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KYBERNET IKA — VOLUME 5 4 ( 2 0 1 8 ) , NUMBER 3 , PAGES 5 7 6 – 5 9 2

UPPER BOUND ESTIMATION OF THE SPECTRAL
ABSCISSA FOR SWITCHED LINEAR SYSTEMS
VIA COORDINATE TRANSFORMATIONS

Meili Lin and Zhendong Sun

In this paper, we develop computational procedures to approximate the spectral abscissa
of the switched linear system via square coordinate transformations. First, we design iterative
algorithms to obtain a sequence of the least µ1 measure. Second, it is shown that this sequence
is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping
condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the
effectiveness of the proposed method.

Keywords: switched linear systems, matrix set measure, spectral abscissa, coordinate
transformations

Classification: 93D20

Notation: Let R be the set of real numbers, and N be the set of nonnegative integers.
For a positive integer k, denote k̄ = {1, . . . , k}. For two positive integers i and j, denote
δ(i, j) the minimal positive integer such that i = lj+δ(i, j) for some nonnegative integer
l. Let λ(A) be the largest real part of the eigenvalues of matrices Ai, i = 1, . . . ,m. For
given matrices A, T ∈ Rn×n with rank(T ) = n, denote

ζTA = T−1AT.

An elementary matrix T ∈ Rn×n is called

• of type 1 if T = T (i, j), ∀i, j ∈ n̄, j 6= i, where T (i, j) is obtained from the identity
matrix In by interchanging rows i and j, i. e.,

T (i, j) =



1
. . .

0 1
. . .

1 0
. . .

1


.
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• of type 2 if T = Ti(q), ∀i ∈ n̄, where Ti(q) is obtained by multiplying the ith row
of In by a nonzero constant q, i. e.,

Ti(q) =



1
. . .

1
q

1
. . .

1


.

• of type 3 if T = T ji (q), ∀ i, j ∈ n̄, j 6= i, where T ji (q) is obtained from In by adding
q times the ith row of In to the jth row, i. e.,

T ji (q) =



1
. . .

1
. . .

q 1
. . .

1


.

1. INTRODUCTION

In this paper, we address the performance analysis issue for continuous-time switched
linear systems

ẋ(t) = Aσ(t)x(t), x(t) ∈ Rn, (1)

where σ(t) is a switching signal taking values from the index set {1, . . . ,m} and Ai ∈
Rn×n are real constant matrices for i ∈ {1, . . . ,m}.

In recent decades, much effort has been devoted to investigating the stability of the
switched linear systems [3, 5, 6, 7, 11, 19, 20]. In particular, asymptotic stability under
arbitrary switching, named guaranteed stability, has attracted enormous interest. So far,
most available results on this problem were based on the existence of a common Lya-
punov function [10]. Current studies in this field mainly concentrate on the construction
of the quadratic Lyapunov functions [8, 12, 19]. Due to the fact that quadratic func-
tions are not universal for characterizing guaranteed stability of switched linear systems,
various non-quadratic functions have to be sought, which makes effective computations
intractable.

For system (1), it was established that, there exist a positive real number c and a
non-negative integer k ≤ n− 1 such that

‖x(t)‖ ≤ c(1 + tk)e%t‖x(0)‖

for any system solution x(·), where % is the spectral abscissa of matrix set {A1, · · · , Am}
[4, 17]. Therefore, spectral abscissa gives a quantitative measure on the asymptotic
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performance of switched systems. It was established in [1, 18] that the spectral ab-
scissa is equal to the least possible common matrix set measure of the subsystems,
which provides an algebraic approach to characterizing the spectral abscissa. Several
least-measure-based computational schemes have recently been proposed along this ap-
proach. In [21], an algorithm based on the sum-of-squares (SOS) technique was used to
approximate the system’s least matrix set measure. However, it fails when the eigenval-
ues of subsystems are not concentrate or close to the imaginary axis. Another possible
way is to compute the least common µ1 measure of the transformed matrix set via ex-
tended algebraic transforms. In our previous work [9], square coordinate transformation
has been proposed to get the least µ1 measure via the fact that any invertible square
matrix can be expressed as a product of elementary matrices.

