightly

modifying the original nonconforming P1 scheme described by (2.2). The original

idea in [3], [25] is based on the enrichment by the conforming cubic bubble functions

with the L2 projection intoW
h, but we here adopt non-conforming quadratic bubble

ones to make the modification procedure a little simpler.3

First, we replace f in (2.2) by Qhf . Then uh is modified to u
∗
h ∈ V h defined by

(2.10) (∇hu
∗
h,∇hvh) = (Qhf, vh) ∀ vh ∈ V h.

Secondly, we introduce the space V h
B of non-conforming quadratic bubble functions

by defining its basis function ϕK associated to each K ∈ T h such that ϕK vanishes

outside K and its value at x ∈ K is given by

(2.11) ϕK(x) =
1

2
|x− xG|2 − 1

12

3∑

i=1

|x(i) − xG|2,

3 In 2015, Hu and Ma showed the same result about the relation between the enriched
FEM and Raviart-Thomas FEM, along with the extension to the general dimensional
space [14].
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where |·| is the Euclidean norm of R2, xG the barycenter of K, and x(i), i = 1, 2, 3

the ith vertex of K. It is easy to see that the line integration of ϕK for each e of K

vanishes

(2.12)

∫

e

ϕK dγ = 0.

Now the enriched non-conforming finite element space Ṽ h is defined by the linear

sum

(2.13) Ṽ h = V h + V h
B .

By (2.12) and the Green formula, we find the following orthogonality relation for

(∇h·,∇h·):

(2.14) (∇hvh,∇hβh) = 0 ∀ vh ∈ V h, ∀βh ∈ V h
B .

Then the modified finite element solution ũh ∈ Ṽ h is defined by

(2.15) (∇hũh,∇hṽh) = (Qhf, ṽh) ∀ ṽh ∈ Ṽ h.

Thanks to (2.14), the present ũh can be obtained as the sum

(2.16) ũh = u∗h + αh,

where u∗h ∈ V h is the solution of (2.10), and αh ∈ V h
B is determined by

(2.17) (∇hαh,∇hβh) = (Qhf, βh) ∀βh ∈ V h
B ,

i.e., completely independently of u∗h. Moreover, αh can be decided by element-by-

element comupations. More specifically, denoting αh|K as αKϕK |K, (2.17) leads to

(2.18) αK(∇ϕK ,∇ϕK)K = (Qhf, ϕK)K ∀K ∈ T h,

where (·, ·) denotes the inner products of both L2(K) and L2(K)2.

Define {ph, uh} ∈ L2(Ω)
2 ×Xh by

(2.19) ph = ∇hũh, uh = Qhũh.

By appying the Green formula to (2.15), we can show that ph ∈ Wh, and also that

the present pair {ph, uh} satisfies the determination equations of the lowest-order
Raviart-Thomas mixed FEM:

(2.20)

{
(ph, qh) + (uh, div qh) = 0 ∀ qh ∈ Wh,

(div ph, vh) = −(Qhf, vh) ∀ vh ∈ Xh.
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By the uniqueness of the solutions, {ph, uh} is nothing but the unique solution
of (2.20).

In conclusion, denoting the constant value of Qhf |K by fK (=
∫
K
f dx/meas(K)),

we have for all K ∈ T h and for all x ∈ K that





αK = −1

2
fK ,

ũh(x) = u∗h(x) + αKψK(x) = u∗h(x) −
1

4
fK

(
|x− xG|2 − 1

6

3∑

i=1

|x(i) − xG|2
)
,

and

(2.21)





ph(x) = ∇hu
∗
h(x)−

1

2
fK(x− xG),

uh(x) = u∗h(x
G)− 1

16
fK

(
|xG|2 − 1

3

3∑

i=1

|x(i)|2
)
,

which coincide with those in [25] and are easy to compute by post-processing.

A posteriori error estimation. The consideration in the preceding section sug-

gests the a posteriori error estimation based on the hypercircle method [12], [19].

