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Abstract. We study the limit behavior of weighted Bergman kernels on a sequence of
domains in a complex space C

N , and show that under some conditions on domains and
weights, weighed Bergman kernels converge uniformly on compact sets. Then we give
a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting
some special property of the domains, on which the weighted Bergman kernels converge
uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this
property, which will give a characterization of the domains, for which the inverse of the
Ramadanov’s theorem holds.
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1. Introduction

The Bergman kernel (see for instance [2], [8], [9], [10], [16], [19]) has become

a very important tool in geometric function theory, in both one and several complex

variables.

It turned out that not only the classical Bergman kernel, but also the weighted

one can be useful. Let D ⊂ C
N be a bounded domain. For example (see [5]), if we

denote by Π: L2(D) → L2
H(D) (the Bergman projection), we may define for any

ψ ∈ L∞(D) the Toeplitz operator Tψ as a (bounded linear) operator on L
2
H(D) by

Tψf := Π(ψf). In particular, for ψ > 0 on D we have that Tψ is positive definite (so

injective), so there exists an inverse T−1
ψ . Taking positive continuous weight function

µ ∈ L∞(D), Tµ extends to a bounded operator from L2
H(D,µ) into L

2
H(D), and

KD,µ(·, x) = T−1
µ KD(·, x), where KD,µ(·, x) denotes the weighted Bergman kernel

(associated to the weighted Bergman space L2
H(D,µ)) at x ∈ D.
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Another practical application of weighted Bergman kernels may bo found in quan-

tum theory (see [4] and [12], and [13])–we may consider a Kähler manifold Ω as a clas-

sical phase space of a physical system (many leading quantized classical systems have

such a phase space). The Hilbert spaceH of quantum states of such a system consists

of the holomorphic sections of some Hermitian line bundle E over Ω, which belong

to L2(Ω, µ) (for the Liouville measure µ on Ω). One of the most interesting and

important objects of this model is the reproducing kernel K of H (that is, the kernel

KΩ,µ). This kernel makes the quantization of classical states possible as follows: one

can assign to any classical state z ∈ Ω the quantum state

vz := [K(·, z)/‖K(·, z)‖] ∈ H.

Using this embedding, one can calculate the transition probability amplitude from

one point to another:

a(z, w) := |〈vz | vw〉|, z, w ∈ Ω.

Then the calculation of the Feynman path integral for such a system is equivalent

to finding the reproducing kernel K (that is, KΩ,µ).

But in general, it is difficult to say anything about the unweighted (regular) or

weighted kernel of a given domain. One of the classic results for unweighted Bergman

kernels is the Ramadanov’s theorem (see [15]):

Theorem 1 (Ramadanov). Let D1 ⋐ D2 ⋐ D3 . . . be an increasing sequence of

domains and set D :=
⋃

j

Dj. Then KDj
→ KD uniformly on compact subsets of

D ×D.

It is very natural to ask whether similar theorem for weighted Bergman kernels is

true. Let us recall the Forelli-Rudin construction (see [6] and [11]): If µ is a contin-

uous weight on D and Ω denotes the Hartogs domain

Ω = {(z, w) ∈ D × C
n : ‖w‖2n < µ(z)}

in C
N+n, then

KD,µ(z, p) =
π
n

n!
KΩ((z, 0), (p, 0))

(that is, the weighted Bergman kernel KD,µ(z, p) of D is the restriction of the un-

weighted Bergman kernel KΩ((z, w), (p, s)) of Ω to the hyperplane w = s = 0).

