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Abstract. In this paper, we prove that any pure submodule of a strict Mittag-Leffler
module is a locally split submodule. As applications, we discuss some relations between
locally split monomorphisms and locally split epimorphisms and give a partial answer to
the open problem whether Gorenstein projective modules are Ding projective.
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1. Introduction

An inverse system of abelian groups (Aα, uαβ)α,β∈I is said to satisfy the Mittag-

Leffler condition if, for each α ∈ I, there exists an index γ(α) with γ > α, such

that uαβ(Aβ) = uαγ(Aγ) for any β > γ. Such condition was first introduced by

Grothendieck in [13]. For a countable inverse system, Grothendieck showed that

the Mittag-Leffler condition is a sufficient condition for the exactness of the inverse

limit functor (cf. [13], Section 13.1.2). Raynaud and Gruson in [15] showed that this

condition is closely related to the injectivity of the following canonical map:

ι :

(

∏

i∈I

Qi

)

⊗R M →
∏

i∈I

(Qi ⊗R M),

where {Qi}i∈I is a family of right R-modules andM is a left R-module. They proved

that ι is monomorphic for any family {Qi}i∈I of right R-modules if and only ifM can
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be expressed as the direct limit of a direct system of finitely presented left R-modules

(Fα, uβα)α,β∈I such that the inverse system (HomR(Fα, N),HomR(uβα, N))α,β∈I

satisfies the Mittag-Leffler condition for any left R-module N . So they called such

module Mittag-Leffler. Moreover, they investigated the so-called strict Mittag-Leffler

module, a stronger version of Mittag-Leffler module, which is defined via strict

Mittag-Leffler condition (see Definition 2.1). In the past few years, (strict) Mittag-

Leffler condition and modules were employed to solve many different problems in

homological algebra and representation theory, see [1], [4], [5], [9], so these notions

have caught many authors’ attentions. For example, in [2], Angeleri Hügel and Her-

bera undertook a systematic study on (strict) Mittag-Leffler conditions, especially

they gave some new characterizations of strict Mittag-Leffler modules, which they

called strict stationary modules in their paper. And in [10], Emmanouil and Talelli

investigated the flat length of injective modules by employing strict Mittag-Leffler

modules.

Motivated by the above results, in Section 2 of this paper, we prove that any

pure submodule of a strict Mittag-Leffler module is a locally split submodule (see

Theorem 2.7), then we investigate the relations between locally split monomorphisms

and locally split epimorphisms (see Corollary 2.8). Finally, in Section 3, based on

the results obtained in Section 2, we give a partial answer to the open problem when

Gorenstein projective modules are Ding projective.

Notation. Throughout this paper, R always denotes an associative ring with

an identity. All modules are left R-modules unless stated otherwise. We denote

by I(R), P(R) and F(R) the class of injective, projective and flat left R-modules,

respectively. The category of all left R-modules is denoted by R-Mod. We assume

that all direct and inverse systems are indexed by a directed set.

2. Locally split morphisms

In this section, we first study the closure properties of the class of strict Mittag-

Leffler modules, and prove that the pure submodules of a strict Mittag-Leffler module

are locally split submodules. Then we discuss the relations between locally split

monomorphisms and locally split epimorphisms, which can be viewed as an extension

of the relations between split monomorphisms and split epimorphisms. First of all,

we recall some properties of inverse systems of abelian groups that are related to

(strict) Mittag-Leffler conditions.

Definition 2.1. An inverse system of abelian groups (Aα, uαβ)α,β∈I with A =

lim←−Aα is said to satisfy the strict Mittag-Leffler condition if for each α ∈ I, there
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exists an index γ(α) with γ > α, such that uαβ(Aβ) = uα(A) for any β > γ, where

uα denotes the canonical map A→ Aα.

Remark 2.2. Note that an inverse system satisfies the Mittag-Leffler condition

if it satisfies the strict Mittag-Leffler condition. And by [2], Lemma 3.3, if the index

set I is countable, then an inverse system (Aα, uαβ)α,β∈I satisfies the Mittag-Leffler

condition if and only if it satisfies the strict Mittag-Leffler condition.

Strict Mittag-Leffler modules were studied by several authors under different

names. We collect some characterizations of such modules in the following theo-

rem.