Taking into account of the fact that ph ∈ Wh, obtained in the preceding section,

belongs to H(div; Ω) with div ph = −Qhf , we find that, for all v ∈ H1
0 (Ω),

‖∇v − ph‖2 = ‖∇(v − uh)‖2 + ‖∇uh − ph‖2,(2.22)
∥∥∥∇uh − 1

2
(∇v + ph)

∥∥∥ =
1

2
‖∇v − ph‖,

where uh ∈ H1
0 (Ω) is the solution of (2.1) with f replaced by Qhf :

(2.23) (∇uh,∇v) = (Qhf, v) ∀ v ∈ H1
0 (Ω).

The relation (2.22) implies that the three points ∇uh, ∇v and ph in L2(Ω)
2 make

a hypercircle, the first having a right inscribed angle. Noting that (f − Qf , v) =

(f −Qhf, v −Qhv) for all v ∈ H1
0 (Ω) ⊂ L2(Ω), we have by (2.8) that

(2.24) |u− uh|1 = ‖∇(u− hh)‖ 6 γ3h∗‖f −Qhf‖ (6 γ23h
2
∗|f |1 if f ∈ H1(Ω)).

Taking an appropriate v ∈ H1
0 (Ω), we obtain a posteriori error estimates related

ph = ∇hũh:

‖∇u− ph‖ 6 ‖∇(u− uh)‖+ ‖∇uh − ph‖ 6 ‖∇(u− uh)‖ + ‖∇v − ph‖,(2.25)
∥∥∥∇u− 1

2
(∇v + ph)

∥∥∥ 6 ‖∇(u− uh)‖+ 1

2
‖∇v − ph‖.(2.26)
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A typical example of v is the conforming P1 finite element solution u
C
h ∈ V h

C ,

where V h
c is the conforming P1 space over T

h. Another example is a function

vhC ∈ V h
C obtained by appropriate post-processing of uh or u

∗
h, such as nodal av-

eraging or smoothing. A cheap method of constructing a nice vhC may be also an

interesting subject. Again, we need the constant γ3 to evaluate the term ‖∇(u−uh)‖
above. If we use ∇huh based on the original uh ∈ V h in (2.2), instead of the modified

one ũh ∈ V h, we must evaluate some additional terms. Fortunately, such evaluation

can be done explicitly by using γ3 and some positive constants related to {ψK}K∈T h .

Error constants. To analyze the error constants in (2.8), let us consider their

element-wise counterparts. Let h, α, and θ be positive constants such that

(2.27) h > 0, 0 < α 6 1,
π

3
6 cos−1 α

2
6 θ < π.

Then we define the triangle Tα,θ,h by △OAB with three vertices O(0, 0), A(h, 0), and
B(αh cos θ, αh sin θ). From (2.27), AB is shown to be the edge of maximum length,

i.e., AB > h > αh so that h = OA here denotes the medium edge length, unlike

the usual usage as the largest one [11]. A point on the closure Tα,θ,h is denoted

by x = {x1, x2}, and the three edges ei’s, i = 1, 2, 3, are defined by {e1, e2, e3} =

{OA,OB,AB}.
By an appropriate congruent transformation in R2, we can configure any triangle

as Tα,θ,h. Following the usage in [5], we will use abbreviated notation Tα,θ = Tα,θ,1,

Tα = Tα,π/2 and T = T1 (Fig. 1). We will also use the notation ‖·‖Tα,θ,h
and |·|k,Tα,θ,h

as the norms of L2(Tα,θ,h) and semi-norms of H
k(Tα,θ,h), where the subscript Tα,θ,h

will be usually omitted.

Let us define the following closed linear spaces for functions over Tα,θ,h:

V 0
α,θ,h =

{
v ∈ H1(Tα,θ,h)

∣∣∣
∫

Tα,θ,h

v(x) dx = 0

}
,(2.28)

V i
α,θ,h =

{
v ∈ H1(Tα,θ,h)

∣∣∣
∫

ei

v(s) ds = 0

}
, i = 1, 2, 3,(2.29)

V
{1,2}
α,θ,h =

{
v ∈ H1(Tα,θ,h)

∣∣∣
∫

e1

v(s) ds =

∫

e2

v(s) ds = 0

}
,(2.30)

V
{1,2,3}
α,θ,h =

{
v ∈ H1(Tα,θ,h)

∣∣∣
∫

ei

v(s) ds = 0, i = 1, 2, 3

}
,(2.31)

V 4
α,θ,h =

{
v ∈ H2(Tα,θ,h)