In this paper, by examining the property of the least µ1 measure obtained by coor-
dinate transformations of type 2, a revised algorithm is presented to calculate the least
µ1 measure via iteratively performing the transformations on some particular columns
only, which reduce the iterative steps and computational cost compared with the row-
by-row iteration in [9]. Furthermore, by constructing a convex function and applying
the subgradient inequality, a stopping condition of this algorithm is proposed. On the
other hand, the least µ1 measure obtained by coordinate transformations of type 2 can
be solved by linear programming and bisection method. For the coordinate transforma-
tions of type 3, a new algorithm is designed to search for the least µ1 measure which
can be seen as the upper bound estimation of the spectral abscissa.

2. PRELIMINARIES

Definition 2.1. For switched linear system (1), the spectral abscissa is

%(A) = lim sup
t→∞,x(·)∈Λ

ln ‖x(t)‖
t

,

where A = {A1, . . . , Am}, and Λ is the set of non-trivial solutions of system (1).

Note that the spectral abscissa in Definition 2.1 is also known as the maximum
Lyapunov exponent or largest divergence rate in the literature [4, 5, 14, 15, 16].

Definition 2.2. (Sun and Ge [20]) For any vector norm ‖ · ‖ in Rn and a given set of
matrices A = {A1, A2, . . . , Am}, the induced matrix set measure is defined as

µ‖·‖(A) = max
{
µ‖·‖(A1), . . . , µ‖·‖(Am)

}
,

where µ‖·‖(Ai) is a matrix measure formulated as

µ‖·‖(Ai) = lim sup
τ→0+,06=z∈Rn

‖z + τAiz‖ − ‖z‖
τ‖z‖

, i = 1, . . . ,m.

For example, for a matrix A = (aij)n×n, the induced matrix measure of norm `1,
denoted by µ1(A) measure for simplicity, is the maximum of the column sum

µ1(A) = max
j∈n̄

ψj(A), (2)
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where the jth column sum is defined as

ψj(A) = ajj +

n∑
i=1,i6=j

|aij |, j ∈ n̄. (3)

Definition 2.3. (Sun and Ge [20]) For a given matrix set A = {A1, . . . , Am}, the least
measure is defined as

µ∗(A) = inf
‖·‖∈V

µ‖·‖(A),

where V is the set of vector norms.

For any norm ‖ · ‖, the following inequality holds true,

‖x(t)‖ ≤ eµ‖·‖(A)t‖x(0)‖, ∀ x(·) ∈ Λ, t ≥ 0,

which indicates that µ‖·‖(A) is an upper bound of the spectral abscissa, i. e., µ‖·‖(A) ≥
%(A). Furthermore, the following lemma establishes that the least matrix set measure
is exactly the spectral abscissa.

Lemma 2.4. (Barabanov [1]) For any matrix set A, we have

µ∗(A) = %(A).

The significance of the next lemma, an extension of Theorem 4.1 in [2], is that the
estimation of the least measure is made at an arbitrary precision by the µ1 measure of
the transformed matrix set.

Lemma 2.5. For any matrix set A and any ε > 0, there exist a natural number r ≥ n,
a matrix Tn×r of rank n, and r × r matrices Hi, such that

AiT = THi, i = 1, 2, . . . ,m,

and

µ1(H1, . . . ,Hm) < µ∗(A) + ε.

Remark 2.6. Note that the inequality µ∗(A) ≤ µ1(H1, . . . ,Hm) is obvious, because
the size of matrices Hi is greater than or equal to that of Ai.

3. COMPUTATION OF THE LEAST µ1 MEASURE

From the characteristic property and Definition 2.2, it is easy to verify that the matrix
set measure obtained after each transformation of type 1 is invariant. Therefore, in
this section, based on the result obtained in [9], we concentrate on searching for the
proper coordinate transformations of type 2 and 3, such that the spectral abscissa can be
approximated by the least µ1 measure of the transformed matrix set. For clarity, we focus
on two-form switched systems, i. e., A = {A1, A2} with A1 = (aij)n×n, A2 = (bij)n×n.
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3.1. Coordinate transformations of type 2

In this subsection, we aim to get the least µ1 measure obtained by a series of transfor-
mations of type 2. That is, to get the least µ1 measure of matrices ζTA1 and ζTA2,

inf
T
µ1(ζTA1, ζTA2) = inf

T
max
j∈n̄
{ψj(ζTA1), ψj(ζTA2)}

= inf
T

max
j∈n̄


n∑

s=1,s 6=j

|zj
zs
asj |+ ajj ,

n∑
s=1,s6=j

|zj
zs
bsj |+ bjj

 , (4)

where T = diag(z1, . . . , zn) with zi 6= 0, i = 1, . . . , n being free variables to be optimized.
For more details of Problem (4), the reader is referred to [9]. To solve Problem (4), we
start with the following definition.

