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Abstract. For a class of graphs we say that it is globally determined if any two noniso-
morphic graphs from that class have nonisomorphic globals. We will prove that the class
of so called CCB graphs and the class of finite forests are globally determined.
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1. Introduction and preliminaries

In general case, if A is some (operational-relational) structure with a carrier set A,

the global of A is the structure induced in a natural way on the powerset of A. For

specific types of structures several other names have been used in the literature

instead of global, such as power structure, complex algebra, power algebra. For

a general overview on globals see [3], [4]. In the present paper we consider the ques-

tion of global determinism of certain classes of graphs. We say that the class K of

structures is globally determined if every time when two structures from the class

have isomorphic globals, these two structures are isomorphic too. This problem is

extensively studied for semigroups, see [8], [10], [16], [18]. Besides semigroups, some

other classes of algebraic structures were studied in this context, which includes

unary algebras, see [6], [9], [14]. In [6] Drápal showed that the class of finite par-

tial monounary algebras is globally determined. Since monounary algebras can be

viewed as graphs, this result can be interpreted as one of the first results on global

determination of classes of graphs, which is the topic of our paper.

Different definitions of powering of relations can be found in the literature, espe-

cially in theoretical computer science, but the most general definition of the power
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of an n-ary relation can be found in [19]. Globals of graphs are investigated in [2],

while in [11], [12] it is demonstrated that power graphs could be useful in the theory

of concurrent systems.

In the present paper we will prove that the classes of finite forests and CCB

graphs are globally determined. For a finite (undirected) graph G we say that it is

a CCB graph if every component of G is a complete graph with loops or a complete

bipartite graph. This class of graphs plays an important role in problems concerning

the finiteness of equational bases of universal algebras. Namely, Shallon [17] in her

PhD thesis (see also [15]) proposed a method for constructing algebras from graphs,

which in many cases gives examples of nonfinitely based finite algebras. It turned

out that many later discovered nonfinitely based finite algebras can be obtained as

graph algebras of some special graphs. The class of CCB graphs is precisely the class

of finite graphs whose corresponding graph algebras have finite equational bases.

In this paper we consider finite undirected graphs possibly with loops. In other

words, a graph is a structure G = (V,E), where V is a finite nonempty set and E is

a symmetric binary relation on V . The complete graph with n vertices, all of them

having a loop, will be denoted by Ks
n. The complete bipartite graph with partition

classes having p and q vertices respectively, will be denoted by Kp,q. By G1 + G2

we will denote the disjoint union of graphs G1 and G2. We call graphs G1 and G2

isomorphic, and write G1 ≃ G2, if they are isomorphic as relational structures. For

basic notions and terminology of graph theory we refer the reader to [5].

The global of G = (V,E), denoted by P(G), is the graph with the set of ver-

tices P(V ) (the powerset of V ), whose edges are determined as: for all X,Y ∈ P(G),

(X,Y ) ∈ E+ ⇔ (∀x ∈ X)(∃ y ∈ Y )(x, y) ∈ E and (∀ y ∈ Y )(∃x ∈ X)(x, y) ∈ E.

Note that (X, ∅) ∈ E+ if and only if X = ∅. Therefore at least one of the components

of P(G) is equal to Ks
1 . Some authors exclude the empty set from the vertex set of

the global of a graph G. We will call the graph obtained in this way the positive

global of G, and denote it by P+(G).

For a class K of graphs we say that it is globally determined if for all graphs G1

and G2 from K, P(G1) ≃ P(G2) implies G1 ≃ G2.

The structure of this paper is the following: In Section 2 we describe globals of

CCB graphs. In Section 3 we prove that the class of CCB graphs is globally deter-

mined. An algorithm for reconstructing CCB graphs from its globals is described

in Section 4. Finally, in the last section we prove that the class of finite forests is

globally determined.
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2. Globals of CCB graphs

Definition 1. A finite undirected graph G is a CCB graph if all its connected

components are complete graphs with a loop at every vertex, or complete bipartite

graphs. We say that the dimension of G is (n,m), and write dim(G) = (n,m), if G

has n complete components and m complete bipartite components.

Definition 2. Let G = (V,E) be a CCB graph with complete components

A1, A2, . . . , An and bipartite components (B1, C1), (B2, C2), . . . , (Bm, Cm) such that

|Bi| 6 |Ci|.