∣∣∣
∫

ei

v(s) ds = 0, i = 1, 2, 3

}
.(2.32)

We will again use abbreviations like V 0
α,θ = V 0

α,θ,1, V
0
α = V 0

α,π/2, V
0 = V 0

1 , etc.
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O

B(αh cos θ, αh sin θ)

A(h, 0)
θ

Tα,θ,h

αh

h O

B(α cos θ, α sin θ)

A(1, 0)
θ

Tα,θ = Tα,θ,1

α

1

B(0, α)

A(1, 0)
O

Tα = T
α,

1

2
π

B(0, 1)

A(1, 0)
O

T = T1

Figure 1. Notation for triangles: Tα,θ = Tα,θ,1, Tα = Tα, 1
2

π
, T = T1.

Let us consider the P0 interpolation operator Π
0
α,θ,h and non-conforming P1 one

Π1,N
α,θ,h for functions on Tα,θ,h [8], [11]: Π

0
α,θ,hv for all v ∈ H1(Tα,θ,h) is a constant

function such that

(2.33) (Π0
α,θ,hv)(x) =

∫
Tα,θ,h

v(y) dy

|Tα,θ,h|
∀x ∈ Tα,θ,h,

while Π1,N
α,θ,hv for all v ∈ H1(Tα,θ,h) is a linear function such that

(2.34)

∫

ei

(Π1,N
α,θ,hv)(s) ds =

∫

ei

v(s) ds for i = 1, 2, 3.

To analyze these interpolation operators, let us estimate the positive constants

defined by

CJ (α, θ, h) = sup
v∈V J

α,θ,h
\{0}

‖v‖
|v|1

, J = 0, 1, 2, 3, {1, 2}, {1, 2, 3},(2.35)

C4(α, θ, h) = sup
v∈V 4

α,θ,h
\{0}

|v|1
|v|2

, C5(α, θ, h) = sup
v∈V 4

α,θ,h
\{0}

‖v‖
|v|2

.(2.36)

We will again use abbreviated notation CJ(α, θ) = CJ (α, θ, 1), CJ (α) = CJ(α,
1
2π),

CJ = C(1) and also CJ,α,θ := CJ(α, θ) for every possible subscript J .

By a simple scale change, we find that CJ (α, θ, h) = hC(α, θ), J 6= 5, and

C5(α, θ, h) = h2C5(α, θ). Now, by noticing v − Π0
α,θ,hv ∈ V 0

α,θ,h for v ∈ H1(Tα,θ,h)
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and v −Π1,N
α,θ,hv ∈ V 4

α,θ,h for v ∈ H2(Tα,θ,h), we can easily obtain the popular inter-

polation error estimates on Tα,θ,h (see [8], [11]):

‖v −Π0
α,θ,hv‖ 6 C0(α, θ)h|v|1 ∀ v ∈ H1(Tα,θ,h),(2.37)

|v −Π1,N
α,θ,hv|1 6 C4(α, θ)h|v|2 ∀ v ∈ H2(Tα,θ,h),(2.38)

‖v −Π1,N
α,θ,hv‖ 6 C5(α, θ)h

2|v|2 ∀ v ∈ H2(Tα,θ,h).(2.39)

We can show that the following relations hold for the constants CJ,α,θ (:= CJ (α, θ)):

(2.40) C4,α,θ 6 C0,α,θ, C5,α,θ 6 C0,α,θC{1,2,3},α,θ 6 C0,α,θC{1,2},α,θ.

An estimation rougher than the latter of (2.40) is C5,α,θ 6 C0,α,θ min
i=1,2,3

Ci,α,θ. To

show the former of (2.40), we first derive
∫
Tα,θ

∂v/∂xi dx = 0 for all v ∈ V 4
α,θ, i = 1, 2,

by considering the definition in (2.32) and applying the Gauss formula. Then we can

easily obtain the desired result by noticing the definition of C0(α, θ). To derive the

latter of (2.40), we should evaluate ‖v‖/|v|1 and |v|1/|v|2 for all v ∈ V 4
α,θ, i = 1, 2.

The former quotient can be evaluated by using C{1,2,3}(α, θ), while the latter can

be done by C4(α, θ) together with the former of (2.40). Clearly, C{1,2,3}(α, θ) 6

C{1,2}(α, θ), hence we have the latter of (2.40).