Thus, using Ramadanov’s theorem for the kernels KΩj
((z, 0), (p, 0)) we can derive

(under some conditions on weights–monotonicity for instance) the weighted analogue
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of this theorem. And in fact, we may find some versions in literature (in [7], Propo-

sition 3.17, Theorem 3.18 for instance), but the considered weights are in a special

form, as moduli of holomorphic functions or C2 functions, or as a product of one of

those with the given weight ψ. Additionally, some relevant considerations on conver-

gence of a sequence of reproducing kernels were given in [1] (particularly Section 9 of

Part I). We can easily see that continuity of the weight µ in the Forelli-Rudin con-

struction provides basically that Ω is an open set. In this paper we derive a weighted

version of Ramadanov’s theorem for the so called ‘admissible weights’ µ (we do not

require µ to be continuous) without using Forelli-Rudin construction. It is very nat-

ural to consider such kind of weights, just by their definition (see below). We will

prove the inverse of this theorem as well (see also [17], page 37, for an unweighted

situation). In the second part of the paper we show that density of holomorphic

functions on a considered domain is very related to the convergence of the weighted

Bergman kernels. In fact, we will get an equivalence in the unweighted case. This

will provide us with a characterization of the domains, for which the inverse of Ra-

madanov’s theorem holds. We shall start from the definitions and basic facts used

in this paper.

2. Definitions and notation

Let D ⊂ C
N be a domain, and let W (D) be the set of weights on D, i.e. W (D) is

the set of all Lebesgue measurable, real-valued, positive functions on D (we consider

two weights as equivalent if they are equal almost everywhere with respect to the

Lebesgue measure on D). If µ ∈ W (D), we denote by L2(D,µ) the space of all

Lebesgue measurable, complex-valued, µ-square integrable functions on D, equipped

with the norm ‖·‖D,µ := ‖·‖µ given by the scalar product

〈f | g〉µ :=

∫

D

f(z)g(z)µ(z) dV, f, g ∈ L2(D,µ).

The space L2
H(D,µ) = H(D)∩L2(D,µ) is called the weighted Bergman space, where

H(D) stands for the space of all holomorphic functions on the domain D. For any

z ∈ D we define the evaluation functional Ez on L
2
H(D,µ) by the formula

Ezf := f(z), f ∈ L2
H(D,µ).

Let us recall Definition 2.1 of admissible weight given in [14].

Definition 2 (Admissible weight). A weight µ ∈ W (D) is called an admissible

weight, an a-weight for short, if L2
H(D,µ) is a closed subspace of L2(D,µ) and for

any z ∈ D the evaluation functional Ez is continuous on L
2
H(D,µ). The set of all

a-weights on D will be denoted by AW (D).
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The definition of admissible weight provides us basically with existence and unique-

ness of the related Bergman kernel and completeness of the space L2
H(D,µ). The

concept of a-weight was introduced in [13], and in [14] several theorems concerning

admissible weights are proved. An illustrative one is:

Theorem 3 ([14], Corolarry 3.1). Let µ ∈ W (D). If the function µ−a is locally

integrable on D for some a > 0, then µ ∈ AW (D).

Now, let us fix a point t ∈ D and minimize the norm ‖f‖µ in the class Et =

{f ∈ L2
H(D,µ) f(t) = 1}. It can be proved in a similar way as in the classical case

that if µ is an admissible weight, then there exists exactly one function minimizing

the norm. Let us denote it by φµ(z, t). Weighted Bergman kernel function KD,µ is

defined as

KD,µ(z, t) =
φµ(z, t)

‖φµ‖2µ
.

3. Variations on the Ramadanov’s theorem and domain dependence

In this section we study the limit behavior of weighted Bergman kernels for ad-

missible weights. Moreover, we give a weighted characterization of the Bergman

kernel (see also [17], page 36) by means of which we prove a kind of converse of

the Ramadanov’s theorem. We show that density of holomorphic functions is very

related to the convergence of sequences of weighted Bergman kernels, and in the case

of µn ≡ 1 we even have an equivalence (see also [18]).

3.1. Weighted generalization of the Ramadanov’s theorem

Main Theorem 4 (Weighted generalization of the Ramadanov’s theorem). Let

{Di}
∞
i=1 be a sequence of domains in C

N and set D :=
⋃

j

Dj . Let µ ∈ AW (D),

µk ∈ AW (Dk) (extend µk by µ on D). Assume moreover that

a) for any n ∈ N there is N = N(n) s.t. Dn ⊂ Dm and µn(z) 6 µm(z) 6 µ(z) for

m > N(n), z ∈ Dn;

b) µk −→
k→∞

µ pointwise a.e. on D.

