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THE LASSO ESTIMATOR: DISTRIBUTIONAL PROPERTIES

Rakshith Jagannath and Neelesh S. Upadhye

The least absolute shrinkage and selection operator (LASSO) is a popular technique for
simultaneous estimation and model selection. There have been a lot of studies on the large
sample asymptotic distributional properties of the LASSO estimator, but it is also well-known
that the asymptotic results can give a wrong picture of the LASSO estimator’s actual finite-
sample behaviour. The finite sample distribution of the LASSO estimator has been previously
studied for the special case of orthogonal models. The aim in this work is to generalize the
finite sample distribution properties of LASSO estimator for a real and linear measurement
model in Gaussian noise.

In this work, we derive an expression for the finite sample characteristic function of the
LASSO estimator, we then use the Fourier slice theorem to obtain an approximate expression
for the marginal probability density functions of the one-dimensional components of a linear
transformation of the LASSO estimator.

Keywords: linear regression, LASSO, characteristic function, finite sample probability dis-
tribution function, Fourier-Slice theorem, Cramer–Wold theorem

Classification: 62E15, 62J05, 62G05, 60E05

1. INTRODUCTION AND MOTIVATION

LASSO (least absolute shrinkage and selection operator) [7, 24] has been developed as
a tool to find sparse solutions of the linear regression problem. It has been used exten-
sively in an expanding field of applications from statistics to estimation scenarios with
remarkably good results. It is used extensively in the parameter estimation framework
to estimate the unknown parameter(s) with guarantees for the estimation error (model
fit) [3, 9]. As a robust approximation of the well known Maximum Likelihood (ML)
estimator, the LASSO can be realized robustly and efficiently through convex Second
Order Cone (SOC) programming techniques [4] and unlike the efficient subspace meth-
ods [17], the LASSO technique is reliable even with one data measurement realization
(single snapshot) [22].

The regularization parameter (sparsity threshold parameter) in the LASSO is a math-
ematical tool to implement the compromise between model fit (measure of estimation
error) and the estimated model order, which is the number of nonzero entries in the
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estimate. As the regularization parameter evolves, the LASSO solution changes con-
tinuously, forming a continuous trajectory in a very high dimensional space which is
referred to as the LASSO path [10, 22].

The LASSO algorithm, in general either assumes the knowledge of sparsity of the un-
known parameter or the optimum regularization parameter for estimating the unknown
parameter. However, these are generally unknown and need to be estimated.

In the detection framework, the focus is to propose detection tests to estimate the
optimal sparsity threshold parameter, so that the number of non-zero entries (or the
sparsity) and their corresponding locations (indices) in the estimate is same as in the
actual parameter. The performance evaluation of the detection tests is done using the
p-values or the probability of correct detection. As sparsity plays an important role in
the estimation performance, this issue has been recognized as a significant gap between
theory and practice by several authors [5, 11]. The problem of estimating the sparsity
of the parameter from the measurement data is fundamental to many other applications
such as estimating the critical number of measurements for successful recovery, design
of the sensing matrix e.t.c [20]. The exploration of the detection framework of the
LASSO is fairly recent (e. g. [19] and its citations). Sparsity and model order estimation
techniques like statistical cross-validation, Mallow’s Cp selection, Stein’s unbiased risk
estimator and Bayesian information criteria (BIC) and its variants have been proposed
in [1, 5, 20] for estimation of sparsity (or sparsity threshold parameter). Bayesian based
LASSO estimation, wherein the linear model is interpreted from a Bayesian perspective
and the sparsity threshold parameter is modeled as a hyper-prior for estimation, have
been proposed in [2]. Hence we see that an accurate estimate of the sparsity or the
sparsity threshold parameter is critical for enhancing the performance of parameter
estimation using LASSO. However, the performance of the above techniques depends on
the initial guess of the sparsity threshold parameter or the choice of a grid for the sparsity
threshold parameter. These techniques also use the distribution of the ML estimator
instead of the distribution of the LASSO estimator for deriving the tests for model order
estimation. Hence, we note that the detection framework requires the distribution of the
LASSO estimator for proposing reliable detection tests and evaluating their performance.
So, there is a need for studying the distributional properties of the LASSO estimator.
Hence, in this work we explore the distribution of the LASSO estimator.

There has been a lot of related work in the understanding of the asymptotic distri-
butional properties of LASSO estimator, e. g., [16], but it is also well-known that the
asymptotic results can give a wrong picture of the LASSO estimator’s actual finite-
sample behavior [14, 18, 23]. In particular, [23] studies the finite sample LASSO dis-
tribution for the case of orthogonal models and shows that the asymptotic results do
not provide a reliable assessment for the finite sample distribution. Therefore there is
a need for studying the finite sample distributional properties of the LASSO estimator.
Hence, in this work, we will study the finite sample characteristic function (cf) of the
LASSO estimator for any general model matrix.

1.1. Major contributions

We now highlight the major contributions of this work.

• We find a closed form approximation for the marginal pdfs of the LASSO estimator
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as a function of the regularization parameter, τ . To the best of our knowledge,
there are no closed form approximations for the marginal pdfs of the LASSO
estimator in the literature.

• We use the approach of characteristic functions and the Fourier slice theorem tool
for deriving the marginal pdfs. While this approach and the tool existed separately
in the literature, our contribution lies in applying these in conjunction to obtain
the closed form expressions of pdf of the LASSO estimator for non-orthogonal and
singular models as described in the paper.

This article is organized as follows. In Section 2, we discuss the notations and state
without proof, some well known theorems that will be used in this work. In Section 3,
we give the details of our results on the finite sample cf and approximate probability
density function (pdf) of the LASSO estimator for a fixed N ∈ N. In Section 4, we
perform numerical simulations to verify the results discussed in Section 3. In Section 5,
we discuss the conclusions and some possibilities for future work. We give the details of
the proofs of the theorems stated in Section 3 in Appendix A.

