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Abstract. Free Poisson algebras are very closely connected with polynomial algebras, and
the Poisson brackets are used to solve many problems in affine algebraic geometry. In this
note, we study Poisson derivations on the symplectic Poisson algebra, and give a connection
between the Jacobian conjecture with derivations on the symplectic Poisson algebra.
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1. Introduction

Free Poisson algebras are very closely connected with polynomial algebras, free as-

sociative algebras, and free Lie algebras. Free Poisson algebras and Poisson brackets

have been recently used to solve problems in affine algebraic geometry.

To solve Nagata’s conjecture, Shestakov and Umirbaev in [6], [7] constructed a the-

ory for deciding wildness of polynomial automorphisms in three variables. The ap-

proach they use is different from the traditional ones. The novelty consists in the

imbedding of the polynomial ring into the free Poisson algebra (or the algebra of

universal Poisson brackets) on the same set of generators and in the systematical use

of Poisson brackets as an additional tool.

Free Poisson algebras and their derivations and automorphisms have attracted the

interest of many mathematicians. Makar-Limanov and Umirbaev in [3], [4] proved

an analog of the Bergman Centralizer theorem and an analog of the Freiheitssatz

theorem in the free Poisson algebra. Makar-Limanov and Umirbaev in [2] expanded

the Rentschler theorem to the free Poisson algebra in two variables and proved
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that the automorphisms of the free Poisson algebra in two variables are tame, and

the locally nilpotent derivations are triangulable. Makar-Limanov and Shestakov

in [1] proved that any two Poisson dependent elements in a free Poisson algebra are

algebraically dependent, and applied this result to give a new proof of the tameness

of automorphisms for the free Poisson algebras of rank two. Umirbaev in [8] studied

the universal enveloping algebras and universal derivations of Poisson algebras, and

proved that the Jacobian conjecture is equivalent to the Poisson conjecture in the

Poisson algebra.

In this note, we show some connections between derivations on polynomial alge-

bras and derivations on symplectic Poisson algebras. We also show an equivalent

description of the Jacobian conjecture in the symplectic Poisson algebra k{x, y}.

2. Main results

A vector space P over a field k is said to be a Poisson algebra if B is endowed

with two bilinear operations: x · y (a multiplication) and {x, y} (a Poisson bracket),

and satisfies the following statements:

(1) B is a commutative associative algebra under the multiplication;

(2) B is a Lie algebra under the Poisson bracket;

(3) {x · y, z} = x · {y, z}+ {x, z} · y for x, y, z ∈ B.

Let B be a Poisson algebra and D a linear map on B. If D(xy) = D(x)y+ xD(y)

and D({x, y}) = {D(x), y} + {x,D(y)} for x, y ∈ B, then D is said to be a Poisson

derivation of B.

If P = k{x1, . . . , xn} is a free Poisson algebra with free generators x1, . . . , xn or

P = k[x1, x2, . . . , xn] is a polynomial algebra over k, then every derivation of P can

be uniquely written as

D =

n
∑

i=1

D(xi)
∂

∂xi

.

Recall that by the divergence D∗ of D we mean

D∗ =

n
∑

i=1

∂

∂xi

D(xi).

There are many important classes of polynomial Poisson algebras, one of which is

the symplectic algebra Sn. Sn is a polynomial algebra k[x1, y1, . . . , xn, yn] endowed

with the Poisson bracket defined by

{xi, yj} = δij , {xi, xj} = 0, {yi, yj} = 0,

where δij is the Kronecker symbol and 1 6 i, j 6 n.
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It is natural to identify the polynomial algebra k[x1, x2, . . . , xn] with the subspace

of the free Poisson algebra k{x1, x2, . . . , xn} generated by the elements

xr1
1
xr2
2
. . . xrn

n , ri > 0.

If f, g ∈ k[x1, x2, . . . , xn], then it follows immediately from the definition of the

Poisson bracket that

{f, g} =
∑

16i<j6n

( ∂f

∂xi

∂g

∂xj

−
∂f

∂xj

∂g

∂xi

)

{xi, xj}.

In particular, the Poisson bracket of two elements of Sn is

{f, g} =
∑

16i<j6n

( ∂f

∂xi

∂g

∂yi
−

∂f

∂yi

∂g

∂xi

)

.

Theorem 2.1. If D is a derivation of the symplectic Poisson algebra Sn =

k[x1, y1, . . . , xn, yn], then D∗ = 0 and there exists f ∈ Sn such that D = adf ,

that is, D(g) = {f, g} for any g ∈ Sn.

P r o o f. Since 0 = D({xi, yj}) = {D(xi), yj}+ {xi, D(yj)}, we have

∂

∂xj

D(xi) = −
∂

∂yi
D(yj).

Similarly, it follows from D({xi, xj}) = D({yi, xj}) = 0 that

∂

∂yj
D(xi) =

∂

∂yi
D(xj),

∂

∂xj

D(yi) =
∂

∂xi

D(yj).

By Euler’s lemma (see [5], Lemma 2.5.3) there exists f ∈ Sn such that

D(xi) = −
∂f

∂yi
, D(yj) =

∂f

∂xj

.

Thus,

D = −
∂f

∂y1

∂

∂x1

+
∂f

∂x1

∂

∂y1
− . . .−

∂f

∂yn

∂

∂xn

+
∂f

∂xn

∂

∂yn
= adf .

Hence D∗ = − ∂2f
∂x1∂y1

+ ∂2f
∂x1∂y1

− . . .− ∂2f
∂xn∂yn

+ ∂2f
∂xn∂yn

= 0. �

Corollary 2.2. Let P = k{x, y} be the symplectic Poisson algebra S2, then D is

a derivation of P if and only if D is a divergence zero derivation of the polynomial

algebra k[x, y].
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P r o o f. The sufficiency immediately follows from Theorem 2.1. Conversely, if

D = P ∂
∂x

+Q ∂
∂y
is a derivation of the polynomial algebra k[x, y] and D∗ = 0, then

Px + Qy = 0. Thus, there exists f ∈ k[x, y] such that for all g ∈ k[x, y], we have

D(g) = {f, g}, and D is a derivation of P . �

Proposition 2.3. The following statements are equivalent.

(1) The Jacobian conjecture is true for the polynomial algebra k[x, y].

(2) If D is a derivation of the symplectic Poisson algebra k{x, y} with a slice, that

is, there exists s ∈ k{x, y} such that D(s) = 1, then D is locally nilpotent.

P r o o f. (1)⇒(2) Let D be a derivation of k{x, y} with s ∈ k{x, y} such that

D(s) = 1. Then by Theorem 2.1, there exists f ∈ k{x, y} such that D(g) = {f, g} =

detJ(f, g) for any g ∈ k{x, y}. Since D(s) = 1, we have {f, s} = detJ(f, s) = 1.

Since the Jacobian conjecture is true for k[x, y], we have k[f, s] = k[x, y]. Conse-

quently, D is actually a partial derivation of k[x, y], thus D is a locally nilpotent

derivation.

(2)⇒(1) Let F = (f, g) be a polynomial endomorphism with detJF = 1. Then
∂
∂f

= gy
∂
∂x

−gx
∂
∂y
is a derivation of k{x, y} with divergence zero and ∂

∂f
f = 1. So by

hypothesis, ∂
∂f
is locally nilpotent. Similarly, ∂

∂g
is locally nilpotent. Then it follows

from [9], Proposition 2.2.10, that F is a polynomial automorphism. �
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