Then

lim
k→∞

KDk,µk
= KD,µ

locally uniformly on D ×D.

The first step in the proof is to show the monotonicity property for the weighted

kernels. Then we should check that the limit of a sequence of weighted kernels of

the domains Dn, if it exists, is equal to KD,µ.

832



Lemma 5 (Monotonicity property). For any n ∈ N, t ∈ Dn, the inequality

KDn,µn
(t, t) > KDm,µm

(t, t) holds for m > N(n).

P r o o f. Let us fix n ∈ N, t ∈ Dn. Let m > N(n). The inequality in the state-

ment of the lemma is true if KDm,µm
(t, t) = 0. Then suppose that KDm,µm

(t, t) > 0.

In the proof we use a simple remark that

1

KDn,µn
(t, t)

=

∫

Dn

∣

∣

∣

KDn,µn
(s, t)

KDn,µn
(t, t)

∣

∣

∣

2

µn(s) dV

since KDn,µn
(t, t) > 0 and

KDn,µn
(t, t) =

∫

Dn

KDn,µn
(z, t)KDn,µn

(z, t)µn(z) dV

by the reproducing property ([13]) for f(·) = KDn,µn
(·, t). Moreover, the term

KDn,µn
(·, t)/KDn,µn

(t, t) is the only element in the class {f ∈ L2
H(Dn, µn) : f(t) = 1}

with minimal norm. Thus, for m > N(n) we have

1

KDn,µn
(t, t)

6

∫

Dn

∣

∣

∣

KDm,µm
(s, t)

KDm,µm
(t, t)

∣

∣

∣

2

µn(s) dV

6

∫

Dn

∣

∣

∣

KDm,µm
(s, t)

KDm,µm
(t, t)

∣

∣

∣

2

µm(s) dV

6

∫

Dm

∣

∣

∣

KDm,µm
(s, t)

KDm,µm
(t, t)

∣

∣

∣

2

µm(s) dV =
1

KDm,µm
(t, t)

.

�

Remark 6. One can show similarly that KDn,µn
(t, t) > KD,µ(t, t) for n ∈ N.

Lemma 7 (Uniqueness of the limit). If lim
n→∞

KDn,µn
= k locally uniformly on

D ×D, then k = KD,µ.

P r o o f. Since the sequence {KDn,µn
}∞n=1 converges locally uniformly on D×D

and any function KDn,µn
is continuous, we obtain that k is continuous on D × D.

Let us recall that

(3.1)

∫

Dm

KDm,µm
(z, t)KDm,µm

(z, t)µm(z) dV = KDm,µm
(t, t).

Fix a compact set E ⊂ D and t ∈ E. For m large enough, E ⊂ Dm and t ∈ Dm. By

Fatou’s lemma
∫

E

|k(z, t)|2µ(z) dV 6 lim inf
m→∞

∫

E

|KDm,µm
(z, t)|2µm(z) dV

6 lim inf
m→∞

∫

Dm

|KDm,µm
(z, t)|2µm(z) dV

= lim inf
m→∞

KDm,µm
(t, t) = k(t, t).
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Since E is an arbitrary compact set,

(3.2)

∫

D

|k(z, t)|2µ(z) dV 6 k(t, t).

By the Weierstrass theorem, k(·, t) ∈ H(D), so k(·, t) ∈ L2
H(D,µ).

By Remark 6 we get

KDn,µn
(t, t) > KD,µ(t, t)

for n = 1, 2, . . ., t ∈ D. In the limit n→ ∞ we obtain

k(t, t) > KD,µ(t, t).