2. PRELIMINARIES

In this section, we discuss the notations, measurement model, LASSO estimator and
some well known theorems used in this work.

2.1. Notations

We use bold lower case letters to represent vectors (x), bold upper case letters to repre-
sent matrices (A) and scripted letters to represent sets (J, generally finite index sets).
J \ I denotes the set-difference operation between sets J and I. For a given matrix (vec-
tor) A, AT denotes the regular transpose, |A| and A−1 denote the determinant and
inverse of the square matrix A and A† denotes the Moore-Penrose pseudo inverse of
A. For a vector x, ‖x‖0, ‖x‖1, ‖x‖2 denote the l0 pseudo norm which is equal to the
number of non-zero elements in x, l1 and l2 norms respectively. E denotes expectation,
P denotes probability. We reserve x̂ and ẑ for random vectors, x̂k and ẑk for their kth
components and t for the realizations of x̂ and ẑ and tk for the realizations of x̂k and
ẑk. We use v to denote a Gaussian random vector. For a random vector x̂, fx̂(t) de-
notes its pdf. Similarly for a random variable x̂, fx̂(tk) denotes its pdf. Convolution of
f([x1, x2, . . . , xN ]) with g(x1) is denoted equivalently by f(x)?g(x1) or f(x1, x2, . . . , xN )
or f(x1,x

−), which is defined as the following integral

f(x1,x
−) = f(x) ? g(x1) =

∫
R

f(x1 − u,x−)g(u) du (1)

where x− = [x2, . . . , xN ]. Similarly f(xI,xJ\I) denotes the |I| dimensional extension of
convolution across the dimensions of x given by I and finally S(u) denotes the sign of
elements of u, we have

S(ui) =

{
−1 if ui < 0,

1 if ui > 0.
(2)
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S(ui) is arbitrary for ui = 0.
Let f : RN → R be a function. We define the following operations on f .

1. Integral Projection: Ix is the projection operator that reduces an N dimen-
sional function to M dimensions by integrating out N −M dimensions:

Ix[f ](x1, x2, . . . , xM ) =

∫
f(x1, . . . , xN ) dxM+1 . . . dxN .

In the above equation, the N −M dimensions can be integrated out in any order
and need not necessarily be the last N −M dimensions, i. e., we assume that the
order of integration is permutation invariant.

2. Slicing: Sx is the slicing operator that reduces an N dimensional function to an
M dimensional function, by zeroing out N −M dimensions: Sx[f ](x1, . . . , xM ) =
f(x1, . . . , xM , 0, . . . , 0). The N −M dimensions can be sliced out in any order as
described in definition of the projection operation.

3. Change of Basis: Let B denote a full rank N × N matrix and let x denote an
N dimensional vector. Then B[f ](x) = f(B−1x).

The action of multiple operators on the function is denoted by �. For example,
IBx�B−1[f ] denotes the change of basis followed by projection operation on the function
f(x).

2.2. Measurement model

We consider the following linear regression model,

b = Ax + v, (3)

where b = [b1, b2, . . . , bM ] denotes the measurement vector of length M , A denotes the
model matrix of size M × N , v denotes the white Gaussian noise with zero mean and
covariance matrix, σ2I and x = [x1, x2, . . . , xN ] denotes the deterministic but unknown
and sparse parameter vector of length N and sparsity K (number of non-zero entries in
x), which needs to be estimated. We also assume that columns of A have unit norm.
We focus on the LASSO estimator [7, 24], which estimates the sparse parameter x in
(3) by solving the following convex optimization problem,

x̂ = arg min
x∈RN

τ‖x‖1 +
1

2
‖b−Ax‖22, (4)

where τ > 0 is the sparsity thresholding parameter, which controls the sparsity of x̂.
We observe that (4) is a convex relaxation of the following combinatorial problem

min ‖x‖0 subject to ‖b−Ax‖2 ≤ σ. (5)

It has been shown in [6] that the LASSO estimator is an exact relaxation of (5) if
the model matrix, A satisfies the restricted isometry property (R.I.P) defined below in
Definition 2.1, and hence gives the sparsest estimate to the linear regression problem
of (3) (see Theorem 2.1 below).
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Definition 2.1. For each integer K = 1, 2, . . ., we define the restricted isometry con-
stant δK of a matrix A as the smallest number such that

(1− δK)‖y‖22 ≤ ‖Ay‖22 ≤ (1 + δK)‖y‖22 (6)

holds for all K sparse vectors, y. A vector is said to be K sparse if it has at most K
nonzero entries.

Theorem 2.1. Assume that δ2K <
√

2 − 1 and ‖v‖2 < σ. Then the solution x̂ to (4)
obeys

‖x̂− x‖2 ≤ C0
1√
K
‖x− xK‖1 + C1σ (7)

for some constants C0 and C1. In particular, if x is K-sparse, the recovery is exact. Here
xK is the best sparse approximation one could obtain if one knew exactly the locations
and amplitudes of the K-largest entries of x.

P r o o f . See [6]. �

We now state some well known definitions and theorems required for this work.

Definition 2.2. The cf of a random vector y is,

Fy(u) = Ey{exp(iuTy)}

=

∞∫
−∞

fy(y) exp(iuTy) dy.
(8)

Clearly, cf is the Fourier transform of the pdf of y with u as the variable in the
Fourier domain. The cf has the properties like, cf is a uniformly continuous, bounded
and hermitian function with guaranteed existence, Fy(0) = 1 and cf is a bijection with
probability distributions, i.e, for any two random variables X1 and X2, both have the
same probability distribution if and only if FX1

= FX2
.

Theorem 2.2. A Borel probability measure P on RN is uniquely determined by its
one dimensional projections, i. e. a probability measure on Euclidean space is uniquely
determined by the values it gives to half-spaces.