(1) We define the type of an arbitrary nonempty subset H of V in the following

way: type(H) = (α, δ), where

α = (α1, α2, . . . , αn), αi ∈ {0, 1}, δ = ((β1, γ1), (β2, γ2), . . . , (βm, γm)), βi, γi ∈

{0, 1} so that

αi = 1 if and only if Ai ∩H 6= ∅,

βi = 1 if and only if Bi ∩H 6= ∅,

γi = 1 if and only if Ci ∩H 6= ∅.

(2) If each component of G is bipartite, then α = ∅, and if each component of G is

complete, then δ = ∅.

(3) By Type(G) we will denote the set of all types of subsets of V .

(4) For a type τ = (α, δ) ∈ Type(G), its dual type τ−1 is defined in the following

way: if δ = ((β1, γ1), (β2, γ2), . . . , (βm, γm)), then τ−1 = (α, δ−1), where δ−1 =

((γ1, β1), (γ2, β2), . . . , (γm, βm)). If δ = ∅, then τ−1 = τ . A type τ = (α, δ) is

even if τ = τ−1. Otherwise, it is odd.

The following well known theorem will help us to describe globals of CCB graphs.

Theorem 1 ([1]). A graph G is a CCB graph if and only if it does not contain

any of the following graphs as an induced subgraph: M , K3, L3, P4.

K3

M

P4

L3

Figure 1.

Proposition 1. If the global of a graph G is a CCB graph, then G is a CCB

graph.
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P r o o f. Suppose G is not a CCB graph. Then it contains one of four forbidden

subgraphs from Theorem 1. Since P(G) contains G as an induced subgraph, it must

also contain one of the forbidden subgraphs and can not be a CCB graph. �

For CCB graphs with exactly one component it is easy to see that P(Ks
r ) =

Ks
1+Ks

2r−1 and P(Ks,t) = Ks
1+Ks

(2s−1)·(2t−1)+K2s−1,2t−1. In general, the following

statement holds:

Proposition 2. Let G be a CCB graph of dimension (n,m).

(1) If X,Y ∈ P(V ), then (X,Y ) ∈ E+ if and only if type(X) = (type(Y ))−1.

(2) P(G) is a CCB graph and

dim(P(G)) =
(

2n+m,
2n+2m − 2n+m

2

)

.

P r o o f. Part (1) follows directly from the definition of relation E+. Let G =

(V,E), X,Y ∈ P(V ). According to (1), if X is of even type, it will (in the power

graph) be adjacent precisely to the sets of the same type. Thus, {Y ∈ P(V ) :

type(X) = type(Y )} is a complete component of P(G). Consequently, the number

of complete components of P(G) is equal to the number of even types, which is

precisely 2n+m.

Let X be of odd type and (X,Y ) ∈ E+. Then X and Y have different dual types.

This means that every pair of different dual types determines a complete bipartite

component of P(G) (which consists of all subsets of V that belong to one of those

types). Consequently, the number of complete bipartite components of P(G) is equal

to a half of the number of odd types, which is precisely 1
2 (2

n+2m − 2n+m). �

From now, instead of saying that a graph is isomorphic to a global of another

graph, or that a graph is (up to isomorphism) a global of another graph, we will

shortly say that a graph is a global of another graph.

Of course, not every CCB graph G is a global of another CCB graph.

Proposition 3.

(1) There exists a CCB graph of dimension (a, b) which is a global of some CCB

graph if and only if there exist positive integers k and l such that k 6 l 6 2k

and a = 2k, a+ 2b = 2l.

(2) IfG is a CCB graph such thatG ≃ P(G0) for some graphG0, then the dimension

of G0 is uniquely determined by the dimension of G.
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P r o o f. (1) Let G be a CCB graph of dimension (a, b) which is a global of some

graph G0. Then G0 is a CCB graph with dimension, say, (n,m). From Proposition 2

we obtain a = 2n+m and a + 2b = 2n+2m. Therefore k = n + m, l = n + 2m and

obviously k 6 l 6 2k.

Suppose now that a = 2k, a+2b = 2l, and k 6 l 6 2k. Let n = 2k−l andm = l−k.

