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KYBERNET IKA — VOLUME 5 4 ( 2 0 1 8 ) , NUMBER 4 , PAGES 8 2 9 – 8 4 3

CHAOS SYNCHRONIZATION OF TSUCS UNIFIED
CHAOTIC SYSTEM, A MODIFIED FUNCTION
PROJECTIVE CONTROL METHOD

Hamed Tirandaz

The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied
in this paper. A modified function projective synchronization (MFPS) method is developed to
achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is con-
sidered unknown and estimated with an appropriate parameter estimation law. MFPS method
is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem
is utilized to verify the proposed feedback control laws and validate the proposed synchroniza-
tion scheme. Finally, some numerical simulations are presented to assess the effectiveness of
the theoretical discussions.

Keywords: chaos synchronization, three-scroll unified chaotic system (TSUCS), modified
function projective synchronization (MFPS), nonlinear dynamics

Classification: 93Cxx, 93Dxx, 65Pxx

1. INTRODUCTION

Chaotic phenomenon has been observed and studied in various fields of engineering and
science such as physics, mechanics, ecology, biology, economy, secure communication
and so on [3, 14, 31, 36, 43].

The challenge of synchronization between two chaotic systems has attracted a lot of
attention by many researchers, in recent years. Chaos is an unpredictable, boundedness
phenomenon that is much sensitive to the initial values of the dynamical state variables.
Chaos generally appears in nonlinear dynamical systems. Since Lorenz [15] in 1963
has discovered his 3D chaotic attractor, many chaotic systems have been found and
studied by the researchers. Chen’s system [4], Lu’s system [16], Chua’s system [5] are
some prevalent investigated systems. Furthermore, some unified chaotic systems that
benefit to the advantages of some chaotic systems have been extended. For example, L
in [17], uncertain fractional-order unified chaotic system (UFOUCS) in [22], Elhadj in
[8], TSUCS in [23] are some of the proposed unified chaotic systems. The readers can
refer to reference [28, 29] for more information about chaotic system and how create.

The objective of chaos synchronization is to track the motion trajectories of a drive
chaotic system state variables by the motion trajectories of a response chaotic system.
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The pioneering investigation on chaotic systems and their synchronization was carried
out in 1990 by Ott et al in [21] and by Pecora in [25]. After that, several control
schemes have been developed to synchronize the behavior of the chaotic systems. Active
method [20, 26], adaptive method [1, 9, 18, 42], impulsive method [13], projective method
[6, 32], lag method [27], sliding mode method [2, 30], linear feedback control [33] and
backstepping control method [41] are some of the prevalent synchronization methods.

Among the several developed approaches for synchronization of chaotic systems, syn-
chronization related to the projective methods have considerably attention because the
drive-response synchronization can be aligned up to a scaling factor . Until now, vari-
ous projective schemes has proposed to solve the synchronization between two chaotic
systems either identical or non-identical ones. In [19], a projective synchronization
(PS) is introduced for synchronization of the two identical Lorenz system. Then in
[12], controlling of the chaotic systems performed via developing a modified projective
synchronization (MPS) method up to a constant scaling factor . After that, another
projective method, function projective synchronization (FPS) method was extended to
synchronize drive-response systems up to a matrix scaling factor, instead of constant
factor. Recently, a new projective synchronization method, modified function projective
synchronization (MFPS) was introduced by Du et al in [7] to synchronize drive-response
systems up to a matrix scaling function λ(t) = diag(λ1(t), λ2(t), · · · , λn(t)). It can be
clearly shown that the complete synchronization, anti-synchronization, PS and MPS are
special cases of the MFPS method.On the other hand, there exist minor schemes devoted
to synchronization of a unified chaotic system either identical or non-identical systems
(ones). The synchronization problem between a typical chaotic system and a unified
system is the subject of some papers as [35, 37]. In addition, synchronization of the uni-
fied systems has studied by some researchers. Active pinning method in [22], adaptive
control method in [40], sliding mode controller in [24] and [10], mixed sliding/H2/H∞
method in [39], Impulsive control method in [11] and Q-S control method [38] are some of
the investigated methods for synchronization of the unified chaotic systems. However,
there is not any published article concentrating on MFPS of unified chaotic systems,
which is the subject of this paper.