Thus we can give quantitative interpolation estimates from (2.37) throught (2.39),

if we succeed in evaluating or bounding the constants CJ(α, θ)’s explicitly for all

possible J . Among them, C0(α, θ) and C{1,2}(α, θ) are important as may be seen

from (2.40). Notice that each of such constants can be characterized by minimization

of a kind of Rayleigh quotient [5], [26], [27]. Then it is equivalent to finding the

minimum eigenvalue of a certain eigenvalue problem expressed by a weak formulation

for a partial differential equation with some auxiliary conditions.

Moreover, we already derived some results for Ci(α, θ) for i = 0, 1, 2 (see [17],

[18]).4 In particular, C0 = 1/π, and C1 (= C2) is equal to the maximum positive

solution of the equation 1/µ + tan(1/µ) = 0 for µ. The constants CJ (α, θ)’s for

J = 0, 1, 2, 3, 4, 5, {1, 2}, {1, 2, 3} are bounded uniformly for {α, θ}. More specifically,
their explicit upper bounds are given in terms of α, θ and their values at {α, θ} =

{1, 12π}. Furthermore, CJ(α)’s except for J = 4 are monotonically increasing in α.

The asymptotic behavior of the constants CJ (α)’s for α ↓ 0 can be also analyzed as

in [18]. As a result, the interpolation by the non-conforming P1 triangle is robust

to the distortion of Tα,θ. This fact does not necessarily imply the robustness of the

final error estimates for u− uh, since the analysis of the Fortin interpolation has not

been performed yet.

4K.Kobayashi also developed upper bounds for the error constants, see e.g. [21], [22].
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R em a r k 2.1. Instead of Π1,N
α,θ,h, it is also possible to consider an interpolation

operator using the function values at midpoints of edges. Such an operator is de-

finable for continuous functions over Tα,θ,h, but not so for functions in H
1(Tα,θ,h).

Moreover, its analysis would be different from that for Π1,N
α,θ,h.

Determination of C{1,2}. From the preceding observations, we can give explicit

upper bounds of various interpolation constants associated to the non-conforming P1

triangle, provided that the value of C{1,2} is determined. This becomes indeed

possible by adopting essentially the same idea and techniques to determine C0 and

C1 (= C2):

Theorem 2.1. C{1,2} = C{1,2}(1,
1
2π, 1) is equal to the maximum positive solution

of the transcendental equation for µ:

(2.41)
1

2µ
+ tan

1

2µ
= 0.

The above implies that C{1,2} = 1
2C1 (= 1

2C2), and hence is bounded as, with

numerical verification,

(2.42) 0.24641 < C{1,2} < 0.24647.

R em a r k 2.2. Thus 1
4 is a simple but nice upper bound. Numerically, we have

C{1,2} = 0.2464562258 . . .

P r o o f. By using the technique for determination of C0 and C1 = C2 in [17]

and [19], we obtain the following equation for µ,

(2.43) 1 +
1

2µ
sin

1

µ
− cos

1

µ
= 0,

whose maximum positive solution is the desired C{1,2}. By the double-angle formulas,

the above is transformed into

(2.44)
(
2 sin

1

2µ
+

1

µ
cos

1

2µ

)
sin

1

2µ
= 0.

It is now easy to derive (see 2.41), and also to draw other conclusions by using the

result in [17], [19]. �
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Analysis of Fortin’s interpolation. This section is devoted to the analysis of

Fortin’s interpolation operator ΠF
α,θ (see [9]) for each Tα,θ. Given q ∈ H(div;Tα,θ)∩

H1/2+δ(Tα,θ)
2 (δ > 0), Fortin’s interpolation qh = {α1 +α3x1, α2 +α3x2} (αi being

constants) satisfies, ∫

ei

(qh − q) · ~n ds = 0, i = 1, 2, 3.

To consider the error estimation for Fortin’s interpolation, we quote a result about

the error estimation for the Lagrange interpolation function. Define a constant CF

by

CF := sup
q∈W (Tα,θ)

‖q‖
|q|1

.