Then n and m are nonnegative numbers such that k = n+m and l = n+2m, which

gives a = 2n+m and b = 1
2 (2

n+2m − 2n+m). So, according to Proposition 2, if G0 is

any CCB graph of dimension (n,m), then dim(P(G0)) = (a, b).

(2) Let G be of dimension (a, b) and G0 be of dimension (n,m). As we have

shown in the proof of (1), there exist (uniquely determined) positive integers k and l

satisfying k 6 l 6 2k, such that k = n+m and l = n+ 2m. This implies n = 2k − l

and m = l − k. �

Let a CCB graph G of dimension (a, b) be given. Suppose that G is a global of

some CCB graph G0. The proof of the previous theorem gives a simple algorithm

for determining the dimension of G0.

Example 1. Let dim(G) = (8, 12). Then a = 23 and a + 2b = 25. This gives

k = 3, l = 5, and n = 6 − 5 = 1, m = 5 − 3 = 2. So if G = P(G0), then

dim(G0) = (1, 2).

Naturally, if G is a CCB graph of dimension (a, b) such that a and b fulfill the

conditions from Proposition 3, this still does not guarantee that G is a global of some

graph. Another obvious necessary condition is that the number of vertices of G is 2t

for some positive integer t. Even this will usually not be sufficient.

Example 2. Let G consist of 6 copies of Ks
1 , 2 copies of K

s
3 , 7 copies of K1,1,

4 copies of K1,7 and 1 copy of K3,3. Necessary conditions for a and b from Propo-

sition 3 are satisfied, number of vertices is 26, but G can not be the global of any

CCB graph. The reason for that is the structure of trivial components of G, as we

will see in Proposition 4.

A component of a CCB graph will be called trivial if it is isomorphic to Ks
1 orK1,1.

Knowing the number of trivial components of P(G0), we can determine the number

of trivial components in G0.

Proposition 4. Let G be a CCB graph with j trivial complete components

and k trivial bipartite components. Then P(G) has 2j+k trivial complete components

and 2j+k−1(2k − 1) trivial bipartite components.

P r o o f. Trivial components of P(G) will be obtained from those types (α, δ)

for which αi = 0 for all nontrivial components Ai of G and (βi, γi) = (0, 0) for all
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nontrivial components (Bi, Ci). There are exactly 2j+2k such types, and 2j+k of

them are even. Therefore the number of complete trivial components of P(G) is

2j+k, and the number of bipartite trivial components of P(G) is 1
2 (2

j+2k − 2j+k) =

2j+k−1(2k − 1) (a half of the number of odd types of this kind). �

It is now clear that when the global of a CCB graph G is given, we can easily

reconstruct the number of copies of Ks
1 and K1,1 among the components of G. Also,

we can now verify that the graph from Example 2 is not a global of any CCB graph.

It is sufficient to notice that it has 6 copies of Ks
1 , and 6 is different from 2j+k for

any positive integers j, k.

3. CCB graphs are globally determined

Lemma 1. Let G be a CCB graph. If G is the global of some CCB graph G0,

then we can determine at least one component of G0.

P r o o f. Let G0 have complete components A1, A2, . . . , An and bipartite com-

ponents (B1, C1), (B2, C2), . . . , (Bm, Cm). Note that according to Proposition 3 (2)

we can determine n and m, but the cardinalities of components are unknown. Put

|Ai| = ai, |Bi| = bi, |Ci| = ci. Let G have at least one complete bipartite compo-

nent. Pick a complete bipartite component (M,N) of G with |M | + |N | minimal.

According to Proposition 2 (1), if X ∈M and Y ∈ N , then type(X) = (type(Y ))−1.

Let type(X) = (αM , δM ), type(Y ) = (αN , δN ), I = {i : αM
i = 1}, J = {j : βM

j = 1},

K = {k : γM
k = 1}.

Now the exact number of elements in M is

|M | =
∏

i∈I

(2ai − 1) ·
∏

j∈J

(2bj − 1) ·
∏

k∈K

(2ck − 1).