The majority of the investigated schemes for synchronization of chaotic systems focus
on systems with parameters that are considered definite beforehand. However, in real
world problems, the parameters of the chaotic systems are influenced by some exter-
nal forces that are unknown or uncertain. So the focus of this paper is on adaptive
synchronization methods to address this problem.

Motivated by the above discussions, this article drives some results on adaptive MFPS
of two identical/non-identical TSUCS unified chaotic systems with unknown parameters.
Some highlights of this paper are as follows:

• Chaotic behavior of the TSUCS unified chaotic system is studied.

• Appropriate adaptive – MFPS feedback controllers are designed for the identical/
non-identical TSUCS unified synchronization.

• Lyapunov stability function is used to realize synchronization approaches.

• Computer simulations verify the effectiveness of the synchronization approaches.
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The reminder of this paper is organized as follows: In Section 2, a MFPS controller is
designed to synchronize the identical TSUCS unified chaotic system by a MFPS method.
Then, in Section 3, non-identical synchronization of the TSUCS unified chaotic system
and Lü unified chaotic system is addressed. In each section, some numerical simulations
are performed to assess the proposed controlling method. Finally, some concluding
remarks are given in Section 4.

2. IDENTICAL SYNCHRONIZATION OF THE TSUCS SYSTEM

This section studies the synchronization problem of the identical three-scroll unified
chaotic system (TSUCS) with unknown system parameter. A new MFPS feedback con-
troller is designed in order to synchronize two identical TSUCS unified chaotic systems.
The theoretical discussion and numerical simulations are performed to assess the effec-
tiveness of the proposed controller.

The TSUCS unified chaotic system recently introduced by Pan et al in [23]as a new
three-scroll unified chaotic system is as follows:

ẋ1 = 20(θ + 2)(x2 − x1) +
6θ + 4

25
x1x3

ẋ2 = (55− 90θ)x1 + 5(θ + 4)x2 − x1x3 (1)

ẋ3 =
−13

20
x21 + x1x2 + (

11

6
− θ)x3

where ẋ1, ẋ2, ẋ3 stands for the time derivative of the state variables of the system
x1, x2, x3, respectively; and θ is the only positive parameter of the TSUCS system which
is bounded as θ ∈ [0, 1].

The only parameter θ of the dynamic system (1) determine its behavior. When
θ ∈ [0, 5590 ), the system behaves like as a Lorenz system and would have two Lyapanov
exponete values: L = {0.24263, 0.3001}. The chaos attractor of the system for θ = 0 is
shown in Figure 1. Whereas θ = 55

90 , represents a Lu-like system with three Lyapanov
exponents as L = {0.24263,−0.031,−1.48120}. the chaotic behavior for θ = 55

90 is
depicted in Figure 2. Finally, When θ ∈ ( 55

90 , 1], it likes as a Chen system with Lyapunov
exponents as: L = {0.697,−0.039,−3.755}. It’s chaotic behavior is provided in Figure 3.

The TSUCS unified chaotic system (1) will asymptotically converges to its equilib-
rium point (0, 0, 0), via a designed controller which established based on MFPS control
method.

The three-scroll unified chaotic system (TSUCS) described in equation (1) can be
re-written as a leader system as follows:

Ẋ = AθX
T + x1 ·BθXT (2)

which is consisted of two parts in its right hand side: the first part is a linear term and
the second one is a nonlinear term. X = (x1, x2, x3) is vector of the state variables of the
leader system and Ẋ stands for the time derivative of X. The matrixes of Aθ, Bθ ∈ R3×3

are dependent to the system parameter θ, and could be defined by:

Aθ =

 −20(2 + θ) 20(θ + 2) 0
55− 90θ 5(θ + 4) 0

0 0 11−6θ
6

 , Bθ =

 0 0 6θ+4
25

0 0 −1
−13
20 1 0

 . (3)
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Fig. 1. Some chaotic attractors of the unified TSUCS system with

θ = 0, lorenz-like system.