P r o o f . See [8]. �

Theorem 2.3. Let f be an N dimensional function, let F, B, I, S represent the Fourier
transform, change of basis, projection and slicing operations as explained above, then
we have

F� IB−1x �B[f ] = SBTu �
B−T

|B−T |
� F[f ] (9)

where B−T stands for (B−1)T .

P r o o f . See [21]. �

Next, we discuss the main results of this work in the following section.
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3. MAIN RESULTS

In this section, we first derive an expression for the cf of the LASSO estimator. The
expression for cf is appropriately sliced to derive the one dimensional projections of
a linear transformation of the LASSO estimator. The one dimensional projections yield
the approximate marginal pdfs of components of the linear transformation of the LASSO
estimator.

Theorem 3.1. For a fixed N , the cf of the LASSO estimator, Fx̂(u) as a function of
the true parameter, x is given by the following implicit relationship

FWx̂+τS(x̂)(u) =
∑
I∈P

( ∏
k∈I
j∈J\I

sin(τuk) cos(τuj)
)
Fx̂(cI, cJ\I) = exp

(
iuTWx− σ2

2
uTWu

)
(10)

where J = {1, 2, . . . , N} is an index set, P is the power set of J, I is an element of
P or equivalently I ⊆ J, W = ATA, wj is the jth column of W, cI = uTwj , j ∈ I

similarly cJ\I = uTwk, k ∈ J\I and Fx̂(cI, cJ\I) denotes the |I| dimensional convolution

of Fx̂(cI, cJ\I) with g(cI) =
∏
j∈I

−1

πcj
.

Remark: We note that (10) is an implicit relationship between the estimator x̂ and
measurements b. Although, the right hand side seems independent of τ , there is an
inherent relationship which is given by the KKT conditions and discussed in the proof
of the Theorem 3.1. Example-3.1 below illustrates Theorem 3.1

Example 3.1. When x̂ has N = 3 elements, we have J = {1, 2, 3}, the power set,
P = {∅, 1, 2, 3, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} and I is one of the elements of P. Hence,
the relationship between Fx̂(u) and x is given by

FWx̂+τS(x̂)(u) =

cos(τu1) cos(τu2) cos(τu3)Fx̂(c1, c2, c3) + sin(τu1) cos(τu2) cos(τu3)Fx̂(c1, c2, c3)

+ cos(τu1) sin(τu2) cos(τu3)Fx̂(c1, c2, c3) + cos(τu1) cos(τu2) sin(τu3)Fx̂(c1, c2, c3)

+ sin(τu1) sin(τu2) cos(τu3)Fx̂(c1, c2, c3) + cos(τu1) sin(τu2) sin(τu3)Fx̂(c1, c2, c3)

+ sin(τu1) cos(τu2) sin(τu3)Fx̂(c1, c2, c3) + sin(τu1) sin(τu2) sin(τu3)Fx̂(c1, c2, c3)

= exp
(
iuTWx− σ2

2
uTWu

)
where Fx̂(cj , . . . , ) represents convolution as defined in (1) with g(cj) = −1

πcj
.

Remarks: We make the following observations from Theorem 3.1.

1. We observe that the relationship between FWx̂+τS(x̂)(u) and Fx̂(c = Wu) has 2N

terms in total, which does not simplify the evaluation of the pdf of LASSO esti-
mator except for the special case of orthogonal model matrix (W = I), where the
entries of x̂ become independent and hence the pdf of x̂ can be obtained easily (see
Corollary 3.1). Proof of Corollary 3.1 (Appendix A.2) is an alternate way ([23])
to obtain pdf of x̂, when W is orthogonal.
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2. We observe that the one dimensional projections of the cf can be evaluated from
(10) by slicing.

3. We then invoke the Cramer–Wold theorem (Theorem 2.2) to conclude that the one-
dimensional projections are sufficient for the evaluation of the joint distribution of
the LASSO estimator.

4. We note that for τ = 0, we obtain the cf relationship for the maximum likelihood
(ML) estimator as a special case and hence the corresponding pdf of the ML
estimator [15] can be easily evaluated.

Next, we evaluate the one dimensional projections of the cf, Fx̂ for different cases of
W. We first start with the case of W = I.

Corollary 3.1. If W = I, where I is the identity matrix, or any diagonal matrix D (in
general), then the estimates x̂k, k = 1, 2, . . . , N are all independent and hence the cf of
the lasso estimator is given by,

Fx̂k(uk) cos(τuk) + Fx̂k(uk) sin(τuk) = exp
(
iukxk −

σ2

2
u2k
)
, k = 1, 2, . . . , N (11)

and the marginal pdf of the individual components, x̂i, i = 1, 2, . . . , N is obtained by
simply applying the inversion theorem to (11) as,

fx̂k(tk) =

{
1√

2πσ2
exp

(
− (tk+τ−xk)2

2σ2

)
if tk > 0,

1√
2πσ2

exp
(
− (tk−τ−xk)2

2σ2

)
if tk < 0.

(12)

Remarks:

• The expression (12) is similar to the expression (5) of [23] (we note that [23] have
derived the pdf of the estimation error, x̂− x).

• We note that when xk = 0, the pdf of positive values of x̂k is given by the tail of
a normal distribution with mean −τ and the pdf of negative values of x̂k is given
by the tail of a normal distribution with mean τ .

• We note that the joint pdf of x̂ is just the product of the marginal pdfs of x̂k, k =
1, 2, . . . , N obtained in (12).

Now, we evaluate the cf for the case when W is a full rank matrix.