Of course, |N | can be calculated in a similar way. Since the types of X and Y are

mutually dual, we know that αM = αN and there exists j such that (βM
j , γM

j ) = (1, 0)

and (βN
j , γN

j ) = (0, 1). Consider the type τ0 = (α, δ) such that (βj , γj) = (1, 0),

(βi, γi) = (0, 0) for i 6= j and αi = 0 for all i ∈ {1, . . . , n}. This type and its dual

type determine a bipartite component in G isomorphic to K2bj−1,2cj−1. Since 2
bj −1

divides |M | and 2cj − 1 divides |N |, the minimality of (M,N) implies |M | = 2bj − 1,

|N | = 2cj−1. This way we have determined the cardinality of a bipartite component

of G0, i.e. |Bj | = bj , |Cj | = cj .

Suppose now that all components of G are complete (which means that all com-

ponents of G0 are complete, too). We know that one trivial complete component

of G corresponds to the empty subset of G0. Let G
′ be the graph obtained from G
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by removing a trivial complete component. Pick a component K of G′ with mini-

mal cardinality. We know that all X from K have the same even type, say (αK , ∅).

Since |K| =
∏

{i : αK
i
=1}

(2ai − 1) and there exists j such that αj = 1, we conclude that

2aj − 1 divides |K| and aj > 1. Let K0 be a complete component of G determined

by the type (α, ∅) such that αj = 1 and αt = 0 for t 6= j. Then |K0| = 2aj − 1,

and the minimality of K implies |K| = 2aj − 1. In this way we have determined the

cardinality of a complete component of G0 : |Aj | = aj . �

To complete our proof of global determination of the class of CCB graphs, we need

two additional statements.

Lemma 2 ([7]). Let Σi∈IAi be the disjoint union of a family 〈Ai : i ∈ I〉 of

relational structures. Then P
(

∑

i∈I

Ai

)

≃
∏

i∈I

P(Ai).

Lemma 3 ([13]). Let G1, G2 and H be graphs. If G1 ×H ≃ G2 ×H and H has

a loop, then G1 ≃ G2.

Theorem 2. The class of CCB graphs is globally determined.

P r o o f. Let G1 and G2 be CCB graphs such that P(G1) ≃ P(G2). We are going

to prove thatG1 is isomorphic toG2. Notice thatG1 andG2 have the same dimension

and consequently the same number of components. Therefore the proof will be done

by induction on the number of components of G1 (G2). Let G1 have exactly one

component. If G1 = Kr, then P(G1) = Ks
1 + Ks

2r−1, which means that P(G1)

uniquely determinesG1. If G1 = Ks,t, then P(G1) = Ks
1+Ks

(2s−1)·(2t−1)+K2s−1,2t−1

and s, t are uniquely determined by P(G1).

Let G1 have k > 1 components. Suppose that the statement holds for all graphs

with less than k components. According to Lemma 1, we can determine a com-

ponent H of both G1 and G2. Then G1 = H + G′
1 and G2 = H + G′

2 for some

graphs G′
1 and G′

2. Using Lemma 2 we obtain P(H)× P(G′
1) ≃ P(G1) ≃ P(G2) ≃

P(H) × P(G′
2). Since P(H) always has a loop, we can apply Lemma 3 to obtain

P (G′
1) ≃ P (G′

2). By the induction hypothesis this gives G
′
1 ≃ G′

2, and finally

G1 ≃ G2. �

4. Reconstructing a CCB graph from its global

In this section we are going to present an algorithm for reconstructing a CCB graph

from its power graph. The algorithm is based on the following simple properties of

graphs:
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Lemma 4. Let G, H1 and H2 be graphs. Then

G× (H1 +H2) = G×H1 +G×H2.

Lemma 5.
Ks

n ×Ks
m = Ks

n·m,

Ks
n ×Ks,t = Kn·s,n·t,

Kp,q ×Ks,t = Kp·s,q·t +Kp·t,q·s.

Let a graph G′ be given and G′ = P(G0). The algorithm for determining G0

is inductive. It consists of two subroutines (A) and (B) used repeatedly until all

components of G0 are identified. Suppose that a graph P(Gi) has been obtained at

some stage of the algorithm. Then the inductive step is the following:

(A) Determine a component Hi+1 of Gi (which is also a component of the

graph G0).

(B) Determine the graph P(Gi+1), where Gi+1 is obtained by removing the com-

ponent Hi+1 from Gi.

According to Lemma 2, in part (A) we first determine complete bipartite com-

ponents of Gi, and then complete components. So, the algorithm has two phases:

phase 1, when there exist complete bipartite components of Gi, and phase 2,

when Gi consists of complete components only.