Theorem 2.3 ([2], Proposition 8.1, Theorem 8.11). Let M and N be left R-

modules. The following statements are equivalent:

(1) There is a direct system of finitely presented modules (Fα, uβα)α,β∈I with M =

lim−→Fα, such that the inverse system

(HomR(Fα, N),HomR(uβα, N))α,β∈I

satisfies the strict Mittag-Leffler condition.

(2) Every direct system of finitely presented modules (Fα, uβα)α,β∈I with M =

lim−→Fα has the property that the inverse system

(HomR(Fα, N),HomR(uβα, N))α,β∈I

satisfies the strict Mittag-Leffler condition.

(3) There is a direct system of finitely presented modules (Fα, uβα)α,β∈I with M =

lim−→Fα having the property that for any α ∈ I there exists β > α such that any

homomorphism f : Fβ → N satisfies the condition that fuβα factors through

the canonical map uα : Fα →M .

(4) Every direct system of finitely presented modules (Fα, uβα)α,β∈I with M =

lim−→Fα has the property that for any α ∈ I there exists β > α such that any

homomorphism f : Fβ → N satisfies the condition that fuβα factors through

the canonical map uα : Fα →M .

(5) For every finitely presented module F and every homomorphism u : F → M ,

there exist a finitely presented module F ′ and a homomorphism v : F → F ′ such

that u factors through v, and moreover, for any homomorphism f : F ′ → N ,

fv factors through u.

(6) For any divisible abelian group D, the natural transformation

Φ: HomZ(N,D)⊗R M −→ HomZ(HomR(M,N), D)
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defined by Φ(f ⊗ m) : g 7→ f(g(m)), f ∈ HomZ(N,D), m ∈ M and g ∈

HomR(M,N) is a monomorphism.

Following Emmanouil’s terminology from [10], we say that M is a strict Mittag-

Leffler module over N if it satisfies the equivalent conditions in the above theorem,

and denote by SML(N) the class of strict Mittag-Leffler modules over N . This is

precisely the class of strict N -stationary modules in [2]. Let N be a class of left

R-modules. If, for any N ∈ N , M is a strict Mittag-Leffler module over N , we say

M is a strict Mittag-Leffler module over N and denote it by M ∈ SML(N ). M is

called a strict Mittag-Leffler module if N=R-Mod.

Remark 2.4. (1) By Theorem 2.3 (6), it is easy to see that the class SML(N)

is closed under direct sums and direct summands. Furthermore, SML(N) is closed

under pure submodules.

(2) Note that the map in Theorem 2.3 (6) is an isomorphism if M is finitely

presented. Thus all pure projective modules are strict Mittag-Leffler over the class

of all left R-modules, i.e., M ∈ SML(R-Mod) holds for any pure projective left R-

module M . This follows from the fact that every pure projective module is a direct

summand of a direct sum of finitely presented modules. So P(R) ⊆ SML(R-Mod).

We now recall the definitions of locally split morphisms.

Definition 2.5.

(1) A monomorphism ε : A → B is called locally split if for each element x ∈ A

there is a homomorphism f : B → A such that fε(x) = x.

(2) An epimorphism π : B → C is called locally split if for each element x ∈ C

there is a homomorphism g : C → B such that πg(x) = x.

An R-module M is called locally pure projective if any pure epimorphism onto

it is locally split. Azumaya proved in [3] that the class of locally pure projective

modules coincides with the class of strict Mittag-Leffler modules.

Locally split monomorphism is called strongly pure monomorphism by Zimmer-

mann in [16]. Using the technique given by Villamayor, which is reproduced in [7],

Zimmermann showed in [16], Proposition 1.2, that a monomorphism is strongly pure

if and only if for each finite subsetX ofA, there exists f : B → A such that fε(x) = x

for any x ∈ X . It is easily seen that locally split morphisms are generalizations of split

morphisms. It is well known that in an exact sequence 0 → M ′ ε
→ M

π
→ M ′′ → 0,

ε is a split monomorphism if and only if π is a split epimorphism. But this does not

hold true for locally split morphisms. In the rest of this section, we first investigate

more closure properties of strict Mittag-Leffler modules with locally split morphisms,

then, we discuss the relations between locally split monomorphisms and locally split

epimorphisms by strict Mittag-Leffler modules.
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Note that the first part of the following proposition has been proven by the authors

in [2], Corollary 8.5, but we here give a simpler proof.