Here W (Tα,θ) is defined by

W (Tα,θ) :=

{
q ∈ H(Tα,θ)

2
∣∣∣
∫

ei

q · ~τ ds = 0, i = 1, 2, 3

}
,

where ~τ denotes the unit tangent vector along edges. Such a constant has been used

to bound the Lagrange interpolation error constant (Theorem 2 of [24]), which has

an explicit upper bound CF 6 C6(α, θ).

(2.45) C6(α, θ) :=

√
c21 + c22 + 2c1c2 cos2 θ + (c1 + c2)

√
c21 + c22 + 2c1c2 cos 2θ√

2 sin θ
,

where ci stands for Ci(α, θ), i = 1, 2, for the purpose of abbreviation.

The following theorem gives the error constant for Fortin’s interpolation, where

the technique in the proof is following the one used in Theorem 5.1 of [10].5

Theorem 2.2. For q = {q1, q2} ∈ (H1(Tα,θ))
2 we have

(2.46) ‖q −ΠF
α,θq‖ 6 C6(α, θ)|q|1.

P r o o f. Let ŵ be the rotation of w := q −ΠF
α,θq by

1
2π, then it is easy to verify

that
∫
ei
ŵ · ~τ ds = 0, i = 1, 2, 3. Hence,

(‖w‖ =)‖ŵ‖ 6 C6(α, θ)|ŵ|1 (= C6(α, θ)|w|1).

Rewrite the vector w as w = (w1, w2) and decompose |w|21 as

|w|21 =
∥∥∥w1,x − divw

2

∥∥∥
2

+ ‖w1,y‖2 + ‖w2,x‖2 +
∥∥∥w2,y −

divw

2

∥∥∥
2

+
‖divw‖2

2
.

5 The result below is an improvement of the error estimation of [23], which involves another
constant C7 along with the term ‖div q‖, which however can be removed.
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Also, noticing that for qh = (qh1
, qh2

) := ΠF
α,θq,

qh1,x − div qh
2

= qh2,y −
div qh
2

= qh1,y = qh2,x = 0

and the orthogonal decomposition of divw,

‖divw‖2 + ‖div qh‖2 = ‖div q‖2,

we have |w|21 6 |q|21, which leads to the conclusion. �

R em a r k 2.3. Because of the factor sin θ in (2.45), the maximum angle condition

applies to estimate (2.46) (see [1], [5], [19]). On the other hand, the estimates for

Π0
α,θ,h and Π1,N

α,θ,h are free from such conditions as may be seen from (2.40) and the

comments there.

Global interpolation operators. So far, we have introduced and analyzed local

interpolation operators Π0
α,θ,h,Π

1,N
α,θ,h and ΠF

α,θ,h. For each K ∈ T h, we can find an

appropriate Tα,θ,h congruent to K under a mapping ΦK : K → Tα,θ,h. Then it is

natural to define the P1 non-conforming interpolation operator Πh : H
1
0 (Ω) → V h

by Πhu|K = Π1,N
α,θ,h(v|K ◦Φ−1

K ) ◦ΦK for all v ∈ H1
0 (Ω) and for all K ∈ T h. Similarly,

the orthogonal projection operator Qh : L2(Ω) → Xh is related to Π0
α,θ,h, while the

global Fortin operatorΠF
h is defined throughΠ

F
α,θ,h, ΦK and the Piola transformation

for 2D contravariant vector fields [3].

For each K ∈ T h, define {αK , θK , hK} as {α, θ, h} of the associated Tα,θ,h. Then,
our analysis shows that the estimates in (2.9) can be concretely given, for all v ∈
H1

0 (Ω) ∩H2(Ω) and for all g ∈ H1(Ω) + V h, by

‖v −Πhv‖ 6 Ch
5 h

2
∗|v|2 6 Ch

0C
h
{1,2}h

2
∗|v|2, ‖∇v −∇Πhv‖ 6 Ch

4 h∗|v|2 6 Ch
0 h∗|v|2

‖∇v −ΠF
h∇v‖ 6 Ch

6 h∗|v|2, ‖g −Qhg‖ 6 Ch
0 h∗‖∇hg‖,

where

(2.47) h∗ = max
K∈Th

hK , Ch
J := max

K∈T h
CJ (αK , θK), J = 0, 4, 5, 6, 7, {1, 2}.