It suffices to show that k(z, t) = KD,µ(z, t). We should consider two cases:

1. KD,µ(t, t) = 0 for some t ∈ D.

Then for z ∈ D, KD,µ(z, t) = 0 since KD,µ(t, t) =
∫

D
|KD,µ(z, t)|

2µ(z) dV, and

KD,µ is continuous with respect to z. Thus, for any f ∈ L2
H(D,µ)

f(t) =

∫

D

f(w)KD,µ(t, w)µ(w) dV = 0

and we have that k(t, t) = 0 since f(·) := k(·, t) ∈ L2
H(D,µ). But

∫

D

|k(z, t)|2µ(z) dV 6 k(t, t),

so k(z, t) = 0 for z ∈ D.

2. KD,µ(t, t) > 0 for some t ∈ D.

Then k(t, t) > 0 since k(t, t) > KD,µ(t, t) > 0. We will use once more the well

known fact, that in the set {f ∈ L2
H(D,µ) : f(t) = 1} (for some fixed t ∈ D) the

function KD,µ(·, t)/KD,µ(t, t) is the only minimal element. It is easy to see that

k(·, t)/k(t, t) belongs to this set (since k(·, t) ∈ L2
H(D,µ)) and moreover, by (3.2)

‖k(·, t)‖µ 6
√

k(t, t). Thus,

∥

∥

∥

k(·, t)

k(t, t)

∥

∥

∥

µ
6

√

k(t, t)

k(t, t)
=

1
√

k(t, t)
6

1
√

KD,µ(t, t)
=

∥

∥

∥

KD,µ(·, t)

KD,µ(t, t)

∥

∥

∥

µ
.

By the minimality property of KD,µ(·, t)/KD,µ(t, t) we get from the above that

∥

∥

∥

k(·, t)

k(t, t)

∥

∥

∥

µ
=

1
√

k(t, t)
=

1
√

KD,µ(t, t)
=

∥

∥

∥

KD,µ(·, t)

KD,µ(t, t)

∥

∥

∥

µ
.

So k(t, t) = KD,µ(t, t) and k(z, t) = KD,µ(z, t) for z, t ∈ D. �
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P r o o f of the Main Theorem 4. We will show that for n ∈ N the sequence

{KDm,µm
}m>N(n) is locally bounded on Dn ×Dn.

Using well known version of the Schwarz inequality for reproducing kernels and

Lemma 5 we obtain for any z, t ∈ Dn:

|KDm,µm
(z, t)| 6

√

KDm,µm
(z, z)

√

KDm,µm
(t, t)

6

√

KDn,µn
(z, z)

√

KDn,µn
(t, t), m > N(n).

The term on the right-hand side of the estimation above is locally bounded on

Dn×Dn. One can observe that for every compact subset of D there exists a value of

n for which the compact set is included in Dn, and therefore the estimation actually

implies that the sequence {KDm,µm
} is locally bounded on D ×D. Thus, by Mon-

tel’s property, any subsequence of {KDm,µm
} has a subsequence convergent locally

uniformly on D ×D. By Lemma 7 the limit does not depend on a subsequence and

is identically equal to KD,µ. Thus

lim
m→∞

KDm,µm
(z, t) = KD,µ(z, t)

locally uniformly on D ×D. �

Remark 8. Notice that the case of an increasing sequence of domains is a sub-

case of the Main Theorem 4 (see [19] for the very interesting considerations and

unweighted version of Lemma 7).

3.2. Characterization of the weighted Bergman kernel and further re-

marks on “decreasing-like” sequence of domains. In [17], page 36, a charac-

terization lemma for unweighted Bergman kernels is given. One can easily conclude

similar one for weighted Bergman kernels, as the following Lemma 9 shows. The

proof is attached for the convenience of the reader.

Lemma 9. Denote by Sµ,t ⊂ L2
H(D,µ) the set of all functions f such that

f(t) > 0 and ‖f‖µ 6
√

f(t), where t ∈ D is fixed. Then the weighted Bergman

function ϕµ,t(·) := KD,µ(·, t) is uniquely characterized by the properties:

(i) ϕµ,t ∈ Sµ,t;

(ii) if f ∈ Sµ,t and f(t) > ϕµ,t(t), then f ≡ ϕµ,t.