Phase 1 (Gi has complete bipartite components)

(A) Determine a component Hi+1 = Ka,b of Gi.

(B) Determine P(Gi+1) = P(Gi − Hi+1) in the following way: Put r = 2a − 1,

t = 2b − 1. Using Lemma 2 and Lemma 4 we obtain

P(Gi) = P(Gi+1 +Ka,b) = P(Gi+1)× P(Ka,b)

= P(Gi+1)× (Ks
1 +Ks

r·t +Kr,t)

= P(Gi+1) + P(Gi+1)×Ks
r·t + P(Gi+1)×Kr,t.

This means that P(Gi) contains all components of P(Gi+1). Therefore it is nec-

essary to decide what components of P(Gi) belong to P(Gi+1), and remove those

that do not. Distributivity of the direct product implies that for every component K

of P(Gi+1), two associated graphs, K ×Ks
r·t and K ×Kr,t, are also in P(Gi). Let

us start with complete components. Take a minimal complete component K = Ks
v

of P(Gi). This component (or some of its isomorphic copies) obviously belongs to

P(Gi+1), so it needs to be moved to the list of components of P(Gi+1). Then we re-

move one copy ofKs
v×K

s
r·t = Ks

v·r·t and one copy of K
s
v×Kr,t = Kv·r,v·t from P(Gi)
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and repeat the described procedure for another minimal complete component in the

new graph. In the end of this process, the list of all complete components of P(Gi+1)

is obtained. In that moment, all remaining components of the graph P(Gi) are com-

plete bipartite and it is necessary to distinguish those which belong to P(Gi+1). In

order to do that, pick a minimal bipartite component K = Kp,q, move it to the list

of components of P(Gi+1), and remove one copy of Kp,q×Ks
r·t = Kp·r·t,q·r·t and one

copy of Kp,q ×Kr,t = Kp·r,q·t +Kp·tr,q·r from what remained of P(Gi). Repeating

the procedure as long as it is necessary, we eventually obtain P(Gi+1).

Phase 2 (Gi is a disjoint union of complete components)

(A) Determine a component H = Ks
a of Gi.

(B) Determine P(Gi+1) = P(Gi − Hi+1) in the following way: Put r = 2a − 1.

Using Lemma 2 and Lemma 4 we obtain

P(Gi) = P(Gi+1 +Ks
a) = P(Gi+1)× P(K

s
a)

= P(Gi+1)× (Ks
1 +Ks

r) = P(Gi+1) + P(Gi+1)×Ks
r .

Take a minimal complete component K = Ks
v of P(Gi) and move it to the list of

components of P(Gi+1). Then remove one copy of K
s
v ×Ks

r = Ks
v·r from P(Gi) and

repeat the described procedure for another minimal component in the new graph.

In the end of this process, we obtain the list of all components of P(Gi+1).

The pseudo code of the algorithm described above is given bellow.

function Deglobalize(P(G))

U ← P(G), X ← ∅, G← ∅

while there is a bipartite component in U do

choose a minimal bipartite component Kr,t from U

a← log2(r + 1), b← log2(t+ 1)

G← G+Ka,b

while there is a complete component in U do

choose a minimal complete component Ks
v from U

X ← X +Ks
v

remove Ks
rtv, Krv,tv, K

s
v from U

end while

while there is a bipartite component in U do

choose a minimal bipartite component Kp,q from U

X ← X +Kp,q

remove Krtp,rtq, Krp,tq, Krq,tp, Kp,q from U

end while

U ← X , X ← ∅

end while
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while there is a complete component in U −Ks
1 do

choose a minimal complete component Ks
r from U −Ks

1

a← log2(r + 1)

G← G+Ks
a

while there is a complete component in U do

choose a minimal complete component Ks
v of U

X ← X +Ks
v

remove Ks
rv, K

s
v from U

end while

U ← X , X ← ∅

end while

return G

end function

5. Global determination of finite forests

A tree is a connected graph without cycles. A disjoint union of trees is called

a forest. In this section we prove that the class of finite forests is globally determined.