Definition 3.1. The index of the minimum column sum, k ∈ n̄, of matrix set {A1, A2}
is the index of a column sum of Ai, i ∈ {1, 2} with

max
i=1,2

ψk(Ai) = min
j∈n̄

max
i=1,2

ψj(Ai).

Next, we propose the following algorithm for the computation of the optimal value
h∗ to Problem (4).

Algorithm 1: Iterative procedure for solving Problem (4)

Step 1. Set i := 1, P 1
1 := A1 and P 1

2 := A2.

Step 2. Find the index of the minimum column sum, k, of matrix set {P i1, P i2}. Set
Ti(zi) := diag(1, . . . , zi, . . . , 1) with the kth diagonal element being zi.

Step 3. Solve the problem

min
zi 6=0

max
j∈n̄
{ψj(ζTi(zi)P

i
1), ψj(ζTi(zi)P

i
2)}, (5)

to get the optimal value hi and obtain the corresponding minimizer zi = di.

Step 4. Update the matrices

P i+1
1 := ζTi(di)P

i
1, P i+1

2 := ζTi(di)P
i
2. (6)

Set i := i+ 1 and then go to Step 2.

Remark 3.2. In Step 2, the index of the minimum column sum, k, of matrix set is in-
troduced to guarantee that the ith transformation is performed on the minimum column
sum of matrices P i1 and P i2 for each i ∈ N. Therefore, for i = 1, by solving Problem (5),
we obtained the optimal value h1 and the corresponding d1. And then, we can obtain
the transformed matrix set {P 2

1 , P
2
2 } and get the index of the minimum column sum.
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After that, by Step 2, we derive the transformation matrix T2 and resolve Problem (5)
to obtain h2 and d2. Using a similar idea, it follows that a sequence of the minimum of
matrix set measure {hi} is obtained.

We now present a slightly different statement of Theorem 3.3 in [9]. The proof of the
following theorem is similar as Theorem 3.3 in [9] and then omitted.

Theorem 3.3. Suppose that each column and row of P i1 or P i2 has at least one nonzero
off-diagonal element for i = 1, 2, . . .. The optimal value, hi, to Problem (5) is

hi = max{ψk(ζTi(di)P
i
1), ψk(ζTk(di)P

i
2)} (7)

with k defined in Step 2, di = maxy∈Wi
|y|, where

Wi = {y : ∃ (j, r) ∈ (n̄, 2̄), j 6= k, s.t. ψj(ζTi(y)P
i
r) = ψk(ζTi(y)P

i
s)},

and s is determined by the following Rules. For zi ∈ (0,+∞),

1. if

dψk(ζTi(zi)P
i
1)

dzi
=
dψk(ζTi(zi)P

i
2)

dzi
,

then s is the index of the matrix whose column sum is max{ψk(ζTi(zi)P
i
1),

ψk(ζTi(zi)P
i
2)}.

2. get the value ỹ such that ψk(ζTi(ỹ)P
i
1) = ψk(ζTi(ỹ)P

i
2). If

ψk(ζTi(|ỹ|)P
i
1) = max

j∈n̄
{ψj(ζTi(|ỹ|)P

i
1), ψj(ζTi(|ỹ|)P

i
2)},

then s is the index of the matrix whose column sum’s derivative is min{ψ′k(ζTi(zi)P
i
1),

ψ′k(ζTi(zi) P
i
2)}; otherwise, s is the index of the matrix whose column sum’s deriva-

tive is max{ψ′k(ζTi(zi)P
i
1), ψ′k(ζTi(zi)P

i
2)}.