Proposition 2.6. Let R be a ring.

(1) ([2], Corollary 8.5) Let 0→ A
ε
→ B → C → 0 be an exact sequence of modules

with ε a locally split monomorphism and M an R-module. Then M ∈ SML(B)

implies M ∈ SML(A).

(2) Let 0 → M ′ → M
π
→ M ′′ → 0 be an exact sequence of modules with π

a locally split epimorphic and N an R-module. Then M ∈ SML(N) implies

M ′′ ∈ SML(N).

P r o o f. (1) Given a direct system of finitely presentedR-modules (Fα, uβα)α,β∈I

with M = lim−→Fα, we denote the canonical maps Fα → M by uα. Consider the

following diagram:

Fα

uα

��

uβα // Fβ

uβ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

f // A

ε

��
M

h

66♥
♥

♥
♥

♥
♥

♥
♥

g
//❴❴❴❴❴❴❴ B.

ϕ

OO✤
✤

✤

Assume that M ∈ SML(B), then for any homomorphism f : Fβ → A, there is

a homomorphism g : M → B such that εfuβα = guα by Theorem 2.3 (4). We

note that ε is a locally split monomorphism and fuβα(Fα) is finitely generated,

hence there exists a homomorphism ϕ : B → A satisfying ϕεfuβα(x) = fuβα(x) for

each x ∈ Fα. Set h = ϕg : M → A, then for any x ∈ Fα, huα(x) = ϕguα(x) =

ϕεfuβα(x) = fuβα(x). This shows M ∈ SML(A).

(2) For any finitely presented module F and any homomorphism u : F → M ′′

there exists a homomorphism ϕ : M ′′ →M such that πϕu(x) = u(x) for any x ∈ F .

Now we suppose thatM ∈ SML(N). Following Theorem 2.3 (5) there exist a finitely

presented left R-module F ′, a homomorphism v : F → F ′ and a homomorphism

g : F ′ →M such that gv = ϕu, and for any homomorphism f : F ′ → N , fv factors

through ϕu, i.e., there is a homomorphism h : M → N such that fv = hϕu. Consider

the following diagram:

N F ′
foo

g

��

F
voo

u

��
0 // M ′ // M

h

aa❈
❈
❈
❈

π // M ′′

ϕ
oo❴ ❴ ❴

// 0.

It is easily seen that πgv = πϕu = u. By Theorem 2.3 (5), M ′′ ∈ SML(N). �
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Note that an exact sequence 0 → A
ε
→ B

π
→ C → 0 of R-modules is pure exact

if ε is a locally split monomorphism or π is a locally split epimorphism. We now

give a kind of invecs of this result with strict Mittag-Leffler condition. The proof

of the following theorem employs some results in [3], note that the class of locally

pure projective modules studied in [3] coincides with the class of strict Mittag-Leffler

modules.

Theorem 2.7. Let 0 → M ′ ε
→ M → M ′′ → 0 be a pure exact sequence of

modules, such that M is a strict Mittag-Leffler module. Then ε is a locally split

monomorphism.

P r o o f. We shall prove that for any x ∈ M ′, there is a homomorphism

t : M →M ′ with tε(x) = x. Note that strict Mittag-Leffler modules coincide with

locally pure projective modules. By [3], Proposition 4, there exist a finitely presented

R-module F , a homomorphism h : M → F and a homomorphism g : F → M such

that ghε(x) = ε(x). Let K be the cyclic R-module generated by hε(x) and let

i : K →֒ F be the inclusion map. Define f : K → M ′ by fhε(x) = x. We consider

the following diagram:

0 // K
�

� i //

f

��

F

g

��

ϕ

}}③
③
③
③

0 // M ′
ε // M.

h

OO✤
✤

✤

It is easy to check that εf(hε(x)) = ε(x) = gh(ε(x)) = gi(hε(x)). This shows

εf = gi. Thus there is a homomorphism ϕ : F → M ′ such that ϕi = f by [4],

Lemma 4.1. Set t = ϕh : M → M ′, then tε(x) = ϕhε(x) = ϕihε(x) = fhε(x) = x.