Fig. 2. Some chaotic attractors of the unified TSUCS system with

θ = 55
90

, Lü-like system.
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Fig. 3. Some chaotic attractors of the unified TSUCS system with

θ = 1, Chen-like system.

These matrixes can break up into two sub-matrixes as follows:

Aθ = θA1 +A2 , Bθ = θB1 +B2, (4)

where,

A1 =

 −20 20 0
−90 5 0

0 0 −1

 , A2 =

 −40 40 0
55 20 0
0 0 11

6

 ,

B1 =

 0 0 6
25

0 0 0
0 0 0

 , B2 =

 0 0 4
25

0 0 −1
−13
20 1 0

 . (5)

Then, the equations that represent the leader system can be rewritten as:

ẊT = (θA1 +A2)XT + x1 · (θB1 +B2)XT . (6)

Similarly, the follower system can be represented as follows, which is considered iden-
tical to the leader system (6):

Ẏ T = (θ̂A1 +A2)Y T + y1 · (θ̂B1 +B2)Y T + U (7)

where Y = (y1, y2, y3) is the state variables vector of the follower system. The matrixes
A1, A2, B1, B2 ∈ R3×3 specify by equation (3). The truley parameter θ in the leader
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system (6) is replaced with the estimated parameter θ̃ in the follower system (7). The
symbol U implicates the control law of the closed-loop control system, which have to be
designed in such way that alignment the behavior of the follower system to track the
trajectory of the leader attractor.

The follower system in (7) is consisted of three parts in its right-hand side, the two first
parts, similar to the leader system (6), are respected to the linear and nonlinear parts,
respectively and the third one U, is equivalent to the nonlinear control law, specified in
such way that two identical systems (6) and (7) can by synchronized.

The synchronization errors obtained by MFPS method between two identical leader-
follower systems (6) and (7) can be defined as:

Ep = Y − δ(t)X, Eθ = θ − θ̂ (8)

where δ(t) = diag(δ1(t), δ2(t), δ3(t)) is a projective vector function; Then, the error
dynamic system between leader-follower systems (6) and (7) can be achieved by time
derivatives of (8) as follows:

Ėp = Ẏ − δ(t)Ẋ − δ̇(t)X, Ėθ = − ˙̂
θ. (9)

Without considering any suitable feedback controller, the state variables trajectories
of the follower and leader chaotic systems with different initial state values will quickly
depart from each other. The objective of chaos synchronization is to design such feedback
controller that can prevent such bifurcation problem. Now, the control vector and the
parameter estimation can be defined based on the following illustrative theorem.

Theorem 2.1. The trajectories of the unified chaotic TSUCS system (6) with unknown
parameter (θ) will track asymptotically by an identical TSUCS system, and unknown

parameter (θ) will approximate by an estimated parameter (θ̂); for any initial state values
and considering the feedback control and dynamical estimation parameter as follow:

U = −(θ̂A1 +A2)Y T − y1 · (θ̂B1 +B2)Y T + δ(t)A2X
T + δ(t)x1B2X

T

+ δ(t)θ̂A1X
T + δ(t)x1θ̂B1X

T + δ′(t)X − k1δ2(t)Ep, (10)

˙̂
θ = −δ(t)EpA1X

T − δ(t)Epx1B1X
T + k2(θ − θ̂) (11)

where k1 and k2 are two arbitrary positive constants.