R em a r k 2.4. Relations such as (2.16), (2.19), and (2.21) may suggest the pos-

sibility of finding interpolations for ∇u inWh rather than the one by the Fortin oper-

ator, which are free from the maximum angle condition [5]. However, ∇h(Πhu+αh),

for example, is not shown to belong to Wh, because we cannot prove the inter-

element continuity of normal components unlike ∇hûh. Our numerical results show

that the maximum angle condition is probably essential for the non-conforming P1

triangle. See also [1] for related topics.
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Numerical results. First, we performed numerical computations to see the ac-

tual dependence of various constants on α and θ by adopting the conforming P1

element and a kind of discrete Kirchhoff plate bending element [16], the latter of

which is used to deal directly with the 4th order partial differential eigenvalue prob-

lems related to C4(α, θ) and C5(α, θ). That is, we obtained some numerical results

for C4(α) and C5(α), θ = 1
2π together with their upper bounds. We used the uni-

form triangulation of the entire domain Tα : Tα is subdivided into small triangles,

all being congruent to Tα,π/2,h with e.g. h = 1
20 .

The left-hand side of Fig. 2 shows the graphs of approximate C4(α) and C0(α)

versus α ∈ ]0, 1], while the right-hand side shows similar graphs for C5(α) and

C0(α)C{1,2}(α). In both cases, the theoretical upper bounds based on (2.40) give

fairly good approximations to the considered constantsC4(α) and C5(α). Asymptotic

behavior of the constants for α ↓ 0+ observed in the figures can be analyzed as in [18].

C4(α)
C0(α)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

α

α

1

Tα

C5(α)
C0(α)C1,2(α)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

α

α

1

Tα

Figure 2. Numerical results for C4(α) & C0(α) (left), and for C5(α) & C0(α)C{1,2}(α)
(right); 0 < α 6 1.

We also tested numerically the validity of our a priori error estimate for ‖∇u −
∇huh‖. That is, we chose Ω as the unit square {x = {x1, x2} | 0 < x1, x2 < 1} and f
as f(x1, x2) = sin πx1 sin πx2, and consider the N×N Friedrichs-Keller type uniform
triangulations (N ∈ N). In such situation, u(x1, x2) =

1
2π

−2 sin πx1 sin πx2, and all

the triangles are congruent to a right isosceles triangle T1,π/2,1/N , i.e., h∗ = h =

1/N . Moreover, we can use the following values or upper bounds for the necessary

constants:

Ch
0 = C0 =

1

π

, Ch
{1,2} = C{1,2} <

1

4
, Ch

6 = C1 = C2 <
1

2
.

Moreover, under a current boundary condition and domain shape, we have |u|2 =

‖∆u‖ = ‖f‖, see e.g. Theorem 4.3.1.4 of [13]. Then, since f ∈ H1(Ω), the a priori
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error estimation is given as

‖∇u−∇huh‖ 6 h∗

√
1

π
2
‖f‖2 +

(1
2
‖f‖+ h∗

π
2
‖∇f‖

)2
.

Figure 3 shows the comparison of the actual ‖∇u−∇huh‖ and its a priori estimate
based on our analysis. The difference is still large, but anyway our analysis appears

to give correct upper bounds and order of errors. Probably, a posteriori estimation

mentioned previously would give more realistic results.6

slope = 1

a priori estimate

‖∇u−∇huh‖

0.50.250.1250.0625

0.005

0.01

0.02

0.05

0.1

0.2

h (log-scale)

Figure 3. ‖∇u−∇huh‖ and its a priori estimates versus h.

Concluding remarks. We have obtained some theoretical and numerical results

for several error constants associated to the non-conforming P1 triangle. These

results are hoped to be effectively used in quantitative error estimates, which are

necessary for adaptive mesh refinements [7] and numerical verifications. Especially

for numerical verification of partial differential equations by Nakao’s method [26],

accurate bounding of various error constants is essential. Moreover, we are planning

to extend our analysis to its 3D counterpart, i.e., the non-conforming P1 tetrahedron

with face DOF’s.

6Another kind of a priori error estimation is given in [10], which gives larger (worse)
estimation compared to our proposed estimation, if the two estimations are applied to
the example used in [10].
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