Corollary 3.2. Let W be any full rank matrix, ẑ = Wx̂, wj be the jth column of W
and ẑj be the jth element of ẑ. Then the cf of the one dimensional projections, ẑk for
components k corresponding to large |x̂k| can be approximated as,

cos(τu)Fẑk(u) + sin(τu)Fẑk(u) = exp(−u2σ
2

2
wkk) exp

(
ju(wT

k x)
)

(13)
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and the marginal pdfs of the components ẑk, corresponding to the large |x̂k| is obtained
by simply applying the inversion theorem to (13) as,

fẑk(tk) =


1√

2πσ2wkk
exp

(
− (tk+τ−wTk x)2

2σ2wkk

)
if tk > 0,

1√
2πσ2wkk

exp
(
− (tk−τ−wTk x)2

2σ2wkk

)
if tk < 0.

(14)

Remarks:

1. In Corollary 3.2, we make the approximation S(hTk ẑ) ≈ S(ẑk) to evaluate the ex-
pression, Su[Fx̂(Wu)? ( −1πck

)] (more details in Appendix A.3). Here hk is a column

of H = W−1. This approximation is valid whenever |hkkẑk| �
∑N
i=1,i6=k |hkiẑi|.

Since W is a symmetric positive definite (pd) matrix, H is also symmetric and pd,
hence the diagonal entries of H are positive. So, if H is diagonally dominant and
the index k corresponds to a large entries of |x̂k|, then the approximation works
well. From the simulations (Section 4) also, we observe that the approximation
works well for the index k corresponding to the large non-zero entries of |x̂k|.

2. The evaluation of exact expression for Su[Fx̂(Wu) ? ( −1πck
)] requires some prior

knowledge or assumptions on the pdf fẑ(ẑ). In Appendix A.5, we derive an ex-
pression for Su[Fx̂(Wu) ? ( −1πck

)] by assuming the inherent distribution of fẑ(ẑ) to
be multivariate Gaussian. This assumption is justified because the expression in
(10), which represents some operations on cf of x̂ is equal to cf of Gaussian pdf.
Also, for the special case of orthogonal W, we obtain a Gaussian pdf for f(x̂).
Hence, we can make the assumption that fẑ(ẑ) is multivariate Gaussian. From
the resulting expression for Su[Fx̂(Wu) ? ( −1πck

)], we then justify the use of the

approximation S(hTk ẑ) ≈ S(ẑk) for k corresponding to large |x̂k|.

Further, we evaluate the cf for any general case of W.

Corollary 3.3. Let W be any general matrix, ẑ = Wx̂, wj be the jth column of W
and ẑj be the jth element of ẑ. Then the cf of the one dimensional projections, ẑk for
components k corresponding to large |x̂k| can be approximated as,

cos(τu)Fẑk(u) + sin(τu)Fẑk(u) = exp(−u2σ
2

2
wkk) exp

(
ju(wT

k x)
)

(15)

and the marginal pdfs of the components ẑk, corresponding to the large |x̂k| is obtained
by simply applying the inversion theorem to (15) as,

fẑk(tk) =


1√

2πσ2wkk
exp

(
− (tk+τ−wTk x)2

2σ2wkk

)
if tk > 0,

1√
2πσ2wkk

exp
(
− (tk−τ−wTk x)2

2σ2wkk

)
if tk < 0.

(16)
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Remarks:

1. In Corollary 3.3, we again make the approximation S(hTk ẑ) ≈ S(ẑk) to evaluate
Su[Fx̂(Wu) ? ( −1πck

)] (more details in Appendix A.3). Now, hk is a column of H =

W†. The approximation is valid whenever |hkkẑk| �
N∑

i=1,i6=k

|hkiẑi|. Since W is a

symmetric positive semi definite (psd) matrix, H is also symmetric and psd, hence
the diagonal entries of H are non-negative. So, if the matrix is diagonally dominant
and the index k corresponds to the non-zero entry of x̂, then the approximation
works well. From the simulations also we observe that the approximation seems
to work for the index k corresponding to non-zero entries of x̂.

2. Again the evaluation of exact expression for Su[Fx̂(Wu) ? ( −1πck
)] requires some

prior knowledge or assumptions on the pdf fẑ(ẑ) and the exact expression con-
firms the feasibility of the approximation S(hTk ẑ) ≈ S(ẑk) for the components k
corresponding to large |x̂k|.

3.1. Discussions

Now, we comment on the results obtained in the context of the well known oracle
properties of the LASSO estimator.

We observe that the finite-sample pdf of the LASSO estimator derived in equations
(12), (13) and (15) are multimodal and are characterized by the absolutely continuous
normal distribution, whenever the marginals of the estimate are non-zero. For the
orthogonal models, the pdf consists of a mixture of a singular normal distributions (Dirac
measure), whenever the marginals of the estimate are zero. The large-sample behavior
of the LASSO distributions are well studied in the literature and are characterized by
the well-known oracle properties of the LASSO [12, 16]. The oracle properties of the
LASSO depend on the choice of the regularization parameter, which can be chosen in
the following two ways.

• In the first case, the regularization parameters are chosen such that the LASSO
performs consistent model selection. However, LASSO does not satisfy the oracle
property whenever the regularization parameter is chosen for consistent model
selection [23, 25].

• In the second case, the regularization parameters are chosen for the LASSO per-
forms conservative model selection. It is well known that the LASSO estimator
satisfies the oracle property for the case of conservative model selection (or equiv-
alently, the estimator’s finite sample and the large sample pdfs match for the
conservative selection).

We note that the pdfs derived in this section can be proven to be compatible with the
oracle properties in a manner similar to the Theorems 5 and 10 of [23] by using the
appropriate regularization parameters for consistent or conservative model selection,
respectively.
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Fig. 1: pdf of the LASSO estimator for orthogonal model matrices (W = I).