Let G be a graph. By NG(u), or simply N(u), we denote the set of all neighbours

of a vertex u of the graph G. If U is a subset of the vertex set of G, by N [U ] we

will denote the set of all neighbours of vertices from U (while N(U) denotes the set

of all neighbours of vertex U in P(G)). The degree of vertex v is the number |N(v)|

(the number of neighbours of vertex v). We will denote it by d(v).

It is well known that every tree has at least two leaves (vertices of degree 1).

By T (G) we will denote the set of all vertices of graph G that are adjacent to at

least one leaf of G.

Lemma 6. Let G = (V,E) be an undirected graph without isolated vertices,

X a leaf in the graph P(G), and Y a neighbour of X . Then N [X ] = Y and every

vertex from Y is adjacent to some leaf from X .

P r o o f. Since X does not contain any isolated vertex, N [X ] is a neighbour

of X in the global of G. This gives N [X ] = Y . Suppose y ∈ Y and y does not have

neighbours among the leaves from X . Then X would be adjacent to Y \ {y}, which

is clearly a contradiction. �

Lemma 7. Let G = (V,E) be an undirected graph, Y ∈ T (P(G)), and y ∈ Y .

Then {y} ∈ T (P(G)).
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P r o o f. According to Lemma 6 there exists a leaf x of graph G which is adjacent

to y. This means that {y} is a neighbour of {x}, which is a leaf in P(G). �

Lemma 8. Let G = (V,E) be a finite undirected connected graph and Y =

{y1, . . . , yr} ∈ T (P(G)), r > 2. Then

d(Y ) > max
yi∈Y

d({yi}).

P r o o f. Let ys be an arbitrary vertex from Y and d(ys) = p. Then d({ys}) =

2p−1. Let X be the set of leaves of G which are neighbours of vertices from Y \{ys}

and Z = N(ys). For every nonempty subset Z
′ of Z, X∪Z ′ is a neighbour of Y . This

gives d(Y ) > 2p−1. Let xi ∈ X be a leaf adjacent to yi, i 6= s. According to Lemma 6,

there are no leaves in Y . Consequently, Y is a neighbour of (X∪N(yi))\{xi}, which

means that at least one neighbour of Y does not contain all vertices from X . This

implies d(Y ) > 2p > d({ys}). �

Let G be a tree. In the further text we want to describe P(G). It is clear that

the global of every graph has one trivial component, which corresponds to ∅. The

remaining components will be referred to as nontrivial. It is well known that every

tree is a bipartite graph.

Lemma 9. Let X and Y be some nonempty sets of vertices of a graph G such

that for all x ∈ X there exists a walk of odd length from x to some y ∈ Y , and for

all y ∈ Y there exists a walk of odd length from some x ∈ X to y. Then X and Y

are in the same connected component of P(G).

P r o o f. Let X = {x1, . . . , xk}, Y = {y1, . . . , yl}. Every vertex xi ∈ X is

a starting point of a walk Wi of odd length ending in Y . Also, for every yj ∈ Y

there is a walk Wk+j of odd length from some x ∈ X to yj . Every walk Ws,

s ∈ {1, . . . , k + l}, could be extended to a walk W ′
s, whose length is equal to the

maximal length of walks W1, . . . ,Wj+k (by traversing the last edge backward and

forward as many times as necessary). Thus, we obtain k + l walks of the same

length d:
W ′

1 : x1 = z01, z11, . . . , zd1;

...

W ′
k : xk = z0k, z1k, . . . , zdk;

W ′
k+1 : z0k+1, z1k+1, . . . , zdk+1 = y1;

...

W ′
k + l : z0k+l, z1k+l, . . . , zdk+l = yl.
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Put Zm = {zm1, . . . , zmk+l}, m = 0, 1, . . . d. Then X = Z0, Z1, . . ., Zd = Y is

a walk from X to Y in P(G). �

In [2] it is proved that the positive global of a connected graph G is connected if

and only if G is not bipartite. Here we will describe globals of bipartite graphs (and

trees in particular) in more details.

Proposition 5. Let G be a connected bipartite graph. Then P(G) has two

nontrivial connected components and one of them is bipartite.