Remark 3.4. The hypothesis of Theorem 3.3 is reasonable. In fact, since di 6= 0, the
hypothesis holds true if each column and row of given matrices A1 or A2 have at least one
nonzero off-diagonal element. Theorem 3.3 describes a convenient computation method
for the minimum of matrix set measure after each transformation. It doesn’t need to
solve the equation ψj(ζTi(zi)P

i
r) − maxl=1,2 ψk(ζTi(zi)P

i
l ) = 0,∀j ∈ n̄\{k}, r ∈ {1, 2},

where the maximum function here is piecewise. Figure 1 shows a graphical explanation
of Theorem 3.3. Since ψ1(ζT1(|ỹ|)P

1
1 ) < maxj∈n̄{ψj(ζT1(|ỹ|)P

1
1 ), ψj(ζT1(|ỹ|)P

1
2 )}, accord-

ing to Rule 2, get the zeros, ys, of equations ψj(ζT1(z1)P
1
r ) − ψ1(ζT1(z1)P

1
1 ) = 0, r ∈

{1, 2}, j = 2, 3. Then we have d1 = maxs=1,2,3,4 |ys|.
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Fig. 1. A graphical explanation of Theorem 3.3.

In the next proposition, we prove that the sequence of minimum of matrix set measure,
{h1, h2, · · · }, generated by Algorithm 1 is convergent.

Proposition 3.5. Algorithm 1 produces a sequence of the minima of matrix set measure
{hi} and it is decreasing and convergent. The sequence admits either of the following
properties:

(i) There is a natural number i], such that hi] = hi]+1, and di] 6= 1.

(ii) The sequence {hi} is convergent to h∗. Moreover, the sequence reaches h∗ if and
only if there is a natural number i∗, such that di∗ = 1.

P r o o f . The proof of decreasing and convergence is exactly the same as that of Propo-
sition 3.6 in [9]. From the proof of Proposition 3.6 in [9], it can be seen that the sequence
{hi} reaches h∗ if and only if the following equalities hold true,

max
r=1,2

ψs(P
i∗

r ) = max
r=1,2

ψj(P
i∗

r ), ∀s, j ∈ n̄.

Obviously, this is equivalent to di∗ = 1.
The proof of the statement (i) and the former part of statement (ii) is similar as that

in Proposition 3.6 in [9], and is omitted. �

Remark 3.6. Proposition 3.5 derives that Algorithm 1 can get the global optimal value
to Problem (4) in case (ii). Compared with that in [9], the transformations are performed
on the minimum of the column sums and then the computation load is reduced.

From the above result, Algorithm 1 is obtained to approximate the spectrum abscissa
of system A via coordinate transformations of type 2. However, it cannot tell the number
of steps we needed to attend a sufficiently small |hi − h∗| a prior. Generally, a natural
criterion is to stop this algorithm when hi−h∗ ≤ ε, where ε is an absolute error tolerance.
The following is devoted to getting the stopping rule which is inspired by [13].

Let d = [d∗1, . . . , d
∗
n]T is a solution to Problem (4) obtained by Algorithm 1 and

T ∗ = diag(d∗1, . . . , d
∗
n) with d∗i , i = 1, · · · , n being the element of d. Denote P ∗1 =

ζT∗A1 = (pij)n×n and P ∗2 = ζT∗A2 = (qij)n×n. Let

$(z) = µ1(A1T − TP ∗1 , A2T − TP ∗2 ),
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where T = diag(z1, · · · , zn) and z = (z1, . . . , zn)T are defined in Problem (4). Simple
calculation yields that the function $(z) is convex, continuous and differentiable almost
everywhere.

Let
∏l
i=1 di(kj) represent the product of all the di which satisfies that k = j for all

i ≤ l. Let T l =
∏l
i=1 Ti(di) and dl = (

∏l
i=1 di(k1), · · · ,

∏l
i=1 di(kn))T .

Lemma 3.7. The sequence {dl} generated by Algorithm 1 is bounded, that is, there
exists a positive constant c0, such that ‖dl‖2 ≤ c0.

P r o o f . Without loss of generality, suppose by contradiction that
∏l
i=1 di(kj)→ +∞.

Therefore, there exists at least one di(kj), such that |di(kj)| → +∞. It follows that
hi → +∞, which contradicts the decrease of sequence {hi}. Therefore, {dl} is bounded.