4. NUMERICAL SIMULATIONS

In this section, we perform simulations to validate the theoretical results for cf. The
simulations are performed using the linear regression model of (3). In the simulation
setup, we choose a measurement vector, b of length M = 4. The model matrix A is
chosen as a Hadamard matrix for orthogonal case and a random matrix of size M ×N
consisting of entries from Bernoulli distribution for non-orthogonal case. The columns
of the model matrix A are always normalized to have unit norm. N = 4 for orthogonal
and full rank models and N = 8 for singular model. The parameter vector x is chosen
such that its sparsity K = 1 and its N

2 + 1 entry is non-zero (|x3| = 4 when N = 4 and
|x5| = 8 when N = 8). The noise is generated as a multivariate Gaussian random vector
noise covariance variance matrix σ2I, where σ = 1. In the following, we use Monte-
Carlo simulations for L = 10000 noisy realizations to obtain L noisy estimate vectors.
We then run the LASSO algorithm using the MATLAB CVX package [13] to solve the
optimization problem of (4) to obtain the LASSO estimate x̂ for each realization. We
choose τ = 1 for orthogonal and full rank models and τ = 2 for the singular model. In



788 R. JAGANNATH AND N. S. UPADHYE

−1 0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

Simulated

data2

Fig. 2: pdf of the ẑ3 for full rank W .
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Fig. 3: pdf of ẑ5 for singular W.

Figure 1, we show the normalized histogram (normalized to make the total area one) of
the components of the estimate vector x̂k, k = 1, 2, 3, 4 for the case of orthogonal models
and compare it with the theoretical expression for the pdf obtained in (12). We observe
that the estimate x̂3 for non-zero parameter x3 has a normal distribution with mean
x3 − τ = 4− 1 = 3 as seen in Figure 1(c) and as explained in the second remark below
Corollary 3.1 and as expected from (12). The other estimates x̂k, k = 1, 2, 4 follow the
Dirac measure whenever x̂k = 0. This is indicated by the cut in the histogram plots at
x̂k = 0. The non-zero values of x̂k follow the normal pdf with mean −1 for negative x̂k
and positive x̂k respectively as expected from (12).

In Figure 2, we show the normalized histogram (normalized to make the total area
one) of the components of the estimate vector ẑk, k = 3 for the case of full rank model and
compare it with the theoretical expression for the pdf obtained in (13). The simulated
pdf does not match with (13) for the other components of ẑ. We observe that the estimate
ẑ3 for the non-zero parameter x3 has a normal distribution with mean ±(τ −wT

3 x) for
negative and positive values ẑ3 as seen in Figure 1(c) and as expected from (13). The
pdf for the ẑk, k = 1, 2, 4 do not match the pdf of (13) as the approximation of the pdf
expression is not valid for small values of |x̂|.

In Figure 3, we show the normalized histogram (normalized to make the total area
one) of the components of the estimate vector ẑk, k = 3 for the case of full rank model and
compare it with the theoretical expression for the pdf obtained in (15). The simulated
pdf does not match with (15) for the other components of ẑ. Again, we observe that
the estimate ẑ3 for the non-zero parameter x3 has a normal distribution with mean
±(τ−wT

3 x) for negative and positive values ẑ3 as seen in Figure 1(c) and as expected from
(15). The pdf for the ẑk, k = 1, 2, 4 do not match the pdf of (15) as the approximation
of the pdf expression is not valid for small values of |x̂|.

We observe from the figures that the theoretical pdfs follow the simulated pdfs closely
for all the components in case of orthogonal models and for k corresponding to non-zero
x in case of the other models.

Although, we have shown the simulations only for single source scenarios (K = 1),
the same simulations work for multiple source (K > 1) scenarios and also in case of
strong source-weak source scenarios, i. e. when xmax � xmin.
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5. CONCLUDING REMARKS

In this work, we have derived the cf of the LASSO estimator with an aim to get some
insight on the distributional properties of the LASSO estimator. The expression of the
cf contains derived in (10) contains 2N summations, and hence does not simplify the
evaluation of the distribution of the LASSO estimator except for the special case of
orthogonal model matrix (W = I). So we use the Fourier-Slice theorem to calculate the
one-dimensional projections of a linear transformation of the LASSO estimator. The
approximate pdf of the one dimensional components this linear transformation is then
found from the projections by using the inversion theorem.

It is well-known from the Cramer–Wold theorem that the all the one dimensional
projections of a distribution are sufficient for the evaluation of the overall cf [8] and
hence the joint pdf of the LASSO estimator can be evaluated by its one dimensional
projections, which is an interesting future work. As an application in statistical detection
theory, the distribution of the estimator or (any of its functions, or test statistics) plays
an important role to make decisions based on hypothesis. Hence, it may be an interesting
future work to use the pdfs of the one-dimensional projections to propose test statistics
for hypothesis testing. Many engineering applications like wireless communications and
signal processing work with complex measurement models. Hence, a generalization of
the distribution function for complex measurement models can be another interesting
future work.

A. PROOFS

In this section, we present the proofs of theorems and corollaries discussed in Section 3.

A.1. Proof of Theorem 3.1

The solution to the problem in (4) can be obtained in a straightforward manner by using
the KKT conditions which results in the following implicit relation for x̂.

Wx̂ + τγ = ATb = b̃ (17)

γk ∈
{

S(x̂k) if x̂k 6= 0,
[−1, 1] if x̂k = 0

where W = [w1,w2, . . . ,wN ] = ATA. Let J = {1, 2, . . . , N} and E = {k ∈ J : |γk| = 1},
then any LASSO solution x̂ satisfies

x̂J\E = 0; WEx̂E + τγE = AT
Eb = b̆. (18)

Our aim is now to calculate the cf of x̂ using (18). Since, x̂J\E = 0, it does not contribute
in the evaluation of the cf. Hence, it is enough to consider the first part of (17).