P r o o f . Consider the Lyapanov candicate function as follows:

V =
1

2
(E2

p + E2
θ ) (12)

which is a positive definite function organized based on Ep, the system state variables
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error; and Eθ, the parameter estimation error provided in (8). Then, we have:

V̇ = EpĖp + EθĖθ

= Ep

[
Aθ̂Y

T + y1Bθ̂Y
T + U − δ(t)

(
AθX

T + x1BθX
)
− δ̇(t)X

]
− (θ − θ̂) ˙̂

θ

= Ep

[
(θ̂A1 +A2)Y T + y1(θ̂B1 +B2)Y T + U

−δ(t)
(
(A2 + θA1)XT + x1(B2 + θB1)XT

)
− δ̇(t)X

]
− (θ − θ̂) ˙̂

θ

= −δ(t)Ep
[
(θ − θ̂)A1X

T + x1(θ − θ̂)B1X
T + k1δ(t)Ep

]
− (θ − θ̂) ˙̂

θ

= −k1δ2(t)E2
p + (θ − θ̂)

[
−δ(t)EpA1X

T − δ(t)Epx1B1X
T − ˙̂

θ
]

= −k1δ2(t)E2
p − k2(θ − θ̂)2 < 0. (13)

Hence, the constructed Lyapanov function is always positive definite and also its
derivative V̇ (t) is always negative definite at its time domain. So the theorem is proved.
Therefore the identical adaptive-MFPS method of the TSUCS unified chaotic system
with unknown parameter can be achieved by dynamic equations (1), (10) and (11). �

2.1. Simulation results

In this section, some simulations are carried out to show the synchronization between
the master and slave systems. This simulations can simplify analysis of the synchroniza-
tion approach. The implemented program uses the Runge-Kutta integration algorithm
with considering the time step of 10−6 to solve the synchronization problem. The val-
ues of the drive state variables are initially taken as: (x1(0), x2(0), x3(0)) = (5, 8, 4).
And also the initial values of the responsive state variables are initially selected as:
(y1(0), y2(0), y3(0)) = (24, 44,−18). The estimated parameter is initially taken as:
θ = 0.5 and the positive gain constants are set as k1 = 2 and k2 = 2.

Figure 4 shows the trajectories of the whole state variables obtained from synchroniza-
tion procedure between leader and follower TSUCS unified chaotic system with afore-
mentioned initial conditions and modified function as δ(t) = diag(1, 1, 1) – the complete
synchronization. It can be seen from this figure that the synchronization errors between
two chaotic system states converge asymptotically to zero. It means that the responsive
system tracks the trajectories of the drive system nearly perfect. In addition, the esti-
mated parameter is depicted in Figure 5. This figure demonstrates the error dwindling
between the estimated parameters and their corresponding true values. Therefore, as
we expect, the performance of the proposed synchronization method increases as long
as the time tends to infinity.

The motion trajectories of the drive and response system are illustrated for mod-
ified function, δ(t) = diag(0.01t, 0.1t, 0.2t) and δ(t) = diag(1 + 0.2 sin(2πt/20), 1 +
0.3 sin(2πt/20), 1 + 0.25 sin(2πt/20)) in Figures 6 and 7, respectively.

3. NON-IDENTICAL TSUCS SYNCHRONIZATION PROBLEM

This section is devoted to synchronization between two non-identical unified chaotic sys-
tems: the unified TSUCS chaotic system and well-known Lü unified chaotic system [16].
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Fig. 4. Motion trajectories of the TSUCS drive-response state

variables along the time with modified function δ(t) = diag(1, 1, 1) –

the complete synchronization.
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Consider the unified TSUCS chaotic system (1) as leader system. Then the follower
system is considered as the Lü unified chaotic system as follows:

ẏ1 = (25α+ 10)(y2 − y1) + u1

ẏ2 = (28− 35α)y1 − y1y3 + (29α− 1)y2 + u2 (14)

ẏ3 = y1y2 −
α+ 8

3
y3 + u3

where α is the only parameter of the system (α ∈ [0, 1]). When α = 0, the chaotic
system Lü is the Lorenz system. When α = 0.8, it represents the Chen system. While
α = 1 shows a Lü chaotic system. Similar to the matrix representation of TSUCS system
in (6), this dynamical system can be represented in a matrix form as follows:

Ẏ T = (θ̂C1 + C2)Y T + y1 ·DY T + U (15)

where Y = (y1, y2, y3) describes the state variables of the Lü unified chaotic system (14).