�

Proposition 3.8. For any given ε > 0, we have

$(dl]) ≤ ε,

where l] =
2cc20
ε2 , c = n(µ1(A1, A2) + max1≤j≤n{|ajj |, |bjj |})2.

P r o o f . From (10) in [9], it is clear that, for every i ∈ n̄,

∂$(z)

∂z+
i

|z=dl ≤ max
1≤s≤n

{
∂
∑n
j=1,j 6=s |asjzj − pjszs|

∂z+
i

|z=dl ,

∂
∑n
j=1,j 6=s |bsjzj − qjszs|

∂z+
i

|z=dl

}
,

≤ max


n∑

j=1,j 6=i

|aij |, max
1≤s≤n,s6=i

{|pis|},
n∑

j=1,j 6=i

|bij |, max
1≤s≤n,s6=i

{|qis|}

 ,

≤ µ1(A1, A2) + max
1≤j≤n

{|ajj |, |bjj |}.

Similarly, we could prove that

∂$(z)

∂z−i
|z=dl ≥ −µ1(A1, A2)− max

1≤j≤n
{|ajj |, |bjj |},∀i ∈ n̄.

Thus, for any l ∈ N, we have

||gl||22 ≤ n(µ1(A1, A2) + max
1≤j≤n

{|ajj |, |bjj |})2 , c,

where gl is any subgradient of $(z) at dl.
Secondly, Lemma 3.7, together with the fact d1 > 0, 1 ≤ di < +∞, i = 2, 3, . . . ,

implies that {dl} is convergent to d∗.
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It is clear that

||dl+1 − d∗||22 ≤ ||dl − d∗||22
≤ ||dl − d∗ − glw||22 + ||glw||22
= ||dl − d∗||22 − 2(dl − d∗)Tglw + 2||glw||22, (8)

where w is an arbitrary positive constant. The subgradient inequality implies that

0 = $(d∗) ≥ $(dl) + gTl (d∗ − dl). (9)

It follows from (9) and (8) that

||dl+1 − d∗||22 ≤ ||dl − d∗||22 − 2$(dl)w + 2||glw||22. (10)

Thirdly, we are ready to prove $(dl]) ≤ ||gl] ||22w+ ε
2 when l] =

c20
wε . Assume by con-

tradiction that $(dl]) > ||gl] ||22w+ ε
2 . According to inequality (10), recursively applying

inequality (9), we have

||dl]+1 − d∗||22 ≤ ||d1 − d∗||22 − l]wε.

It implies that l]wε ≤ ||d1 − d∗||22 which is not true since l] =
c20
wε .

Finally, taking w = ε
2c derives the result. �

Base on Proposition 3.8, we can establish the following result which addresses the
question: by how many iteration steps one should take to guarantee that the minimum
of matrix set measure hi is good enough to approximate the value h∗?

Theorem 3.9. For any given ε > 0, we have

hl] ≤ µ1(P ∗1 , P
∗
2 ) + ε, (11)

where l] =
2cc20
ε2 .

P r o o f . It is easy to verify that

µ1(ζT lA1)− µ1(P ∗1 )

≤ max
1≤j≤n

(ajj − pjj) +

n∑
i=1,i6=j

∣∣∣∣∣aij
∏l
i=1 di(kj)∏l

i=1 di(ki)
− pij

∣∣∣∣∣


= µ1((T l)−1(A1T
l − T lP ∗1 ))

≤ µ1((T l)−1)µ1(A1T
l − T lP ∗1 ).

The last inequality holds true since (T l)−1 is a diagonal matrix. From Proposition 3.8,

for l = l] =
2cc20
ε2 , we have

µ1(ζ
T l]A1)− µ1(P ∗1 ) ≤ ε

µ1(T l])
. (12)
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By exploiting a similar idea, we have

µ1(ζ
T l]A2)− µ1(P ∗2 ) ≤ ε

µ1(T l])
. (13)

Since µ1(T l]) ≥ 1, we have

µ1(ζ
T l]Ai)− µ1(P ∗i ) ≤ ε, i = 1, 2. (14)

This implies that, hl] − µ1(P ∗1 , P
∗
2 ) ≤ ε. �

Remark 3.10. The above theorem indicates that we do have an upper bound of the
steps needed to get the least µ1 matrix set measure with the accuracy we asked for.
Obviously, the method to get this stopping condition, i. e., Proposition 3.8 and Theorem
3.9, can also be used to obtain the stop condition of the corresponding algorithm in [9].