Now, we first evaluate the cf of right hand side (R.H.S) of (17). We observe that b̃
is a multivariate Gaussian random variable with mean Wx and variance σ2W. Hence,
the cf of b̃, by definition is,

Fb̃(u) = exp
(
iuTWx− σ2

2
uTWu

)
. (19)
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Now, we need to calculate the cf of the left hand side (L.H.S) of (17). We first define
cj = uTwj , x̂− = [x̂2, x̂3, . . . , x̂N ] and dx̂− =dx̂2dx̂2 . . .dx̂N . We have,

FWx̂+τS(x̂)(u) = EWx̂+τS(x̂)

{
exp

(
iuT

(
Wx̂ + τS(x̂)

))}
=

∫
RN

fWx̂+τS(x̂)(Wt + τS(t)) exp

(
iuT

(
Wt + τS(t)

))
dt

=

∫
RN

fx̂(Wt + τS(t)) exp

(
iuT

(
Wt + τS(t)

))
dt

= Ex̂

{
exp

(
i

N∑
j=1

(
x̂ju

Twj + τujS(x̂j)

))}

=

∫
RN

fx̂(x̂) exp

(
i

N∑
j=1

(
x̂ju

Twj + τujS(x̂j)

))
dx̂

=

∫
RN

fx̂(x̂1, . . . , x̂N ) exp

(
i

N∑
j=1

(
x̂ju

Twj + τujS(x̂j)

))
dx̂

=

∫
RN

fx̂(x̂1, . . . , x̂N ) exp

(
i

N∑
j=1

(
x̂jcj + τujS(x̂j)

))
dx̂

=

∫
RN−1

(∫
R

fx̂(x̂) exp(i(x̂1c1 + τu1S(x̂1)))dx̂1

)
exp

(
i

N∑
j=2

(
x̂jcj + τujS(x̂j)

))
dx̂−

=

∫
RN−1

J (c1, u1, x̂
−) exp

(
i

N∑
j=2

(
x̂jcj + τujS(x̂j)

))
dx̂−. (20)

We first evaluate J (c1, u1, x̂
−). Defining H(x) as the Heaviside step function, we have

J (c1, u1, x̂
−) =

∞∫
−∞

fx̂(x̂) exp(i(x̂1c1 + τu1S(x̂1)))dx̂1

=

0∫
−∞

fx̂(x̂)ei(x̂1c1−τu1)dx̂1 +

∞∫
0

fx̂(x̂)ei(x̂1c1+τu1)dx̂1

= e−iτu1

0∫
−∞

fx̂(x̂)ei(x̂1c1)dx̂1 + eiτu1

∞∫
0

fx̂(x̂)ei(x̂1c1)dx̂1

= e−iτu1

∞∫
−∞

fx̂(x̂)H(−x̂1)ei(x̂1c1)dx̂1 + eiτu1

∞∫
−∞

fx̂(x̂)H(x̂1)ei(x̂1c1)dx̂1 (21)
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= e−iτu1

(
Gx̂1

(c1, x̂
−) ? FH(−c1)

)
+ eiτu1

(
Gx̂1

(c1, x̂
−) ? FH(c1)

)
(22)

= e−iτu1

(
Gx̂1(c1, x̂

−) ?

(
1

2πjc1
+
δ(c1)

2

))
+eiτu1

(
Gx̂1

(c1, x̂
−) ?

(
−1

2πjc1
+
δ(c1)

2

))
(23)

= Gx̂1
(c1, x̂

−) cos(τu1) +

(
Gx̂1

(c1, x̂
−) ?

(−1

πc1

))
sin(τu1)

= Gx̂1
(c1, x̂

−) cos(τu1) + Gx̂1
(c1, x̂

−) sin(τu1). (24)

Here, Gx̂1
(c1, x̂

−) denotes the one-dimensional Fourier transform along c1 and Gx̂1
(c1, x̂

−)

=

(
Gx̂1

(c1, x̂
−)?

(
−1
πc1

))
, denotes the one-dimensional Hilbert transform along c1. Sim-

ilarly, the Fourier and Hilbert transforms over each dimension is absorbed into the nota-
tion of the cf. We have used the Fourier-transform convolution theorem to obtain (22)
from (21) and we have used the Fourier transform of the Heaviside step function in (23).
Now, using the value of J (c1, u1, x̂

−) obtained from (24) in (20), we have

FWx̂+τS(x̂)(u) =

∫
RN−1

J (c1, u1, x̂
−) exp

(
i

N∑
j=2

(
x̂jcj + τujS(x̂j)

))
dx̂−

= cos(τu1)

∫
RN−1

Fx̂1
(c1, x̂

−) exp

(
i

N∑
j=2

(
x̂jcj + τujS(x̂j)

))
dx̂−

+ sin(τu1)

∫
RN−1

Fx̂1
(c1, x̂

−) exp

(
i

N∑
j=2

(
x̂jcj + τujS(x̂j)

))
dx̂−.

(25)
Now, integrating over x̂2, x̂3, . . . x̂N in the same manner, we obtain

FWx̂+τS(x̂)(u) = cos(τu1) cos(τu2) . . . cos(τuN )Fx̂(c1, . . . , cN )
+ sin(τu1) cos(τu2) . . . cos(τuN )Fx̂(c1, c2, . . . , cN )
+ cos(τu1) sin(τu2) . . . cos(τuN )Fx̂(c1, c2, . . . , cN )
. . .+ (All combinations of 1 sine term and N − 1 cosine terms)
. . .+ sin(τu1) sin(τu2) cos(τu3) . . . cos(τuN )Fx̂(c1, c2, c3, . . . , cN )
. . .+ cos(τu1) sin(τu2) sin(τu3) . . . cos(τuN )Fx̂(c1, c2, c3, c4, . . . , cN )
. . .+ (All combinations of 2 sine terms and N − 2 cosine terms)

...
. . .+ (All combinations of k sine terms and N − k cosine terms)

...
. . .+ sin(τu1) . . .+ sin(τuN )Fx̂(c1, . . . , cN )

(26)
which is equal to expression (10)
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A.2. Proof of Corollary 3.1

If W = I, where I is the identity matrix, or any diagonal matrix D (in general), then
the estimates x̂k, k = 1, 2, . . . , N are all independent and hence the cf of the LASSO
estimator is given by,

N∏
k=1

(
Fx̂k(uk) cos(τuk) + Fx̂k(uk) sin(τuk)

)
=

N∏
k=1

exp
(
iukxk −

σ2

2
u2k
)

(27)

which can be expressed as,

Fx̂k(uk) cos(τuk) + Fx̂k(uk) sin(τuk) = exp
(
iukxk −

σ2

2
u2k
)
, k = 1, 2, . . . , N. (28)

Hence, the marginal probability distribution functions of the individual components,
x̂k, k = 1, 2, . . . , N is given by simply applying the inversion theorem to the (28) as,

1√
2πσ2

exp
(
− (tk − xk)2

2σ2

)
=

1

2
fx̂k(tk) ?