P r o o f. Let us denote partition classes of G by A and B. By A′ and B′ we

will denote the set of all nonempty subsets of A and B, respectively. By C′ we will

denote the set of all subsets of A ∪ B having nonempty intersection with both A

and B. It is clear that in P(G) a vertex from A′ ∪ B′ and a vertex from C′ can

not be neighbours. The subgraph of P(G) induced by A′ ∪ B′ is bipartite, with A′

and B′ as biparite classes, and it is connected, according to Lemma 9. The subgraph

induced by C′ is connected too, by the same reason. �

Lemma 10. Let G = (V,E) be a finite tree and u ∈ V . If X ∈ N({u}) and

d(X) = 2k − 1 for k > 2, then X is a singleton. If d(X) = 1, then there is at least

one singleton among the leaves of P(G) which are neighbours of {u}.

P r o o f. Suppose X is not a singleton. Let X = {x1, . . . , xr}, r > 2, and

d(xi) = ki+1, for i = 1, . . . , r. Since G is a tree, every two different vertices xi and xj

from X have at most one common neighbour, and that must be u. If Y ∈ N(X) and

u ∈ Y , then Y \ {u} can be any subset of
⋃

i∈1,...,r

{N(xi) \ {u} : xi ∈ X}, and there

are exactly 2k1+...+kr such subsets. If Y ∈ N(X) and u /∈ Y , then Y = U1 ∪ . . .∪Ur,

where Ui is a nonempty subset of N(xi)\{u}. There are
∏

i∈1,...,r

(2ki−1) such subsets,

which gives

d(X) = 2k1+...+kr + (2k1 − 1)(2k2 − 1) . . . (2kr − 1).

For d(X) > 1 at least one of the numbers ki is different from 0. It is now a routine

exercise to show that 2k1+...+kr − 1 < d(X) < 2k1+...+kr+1 − 1, which means that

d(X) can not be equal to 2k− 1 for a positive integer k. If d(X) = 1, then the leaves

{x1}, . . . , {xr} are neighbours of {u}. �

Theorem 3. The class of finite trees is globally determined.

P r o o f. LetG = (V,E) be a finite tree. According to Proposition 5 and its proof,

the global of G has two nontrivial components. One of them is bipartite and it con-

tains all singletons. Let m = min
Y ∈T (P(G))

d(Y ) and M = {Y ∈ T (P(G)) : d(Y ) = m}
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(note that T (P(G)) can contain vertices from both nontrivial components, but M

must be contained in the bipartite component). Suppose that X ∈M and X is not

a singleton. If x ∈ X , according to Lemma 8 we get d({x}) < d(X) = m. However,

this is impossible, since {x} ∈ T (P(G)) according to Lemma 7. Thus, we conclude

that all vertices from M are singletons of degree greater than one. The subgraph U

of P(G) induced by all singletons which are not leaves is connected. Therefore,

according to Lemma 10, a vertex Y of a graph P(G) belongs to U if and only if

d(Y ) = 2k − 1 for k > 2, and there exists a path from Y to some vertex from M

consisting of vertices of degree 2m−1 for some m > 2. This means that it is possible

to reconstruct U from P(G).

A vertex {u} from U is adjacent to a leaf Y from P(G) if and only if Y is a set

of some leaves of G which are adjacent to u. So, if {u} has 2k − 1 leaves of P(G)

among its neighbours, then exactly k of its neighbours are singletons. Therefore, G

is uniquely determined (up to an isomorphism). �

Theorem 4. The class of finite forests is globally determined.

P r o o f. Let G be a finite forest with connected components G1, . . . , Gk (which

are, of course, trees). Pick one of the bipartite components of P(G) with minimal

number of vertices. Similarly as in the proof of Lemma 1, we can conclude that

the chosen component is isomorphic to the bipartite component of P(Gi) for some

i ∈ {1, . . . , k}. According to Theorem 3, we can reconstruct the component Gi.

Using Lemmas 2 and 3, in a similar way as in the proof of Theorem 2, we can now

prove that the class of all finite forests is globally determined. �

6. Concluding remarks

In this paper we proved that two classes of finite graphs are globally determined.

The same ideas are present in both proofs, including cancelation properties of finite

relational structures, discovered by László Lovász. To apply this method to prove

that some class of finite graphs is globally determined, two conditions are necessary.

The first one is that the subclass of connected graphs from the given class is globally

determined. The second one is that, given the global of a graph from the class, we

are able to reconstruct a component of that graph.
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