P r o o f. One can easily see, that there exists at most one element ϕµ,t ∈

L2
H(D,µ) which satisfies (i) and (ii) (if ϕ1, ϕ2 satisfies (i) and (ii), then both ϕ1(t) and
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ϕ2(t) are nonnegative, and either ϕ1(t) > ϕ2(t) and then ϕ1 ≡ ϕ2 or ϕ2(t) > ϕ1(t)

and then ϕ2 ≡ ϕ1). We shall show that ϕµ,t(·) = KD,µ(·, t) has both properties.

We have

ϕµ,t(t) = KD,µ(t, t) > 0

and

‖KD,µ(·, t)‖
2
µ = KD,µ(t, t)

Now let f satisfy the hypothesis of (ii). If f(t) = 0, then ϕµ,t(t) = 0. Hence

‖f‖µ = ‖ϕµ,t‖µ = 0, so f ≡ 0 ≡ ϕµ,t.

Assume now f(t) > 0. By the definition of the weighted Bergman kernel

function, ϕµ,t(·)/ϕµ,t(t) is uniquely characterized as the element in the set {h ∈

L2
H(D,µ), h(t) = 1} with the minimal norm. But f(·)/f(t) belongs to this set as

well, moreover,

∥

∥

∥

f(·)

f(t)

∥

∥

∥

µ
=

‖f‖µ
√

f(t)
√

f(t)
6

1
√

f(t)
6

1
√

ϕµ,t(t)
=

∥

∥

∥

ϕµ,t(·)

ϕµ,t(t)

∥

∥

∥

µ
.

Thus (by minimality)
1

√

f(t)
=

1
√

ϕµ,t(t)

and by uniqueness, for any z ∈ D

f(z)

f(t)
=
ϕµ,t(z)

ϕµ,t(t)
.

So f ≡ ϕµ,t. �

By means of Lemma 9 we can prove the following theorem.

Main Theorem 10. Let {Dn}
∞
n=1 be a sequence of domains in C

N s.t. D ⊂ Dn

for every n and µ ∈ AW (D), µk ∈ AW (Dk). Assume moreover that

a) µ(z) 6 µm(z) for m ∈ N, z ∈ D;

b) µk
k→∞

// µ pointwise a.e. on D.

Then {KDm,µm
}∞m=1 converges to KD,µ locally uniformly on D×D if and only if for

any fixed t ∈ D

lim
m→∞

KDm,µm
(t, t) = KD,µ(t, t).

P r o o f. We shall only make sure that the converse implication is true, since

the necessity is obvious. Let F ⊂ D be a compact set. Then there is a constant
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M =M(F ) such that max
z∈F

|KD,µ(z, z)| 6M . By Schwarz inequality

|KDm,µm
(z, t)| 6

√

KDm,µm
(z, z)

√

KDm,µm
(t, t)

6

√

KD,µ(z, z)
√

KD,µ(t, t) 6M

for any z, t ∈ F . Thus, {KDm,µm
}∞m=1 is a Montel family on D ×D. It suffices to

show that every convergent subsequence of this family converges to KD,µ. Without

loss of generality let us consider {KDm,µm
} itself and assume that it does converge

to some k. For t ∈ D, by Fatou’s lemma

∫

F

|k(z, t)|2µ(z) dV 6 lim inf
m→∞

∫

F

|KDm,µm
(z, t)|2µm(z) dV

6 lim inf
m→∞

∫

Dm

|KDm,µm
(z, t)|2µm(z) dV

= lim inf
m→∞

KDm,µm
(t, t) = KD,µ(t, t) = k(t, t).

Since F ⊂ D is an arbitrary compact set,

‖k(·, t)‖2µ 6 k(t, t) = KD,µ(t, t) <∞.

Thus, taking f(·) = k(·, t) in Lemma 9 we obtainKD,µ(z, t) = k(z, t) for any z, t ∈ D.

�

Remark 11. Notice that a decreasing sequence of domains satisfies the assump-

tions of Main Theorem 10. This theorem for classical Bergman kernels and decreasing

case of domains could be found in [17], page 37. Main Theorem 4 could be proved

in the same fashion using Lemma 9 (see [20]).