[
δ(tk − τ) + δ(tk + τ)

]
+

1

2
S(tk)fx̂k(tk) ?

[
δ(tk − τ)− δ(tk + τ)

]
=

1

2

[
fx̂k(tk − τ) + fx̂k(tk + τ)

]
+

1

2
S(tk − τ)fx̂k(tk − τ)

−1

2
S(tk + τ)fx̂k(tk + τ) (29)

which gives,

1√
2πσ2

exp
(
− (x̂k − xk)2

2σ2

)
=

{
fx̂k(x̂k − τ) if x̂k > τ,
fx̂k(x̂k + τ) if x̂k < −τ.

(30)

Hence,

fx̂k(tk) =

{
1√

2πσ2
exp

(
− (tk+τ−xk)2

2σ2

)
if tk > 0,

1√
2πσ2

exp
(
− (tk−τ−xk)2

2σ2

)
if tk < 0.

(31)

A.3. Proof of Corollary 3.2

If W is any full rank matrix, we first perform slicing by substituting u = uek in equation
(26) to obtain

FWx̂+τS(x̂)(u) = cos(τu)Su[Fx̂(Wu)] + sin(τu)Su[Fx̂(Wu) ? (
−1

πck
)]. (32)

Now, we define ẑ = Wx̂ and x̂ = Hẑ, where H = W−1. Let hk be the kth column of
H, we have f(ẑ) = |W|−1f(x̂) and Su[Fx̂(Wu)] = Su �W−1 � Fx̂ = Su � Fẑ �W =
Fẑk � Iẑk �W = Fẑk(u), where ẑk is the kth component of ẑ and we obtain the last
equation by applying the generalized Fourier slice theorem (Theorem 2.3). We evaluate



The LASSO estimator: Distributional properties 793

the term, Su[Fx̂(Wu) ? ( −1πck
)] below by noting that −1

πuk
is the Fourier transform of

iS(x̂k),

Fx̂(Wu) ? ( −1πck
) = i

∫
RN

fx̂(x̂)S(xk) exp(iuTWx̂) dx̂

= i

∫
RN

fẑ(ẑ)S(hT ẑ) exp(iuT ẑ)dẑ

Su[Fx̂(Wu) ? ( −1πck
)] = i

∫
RN

fẑ(ẑ)S(hTk ẑ) exp(iuẑk) dẑ.

(33)

We now make an approximation that S(hTk ẑ) ≈ S(ẑk) for k corresponding to large |x̂k|
as explained in Theorem 3.2. Hence, the term Su[Fx̂(Wu) ? ( −1πck

)] ≈ Fẑk(u). Substi-

tuting for Su[Fx̂(Wu)] and the approximated expression of Su[Fx̂(Wu) ? ( −1πck
)] for k

corresponding to large |x̂k| and equating the above expression to the slice (w.r.t to u)
of the cf of b̃, we have

cos(τu)Fẑk(u) + sin(τu)Fẑk(u) = exp(−u2σ
2

2
wkk) exp

(
ju(wT

k x)
)
. (34)

Hence, the marginal pdf of the individual components, ẑk for k corresponding to large
|x̂k| is given by simply applying the inversion theorem to the (34) as,

fẑk(tk) =


1√

2πσ2wkk
exp

(
− (tk+τ−wTk x)2

2σ2wkk

)
if tk > 0,

1√
2πσ2wkk

exp
(
− (tk−τ−wTk x)2

2σ2wkk

)
if tk < 0.

(35)

A.4. Proof of Corollary 3.3

For any general W, we again perform slicing by substituting u = uek in equation (26)
to obtain (32). Again, we define ẑ = Wx̂, x̂ = Hẑ, where H is now H = W† and let
hk be the kth column of H.

Now, as in Proof A.3, we have Su[Fx̂(Wu)] = Su�Fẑ�W = Fẑk�Iẑk�W = Fẑk(u),
where ẑk is the kth element of ẑ and we obtain the last equation by applying the
generalized Fourier slice theorem (Theorem 2.3). The term, Su[Fx̂(Wu)? ( −1πck

)] is again
equal to,

Su[Fx̂(Wu) ? (
−1

πck
)] = i

∫
RN

fẑ(ẑ)S(hTk ẑ) exp(juẑk) dẑ. (36)

We again make the approximation S(hTk ẑ) ≈ S(ẑk) for k corresponding to large |x̂k|.
Substituting for Su[Fx̂(Wu)] and the approximated expression of Su[Fx̂(Wu) ? ( −1πck

)]

for k corresponding to large |x̂k| in equation (19) and equating the above expression to
the slice (w.r.t to u) of the cf of b̃, we have

cos(τu)Fẑk(u) + sin(τu)Fẑk(u) = exp(−u2σ
2

2
wkk) exp

(
ju(wT

k x)
)
. (37)
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Hence, the marginal pdf of the individual components, ẑk for k corresponding to large
|x̂k| is given by simply applying the inversion theorem to the (37) as,

fẑk(tk) =


1√

2πσ2wkk
exp

(
− (tk+τ−wTk x)2

2σ2wkk

)
if tk > 0,

1√
2πσ2wkk

exp
(
− (tk−τ−wTk x)2

2σ2wkk

)
if tk < 0.