θ̂ is the estimation of θ, the TSUCS unified system parameter. U ∈ R3 is the control
feedback input, and the C1, C2, D ∈ R3×3 are the constant coefficient matrix represented
as follows:

C1 =

 −25 25 0
−35 29 0

0 0 −1/3

 , C2 =

 −10 10 0
28 −1 0
0 0 −8/3

 , D =

 0 0 0
0 0 −1
0 1 0

 .
(16)

Construct the synchronization error of state variables and parameter error between
the TSUCS, the leader chaotic system the Lü, the follower chaotic system by adaptive-
MFPS approach represented and its dynamic error as follows

Ep = Y − δ(t)X, Eθ = θ − θ̂ (17)

where δ(t) = (δ1(t), δ2(t), δ3(t)) is a modified function vector and α is the parameter of
the follower Lü unified system; Then, the error dynamic system between leader-follower
systems (2) and (4) can be achieved by time derivatives of (5) as follows:

Ėp = Ẏ − δ(t)Ẋ − δ̇(t)X, Ėθ = − ˙̂
θ. (18)

Now the appropriate feedback control and estimated parameter θ is defined at the
following theorem.

Theorem 3.1. For the given leader unified TSUCS system (6), the follower unified Lü
system (15), the state variable error and parameter error (17) and their corresponding
dynamical equations (18), and for any initial values, the motion trajectories of the
follower system tracks the trajectories of the leader system if the feedback control input
and estimated update law of the follower system parameter α satisfy:

U =− (θ̂C1 + C2)Y T − y1 ·DY T + δ(t)
(

(θ̂A1 +A2)XT + x1 · (θ̂B1 +B2)XT
)

+ δ̇(t)XT − k1δ2(t)Ep (19)
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and,

˙̂
θ = −δ(t)Ep(A1X

T + x1B1X
T ) + k2(θ − θ̂) (20)

where k1 and k2 are two arbitrary positive constants.

P r o o f . Construct the Lyapanov statility function as follows:

V =
1

2

(
E2
p + E2

θ

)
(21)

which is positive definite. Time derivative of the V(t) along the solution of synchroniza-
tion errors (17) and utilizing the control law (19) and the estimated parameter θ in (20)
will be

V̇ = EpĖp + EθĖθ

= Ep

[
(θ̂C1 + C2)Y T + y1 ·DY T + U (22)

−δ(t)
(
(θA1 +A2)XT + x1 · (θB1 +B2)XT

)
− δ̇(t)XT

]
− (θ − θ̂) ˙̂

θ

= −δ(t)Ep
[
(θ − θ̂)A1X

T + x1 · (θ − θ̂)B1X
T + k1δ(t)Ep

]
− (θ − θ̂) ˙̂

θ

= −k1 − δ(t)2E2
p − k2(θ − θ̂)2 < 0. (23)

Hence, the theorem is proved. Then, the anticipated MFPS problem is achieved. �

3.1. Numerical simulation

This section is devoted to synchronization problem between TSUCS and Lu, two uni-
fied chaotic system via MFPS control method. The initial values of the drive and
response chaotic systems are taken as: X(0) = (x1(0), x2(0), x3(0)) = (3, 5, 2) and
Y (0) = (y1(0), y2(0), y3(0)) = (17,−5, 15), respectively. The initial estimation of the
drive system parameter are set as: θ = 0.7.

The time series behavior of the drive and response system is depicted in Figure 8 with
modified function δ(t) = diag(1+0.07 sin(2πt/20), 1+0.2 sin(2πt/20), 1+0.05 sin(2πt/20).
Furthermore, time series of the drive and response parameter estimation errors is shown
in Figure 9.

4. CONCLUSION

In this paper, the identical and non-identical synchronization problem of TSUCS unified
chaotic system is studied. A MFPS controller is designed to synchronize drive and
response systems. The validity of the proposed MFPS synchronization methods are
verified via Lyapunov stability theorem. Finally some numerical simulations are given.
The numerical simulation results show that the proposed controllers can obtain the
synchronization problem in a short time, with excellent stability conditions.

(Received October 31, 2016)
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