3.3. Domain dependence. In this paragraph, among others, we will give a gen-

eralization of [17], page 38, for weighted Bergman kernels. Moreover, we will show

that the converse of this theorem holds as well. We shall start with notation used in

this paragraph.

Let us assume that D = int(D) to exclude slit domains from our considerations

(a disc with one radius removed for instance) and consider a ‘decreasing-like’ version

of Ramadanov’s theorem. Let us recall the definition of ‘approximation from outside’

given in [17], Definition V.6; page 38.

Definition 12. We say that a sequence of domains {Dn}
∞
n=1 approximates D

from outside if D ⊂ Dn for all n and for each open G such that D ⊂ G the inclusion

D ⊂ Dm ⋐ G holds for all sufficiently large m.
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Let E ⊂ C
N be Lebesgue measurable, µ be a-weight on E (we say that µ ∈ AW (E)

if for some open set W ⊂ C
N such that E ⊂ W there is ν ∈ AW (W ) such that

ν|E = µ) and L2
hol(E, µ) be the Hilbert space of all complex-valued functions which

are µ-square integrable on the set E and holomorphic in the interior of E. Let

moreover H(E, µ) be the subset of L2
hol(E, µ) consisting of all functions possessing

holomorphic extension to an open neighborhood of E. We will need the following:

Property 13. H(E, µ) is dense in L2
hol(E, µ).

Main Theorem 14. Suppose D is a domain, µ ∈ AW (D), and the density Prop-

erty 13 holds when E = D. Let {Dm}
∞
m=1 be a sequence of domains approximatingD

from outside, and let µm be an admissible weight on Dm. Suppose additionally that

a) for every k there exists N(k) such that when m > N(k), both Dm ⊂ Dk and

µm(z) 6 µk(z) when z ∈ Dm;

b) µ1 ∈ L1(D1);

c) for almost every z in D both µm(z) > µ(z) for every m and lim
m→∞

µm(z) = µ(z).

Then

lim
m→∞

KDm,µm
= KD,µ

locally uniformly on D ×D.

P r o o f. Let t ∈ D and f ∈ L2
H(D,µ) be fixed. We can extend f by 0 on ∂D

to provide f ∈ L2
hol(D,µ) = L2

H(D,µ) (we have already assumed D = int(D)).

Consider any h ∈ H(D,µ). Then for m large enough, h ∈ L2
H(Dm, µm) (because

of b)). We have

|h(t)| =

∣

∣

∣

∣

∫

Dm

h(z)KDm,µm
(z, t)µm(z) dV

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Dm

h(z)µm(z)1/2KDm,µm
(z, t)µm(z)1/2 dV

∣

∣

∣

∣

6 ‖h‖µm

(
∫

Dm

|KDm,µm
(z, t)|2µm(z) dV

)1/2

= ‖h‖µm
KDm,µm

(t, t)1/2.

In the limit m → ∞ we get (by the dominated convergence theorem) |h(t)| 6

k(t, t)1/2‖h‖D,µ, where k(t, t) = lim
m→∞

KDm,µm
(t, t). This limit exists because we

can choose a subsequence {µmk
} of {µm} such that m1 = 1, m2 > max{1, N(1)},

m3 > max{m2, N(m2)}, . . . ,mk+1 > max{mk, N(mk)}. Then for any z ∈ D we have

µmk
(z) > µmk+1

(z) > µ(z) and similarly as in the proof of Lemma 5 and Remark 6,
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KD,µ(t, t) > KDmk+1
,µmk+1

(t, t) > KDmk
,µmk

(t, t), k = 1, 2, . . . for any t ∈ D. Hence,

k(t, t) = lim
k→∞

KDmk
,µmk

(t, t) exists. On the other hand, lim
k→∞

mk = ∞ and then for

any n > N(1) there exists k ∈ N such that mk 6 n 6 mk+1. This implies that

for any z ∈ D µmk
(z) 6 µn(z) 6 µmk−1

(z) and therefore KDmk−1
,µmk−1

(t, t) 6

KDn,µn
(t, t) 6 KDmk

,µmk
(t, t), t ∈ D. Consequently, lim

n→∞
KDn,µn

(t, t) exists and is

equal to k(t, t). By density Property 13 there is a sequence {hm} of functions in

H(D,µ) such that hm
L2

hol(D,µ)
// f. So

|f(t)| 6 k(t, t)1/2‖f‖D,µ = k(t, t)1/2‖f‖D,µ.