Remark 3.11. On the other hand, Problem (4) is equivalent to infT−1 µ1(ζT−1A1, ζT−1A2)
for the special structure of the transformation matrix T . Therefore, Problem (4) can
be efficiently solved by linear programming tools. In fact, we consider the following
problem

min ς

s.t. : ajjzj +

n∑
s=1,s6=j

|asj |zs ≤ ςzj , j = 1, . . . , n,

bjjzj +

n∑
s=1,s 6=j

|bsj |zs ≤ ςzj , j = 1, . . . , n, (15)

zs > 0, s = 1, . . . , n.

For each fixed ς > 0, we have a linear programming problem to check whether such
numbers zs, s = 1, . . . , n exist. Then by bisection method we can approximate the
minimal ς with this property, which gives the solution to Problem (4). And it is already
known that the computational cost of linear programming is O(mn2) with m and n
being the number of the constrain inequalities and unknown parameters, respectively.

3.2. Coordinate transformations of type 3

In [9], for a given set of matrices A, a calculation procedure is presented to check the
least µ1 measure obtained by the coordinate transformation matrix

T =

n∏
k=1

n∏
l=1,l 6=k

T lk(zlk).

That is, solve the problem

inf
T
µ1(ζTA1, ζTA2) = inf

T
max
j∈n̄
{ψj(ζTA1), ψj(ζTA2)}, (16)

where zlk, k, l ∈ n̄, l 6= k, are free parameters to be determined.
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It is recognized that the calculation procedure is explicitly based on repeatly solving
the problem

min
z∈R

max
j∈n̄
{ψj(ζT l

k(z)P1), ψj(ζT l
k(z)P2)},∀k, l ∈ n̄, l 6= k, (17)

with P1, P2 are given matrices. In the following, a new iterative algorithm is proposed
to get the optimal solution of Problem (17).

Algorithm 2: The iterative procedure for solving Problem (17)

Step 1. Let r := 0 and B1 = B2 := n̄. Set

γ̄i(zi) := max
j∈n̄
{ψj(ζT l

k(zi)P1), ψj(ζT l
k(zi)P2)}, zi ∈ R.

Step 2. Set

D1 := {cs|cs is a point of nondifferentiability of ψj(ζT l
k(zi)Pm) and

ψj(ζT l
k(cs)Pm) = γ̄i(cs),∀(j,m) ∈ (n̄, 2̄)}.

D2 := {ys|ψ′k(ζT l
k(zi)Pm)|zi=ys = 0, ψ′′k (ζT l

k(zi)Pm)|zi=ys > 0, and

ψl(ζT l
k(ys)Pm) = γ̄i(ys),m ∈ {1, 2}}.

Let cs0 := arg mincs∈D1∪D2
γ̄i(cs). If γ̄i(0) < γ̄i(cs0), set y0 := 0; Otherwise, set

y0 := cs0 .

Step 3. If γ̄i(yi) > maxm=1,2 ψk(ζT l
k(yi)Pm) and 0 ∈ ∂γ̄i(yi), then Stop; otherwise, find

a pair (j0,m0) ∈ (Bm0
, 2̄) such that ψj0(ζT l

k(yi)Pm0
) = γ̄i(yi).

Step 4. Get the set

Wr := {qs|ψj0(ζT l
k(qs)Pm0

) = ψj1(ζT l
k(qs)Pm1

) = γ̄i(qs),

∀(j1,m1) ∈ (Bm1 , 2̄), (j1,m1) 6= (j0,m0)}. (18)

Find yr := arg minqs∈Wr γ̄i(qs). If m0 = 1, set B1 := B1\{j0}; Otherwise, B2 :=
B2\{j0}.

Step 5. If k 6∈ B1 ∪B2 and mins=1,··· ,i−1 γ̄i(ys) ≤ γ̄i(yi), and then STOP; otherwise,
set i := i+ 1, and go to Step 3.

Theorem 3.12. Procedure 3 terminates after finite number of iterations and produces
the optimal value, hi, to Problem (17).