Therefore ε is a locally split monomorphism. �

Note that a submodule N of an R-module M is called locally split, if the in-

clusion map i : N →֒ M is locally split. Therefore, the above theorem shows that

any pure submodule of a strict Mittag-Leffler module is a locally split submodule.

Now, as a corollary of the above theorem and Proposition 2.6 (2), we can give the

following result, which can be viewed as an extension of the relations between split

monomorphisms and split epimorphisms to the case of locally split morphisms.

Corollary 2.8. Let 0 → M ′ ε
→ M

π
→ M ′′ → 0 be an exact sequence of modules

with M strict Mittag-Leffler. Then π is a locally split epimorphism if and only if ε is

a locally split monomorphism and M ′′ is a strict Mittag-Leffler module.

Moreover, as another corollary, we have the following result, which has also been

proven by Herbera and Trlifaj in [14], Lemma 3.3.
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Corollary 2.9. Every finitely generated pure submodule of a strict Mittag-Leffler

module is a direct summand.

3. An application

During the past several years, Gorenstein modules were deeply studied by many

authors. It is well known that these modules have many similar properties as projec-

tive, injective and flat modules. But there are significant differences. For example,

projective modules are always flat modules, but it is not clear whether Gorenstein

projective modules are Gorenstein flat. Recently, Ding et al. in [8] considered a spe-

cial class of the Gorenstein projective modules, which they called strongly Gorenstein

flat modules. Gillespie renamed strongly Gorenstein flat modules as Ding projective

modules (see [12] for details).

We now recall the definitions of relevant notions.

Definition 3.1.

(1) ([11], Definition 10.2.1) An R-module M is called Gorenstein projective if there

exists an exact sequence . . . → P1 → P0 → P 0 → P 1 → . . . of projective

modules with M = Ker(P 0 → P 1) such that HomR(−, Q) leaves the sequence

exact whenever Q is projective.

(2) ([6], Definition 2.1) An R-module M is called strongly Gorenstein projective if

there exists an exact sequence . . .
f
→ P

f
→ P

f
→ P

f
→ . . . of projective modules

with M = Ker(f) such that HomR(−, Q) leaves the sequence exact whenever

Q is projective.

(3) ([12], Definition 3.7) An R-moduleM is called Ding projective if there exists an

exact sequence . . . → P1 → P0 → P 0 → P 1 → . . . of projective modules with

M = Ker(P 0 → P 1) such that HomR(−, F ) leaves the sequence exact whenever

F is flat.

(4) ([11], Definition 10.3.1) An R-module M is called Gorenstein flat if there exists

an exact sequence . . . → F1 → F0 → F 0 → F 1 → . . . of flat modules with

M = Ker(F 0 → F 1) such that I ⊗R − leaves the sequence exact whenever I is

an injective right R-module.

We denote by GP(R), SGP(R), DP(R) and GF(R) the classes of Gorenstein

projective, strongly Gorenstein projective, Ding projective and Gorenstein flat R-

modules, respectively. By Definition 3.1, it is easy to get that SGP(R) ⊆ GP(R) and

DP(R) ⊆ GP(R). Bennis and Mahdou in [6] gave an example of a Gorenstein projec-

tive module which is not strongly Gorenstein projective, and so GP(R) * SGP(R).
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However, we have not been able to find examples of Gorenstein projective mod-

ules which are not Ding projective, so it remains open whether the inclusion of

GP(R) ⊆ DP(R) is true. Furthermore, it is not clear whether all Gorenstein pro-

jective modules are Gorenstein flat. Ding et al. proved in [8], Proposition 2.3, that

over coherent rings, Ding projective (i.e., strongly Gorenstein flat in the proposi-

tion) modules are Gorenstein flat. Therefore, if the class of Ding projective modules

(strongly Gorenstein flat modules) happens to be the class of Gorenstein projective

modules, then, over coherent rings, all Gorenstein projective modules are Gorenstein

flat. In the rest of this section, we first focus on the question when strongly Goren-

stein projective modules are Ding projective, then we apply our result to show when

the class of Gorenstein projective modules coincides with the class of Ding projective

modules.