(38)

A.5. Evaluation of Su[Fx̂(Wu) ? ( −1πck
)]

In this section, we evaluate Su[Fx̂(Wu) ? ( −1πck
)] with the assumption that ẑ has a mul-

tivariate Gaussian distribution of with mean m and co-variance matrix R. We use
φ(ẑN ,mN ,RN) to denote that the random vector ẑN of length N has a multivariate
Gaussian distribution with mean vector mN of length N and co-variance matrix RN of
size N × N and Φ is used to denote the cumulative distribution function (cdf) of the
normal distribution. Let H = W† and hk as the kth column of H. We have,

Su[Fx̂(Wu) ? (
−1

πck
)] = i

∫
RN

fẑ(ẑ) exp(juẑk)S(hTk ẑ) dẑ. (39)

Without loss of generality, we choose k = 1. We partition mN , ẑN and RN as m =

[mN−1,mN ]T , ẑ = [ẑN−1, ẑN ]T , R =

[
RN−1 rN
rTN rNN

]
respectively. Let s = −1

h1N
[h11, h12, . . . ,

h1N ]T , then S(hT1 ẑ) = ∓1 depending on ẑN ≶ sT ẑN−1. We have,

Su[Fx̂(Wu) ? ( −1πck
)] = i

∫
RN

fẑ(ẑ) exp(juẑ1)S(hT1 ẑ) dẑ

= i

∫
RN−1

(
−

sT ẑN−1∫
−∞

fẑ(ẑ)dẑN +

∞∫
sT ẑN−1

fẑ(ẑ)dẑN

)
exp(juẑ1) dẑN−1

= i

∫
RN−1

(
− 2

sT ẑN−1∫
−∞

fẑ(ẑ)dẑN +

∞∫
−∞

fẑ(ẑ)dẑN

)
exp(juẑ1) dẑN−1

= −2i

∫
RN−1

( sT ẑN−1∫
−∞

fẑ(ẑN−1, ẑN) dẑN

)
exp(juẑ1) dẑN−1 + iFẑ1(u).

(40)
We now evaluate the first integral below.

J = −2

∫
RN−1

( sT ẑN−1∫
−∞

fẑ(ẑN−1, ẑN) dẑN

)
exp(juẑ1) dẑN−1. (41)
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Let us consider the inner integral, defining pN = mN + rTNR†N−1(ẑN−1 − mN−1) and

qN = rNN − rTNR†N−1rN and using the fact that f(ẑ) is multivariate Gaussian, we have

sT ẑN−1∫
−∞

fẑ(ẑN−1, ẑN) dẑN =

sT ẑN−1∫
−∞

φ(ẑN−1,mN−1,RN−1)N(ẑN , pN , qN)dẑN

= φ(ẑN−1,mN−1,RN−1)Φ

(
sT ẑN−1 − pN√

qN

)
(42)

= φ(ẑN−1,mN−1,RN−1)Φ

(
gTN−1ẑN−1 − kN−1√

qN

)

where gTN−1 = sT − rTNR†N−1 and kN−1 = rTNR†N−1mN−1 − mN . We partition gN−1 as
gN−1 = [gN−2, gN ]T . Now, substituting the inner integral in (42), we have

J = −2

∫
RN−1

φ(ẑN−1,mN−1,RN−1)Φ

(
gTN−1ẑN−1 − kN−1√

qN

)
exp(juẑ1)dẑN−1 (43a)

= −2

∫
RN−1

φ(ẑN−2,mN−2,RN−2)φ(ẑN−1, pN−1, qN−1)

Φ

(
gN−1ẑN−1+gTN−2ẑN−2−kN−1√

qN

)
exp(juẑ1)dẑN−1

= −2

∫
RN−2

Υ(ẑN−2)

( ∞∫
−∞

φ(ẑN−1, pN−1, qN−1)Φ

(
gN−1ẑN−1+gTN−2ẑN−2−kN−1√

qN

)
dẑN−1

)
dẑN−2

where Υ(ẑN−2) = φ(ẑN−2,mN−2,RN−2) exp(uẑ1), pN−1 = mN−1 + rTN−1R
†
N−2(ẑN−2 −

mN−2) and qN−1 = rN−1N−1 − rTN−1R
†
N−2rN−1. To evaluate the inner integral, we make

the transformation t̂N−1 = ẑN−1−pN−1√
qN−1

to make it a standard integral, so we have

J = −2

∫
RN−2

Υ(ẑN−2)Φ

(
αN−2√

1 + β2
N−1

)
dẑN−2 (44)

where βN−1 = gN−1

√
qN−1

qN
and αN−2 =

gTN−2ẑN−2+gN−1pN−1−kN−1√
qN

. Similarly evaluating

the integral N − 3 times, we have

J = −2

∞∫
−∞

φ(ẑ1,m1, r11)Φ(β1ẑ1 + α1) exp(juẑ1)dẑ1 (45)

which is equal to the Fourier transform of the function f̂(ẑ1) = −2f(ẑ1)Φ(β1ẑ1 + α1),
where α1 and β1 are related to the entries of s, m and R. Hence, Su[Fx̂(Wu) ? ( −1πck

)]



796 R. JAGANNATH AND N. S. UPADHYE

is equal to the Fourier transform of f(ẑ1) + f̂(ẑ1) = f(ẑ1)[1 − 2Φ(β1ẑ1 + α1)]. So, we
can observe from that when ẑk is large and positive, then Φ(βẑk +αk) tends to zero and

when ẑk is large and negative, Φ(βẑk+αk) tends to one. So (f(ẑk)+ f̂(ẑk)) ≈ f(ẑk)S(ẑk)
for large |ẑk|, which justifies the use of this approximation in Corollaries 3.2 and 3.3.
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