So for f(·) = KD,µ(·, t) we have

|KD,µ(t, t)| = KD,µ(t, t) 6 k(t, t)1/2‖KD,µ‖µ = k(t, t)1/2KD,µ(t, t)
1/2.

Thus KD,µ(t, t) 6 k(t, t). Obviously KDm,µm
(t, t) 6 KD,µ(t, t). In the limit m→ ∞

we get k(t, t) 6 KD,µ(t, t). Therefore

KD,µ(t, t) = k(t, t) = lim
m→∞

KDm,µm
(t, t).

The conclusion follows from Main Theorem 10. �

What is interesting, it turns out that some kind of the converse of the Main

Theorem 14 holds as well, namely:

Main Theorem 15. Let D ⊂ C
N be a domain such that the Lebesgue measure

of the boundary ∂D is equal to 0, µ be a weight on the closure D of D in C
N and

µ|D ∈ AW (D). Suppose that for a sequence {Dn} approximating D from outside,

and a sequence of admissible weights {µn} (where µn ∈ AW (Dn))

lim
n→∞

KDn,µn |D = KD,µ

holds locally uniformly on D ×D; for any t ∈ D, KDn,µn
(·, t) ∈ L2

H(D,µ) and

lim
n→∞

‖KDn,µn
(·, t)‖2µ = ‖KD,µ(·, t)‖

2
µ = KD,µ(t, t).

Then Property 13 holds.
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P r o o f. For any t ∈ D we have

‖KDn,µn |D(·, t)−KD,µ(·, t)‖
2
µ

=

∫

D

(KDn,µn
(z, t)−KD,µ(z, t))(KDn,µn

(z, t)−KD,µ(z, t))µ(z) dV

=

∫

D

|KDn,µn
(z, t)|2µ(z) dV −

∫

D

KD,µ(t, z)KDn,µn
(z, t)µ(z) dV

−

∫

D

KD,µ(t, z)KDn,µn
(z, t)µ(z) dV +

∫

D

|KD,µ(z, t)|
2µ(z) dV

= ‖KDn,µn
(·, t)‖2µ −KDn,µn

(t, t)−KDn,µn
(t, t) +KD,µ(t, t)

= ‖KDn,µn
(·, t)‖2µ − 2KDn,µn

(t, t) +KD,µ(t, t).

By assumptions

lim
n→∞

‖KDn,µn |D(·, t)−KD,µ(·, t)‖
2
µ = 0,

which means that the closure in L2-norm

cl{KD,µ(·, t), t ∈ D} ⊂ cl{KDn,µn
(·, t), t ∈ D,n ∈ N} ⊂ L2

H(D,µ).

On the other hand, by reproducing property

cl{KD,µ(·, t), t ∈ D} = L2
H(D,µ) = L2

hol(D,µ).

Taking into account that

{KDn,µn
(·, t), t ∈ D,n ∈ N} ⊂ H(D,µ)

we obtain the desired result. �

Remark 16. Look also in [18] for some considerations concerning unweighted,

decreasing case of Main Theorem 15 and very interesting remarks. Notice that

taking for any n, µn ≡ 1 we get in fact that Property 13 and the hypothesis of

Main Theorem 14 are equivalent, which gives us a description of the domains for

which a ‘decreasing-like’ version of Ramadanov’s theorem holds. Moreover, using

Main Theorem 4 we can prove a weighted version of the counterexample to the Lu

Qi-Keng conjecture given in [3].
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