Recall that an R-module is said to be countably presented if it is the cokernel of

a homomorphism between two countably generated free modules. It is well-known

that any countably presented module can be expressed as the direct limit of a count-

able direct system of finitely presented modules. Let M be a countably presented

module and P an R-module. Then Ext1R(M,P (N)) = 0 implies that M ∈ SML(P )

by [1], Example 2.4 (4), and [2], Remark 8.3 (3), or by [9], Proposition 2.3. The

following result was obtained by Grothendieck in [13], Section 13.1.2.

Lemma 3.2. Let 0→ Ai → Bi → Ci → 0, i ∈ N, be a countable inverse system of

short exact sequences. If the inverse system (Ai)i∈N satisfies the strict Mittag-Leffler

condition, then

0→ lim←−Ai → lim←−→ Bi → lim←−Ci → 0

is exact.

Theorem 3.3. Every countably presented strongly Gorenstein projective module

is Ding projective.

P r o o f. Let N be a countably presented strongly Gorenstein projective module.

Then there is a countable direct system

F1
f1
→ F2

f2
→ F3 → . . .→ Fn

fn
→ Fn+1 → . . .

of finitely presented modules such that N = lim−→Fn. Note that Ext
1
R(N,R(N)) = 0,

so N ∈ SML(R). We conclude that N ∈ SML(P(R)) by [2], Corollary 8.5 (iii).

For any F ∈ F(R), we consider a pure exact sequence 0 → K → P → F → 0

with P projective. Applying the functor HomR(Fn,−) to the pure exact sequence

0→ K → P → F → 0, we obtain an inverse system of exact sequences of the form

0→ HomR(Fn,K)→ HomR(Fn, P )→ HomR(Fn, F )→ 0.
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Since every projective module is strict Mittag-Leffler, we have that K is a lo-

cally split submodule of P by Theorem 2.7. So N ∈ SML(P(R)) implies that

N ∈ SML(K) by Proposition 2.6 (1). So, the inverse system of abelian groups

(HomR(Fn,K),HomR(fn,K)) satisfies the strict Mittag-Leffler condition. Then we

have an exact sequence

0→ lim←−HomR(Fn,K)→ lim←−HomR(Fn, P )→ lim←−HomR(Fn, F )→ 0

by Lemma 3.2. This shows that the sequence

0→ HomR(lim−→Fn,K)→ HomR(lim−→Fn, P )→ HomR(lim−→Fn, F )→ 0

is exact. Thus we have that the sequence

0→ HomR(N,K)→ HomR(N,P )→ HomR(N,F )→ 0

is exact. The exactness of 0 → Ext1R(N,K) → Ext1R(N,P ) = 0 implies that

Ext1R(N,K) = 0. The definition of a strongly Gorenstein projective module gives

that ExtiR(N,K) = 0 for any i > 1. It follows that ExtiR(N,F ) = 0 for any i > 1 by

dimension shifting. This proves that N is Ding projective. �

Note that Bennis and Mahdou proved in [6], Theorem 2.7, that an R-moduleM is

Gorenstein projective if and only if it is a direct summand of a strongly Gorenstein

projective module. This result shows that strongly Gorenstein projective modules

in Gorenstein homological algebra behave just like free modules in homological alge-

bra. Note that every projective module is a direct summand of a free module, and

Kaplansky showed that every projective module is a direct sum of countably gener-

ated projective R-modules, therefore, it is natural to ask whether every Gorenstein

projective module is a direct summand of the direct sum of countably generated

(countably presented) strongly Gorenstein projective modules. If this is the case, as

a corollary of Theorem 3.3, we have the following result:

Corollary 3.4. Assume that R is a right coherent ring such that every Gorenstein

projective module is a direct summand of the direct sum of countably presented

strongly Gorenstein projective modules. Then every Gorenstein projective module

is Ding projective, and in particular, it is Gorenstein flat.

P r o o f. LetM be a Gorenstein projective left R-module such thatM is a direct

summand of the direct sum of countably presented strongly Gorenstein projective

modules which are also Ding projective modules by Theorem 3.3. Since the base ring

is right coherent, we get that the class of Ding projective modules is closed under

direct sums and direct summands by [8], Proposition 2.10. Therefore M is Ding

projective. �
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