P r o o f . If
γ̄i(yi) > max

m=1,2
ψk(ζT l

k(ys)Pm) and 0 ∈ ∂γ̄i(yi),
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yi is a local minimum. Suppose, for instance,

∂−γ̄i(yi) = ∂−ψj0(ζT l
k(yi)Pr0), ∂+γ̄i(yi) = ∂+ψj1(ζT l

k(yi)Pr1).

From the expressions of ψj(ζT l
k(zi)Pr, (j, r) ∈ (n̄, 2̄) and the fact j0, j1 6= k, we obtain

that ψj0(ζT l
k(zi)Pr0) is decreasing when zi ∈ (−∞, yi] and ψj1(ζT l

k(zi)Pr1) is increasing

when zi ∈ [yi,+∞). Hence, the following inequalities hold true,

γ̄i(zi) ≥ ψj0(ζT l
k(zi)Pr0) ≥ ψj0(ζT l

k(yi)Pr0), ∀ zi ∈ (−∞, yi],

and
γ̄i(zi) ≥ ψj1(ζT l

k(zi)Pr1) ≥ ψj1(ζT l
k(yi)Pr1), ∀ zi ∈ [yi,+∞).

Therefore, yi is a solution to Problem (17).
Otherwise, if γ̄i(yi) ≤ maxm=1,2 ψk(ζT l

k(yi)Pm) or 0 /∈ ∂γ̄i(yi), by checking the rules in

Steps 3 & 4, we get yr = arg minqs∈Wr
γ̄i(qs). After that, the function ψj0(ζT l

k(yi)Pm0
)

is not taken into account from further iterations. If mins=1,··· ,i−1 γ̄i(ys) ≤ γ̄i(yi) and
k 6∈ B1 ∪ B2, from the continuousness of the function γ̄i(zi) and the convex of the
functions ψj(ζT l

k(zi)Pr), j 6= k, r = 1, 2, it can be seen that, yi−1 is a solution to Problem

(17). Otherwise, after at most 2n − 1 iterations, there is only one function left, and so
we can get arg minys∈{y0,...,y2n−1} γ̄i(ys), which is a solution to Problem (17). �

Remark 3.13. It is straightforward to see that Algorithm 2 is constructed which cal-
culates, in a finite number of steps, the minimum of matrix set measure after each
transformation. As shown in Figure 2, from Algorithm 2, we obtain y0, y1 and y2, and
then from Step 5, the minimum of matrix set measure h1 can be obtained.

1z
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0 1y

1h

0y

2
1 1

1 2( )
)(

T z
P 

2
1 1

1 1( )
)(

T z
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2
1 1

3 2( )
)(

T z
P 

2
1 1

2 1( )
)(

T z
P 

2
1 1

2 2( )
)(

T z
P 

2
1 1

3 1( )
)(

T z
P 

2y

Fig. 2. A graphical explanation of Theorem 3.12.

Remark 3.14. According to Proposition 2 in [9], the sequence of the minimum of
matrix set measure {hi} is convergent. For the matrix T defined in Problem (16),
noting that neither the function µ1(ζTA1, ζTA2) nor µ1(A1T − TP ∗1 , A2T − TP ∗2 ) is
convex, the method used to obtain the needed steps presented in Proposition 3.8 fails.
It seems notoriously hard to have a priori knowledge of the number of iteration steps
to ensure that hi − h∗ is smaller than our desired tolerance. We leave it open for our
future research.
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Remark 3.15. We next estimate the computational cost of the algorithms for the ex-
tended systems. Let B denote the set of nonzero diagonal elements of matrices A. Let
η = minx∈B |x| and C = n(µ1(A) + maxx∈B |x|)2. It is a well-known fact that the num-
ber of Newton iterations required to solve a quadratic equation within an accuracy of ε is

not more than log2[ lnMε
lnMε0

], where M =
√
C

2η
√
n
, ε0 6= ε is a constant and Mε0 < 1. Follow-

ing Remark 3.5 in [9], for the extended system A, the computational algorithm involves
solving 2m(n − 1) quadratic equations in one variable independently at each iteration.
Therefore, the proposed algorithm has the computational cost 2m(n − 1) log2[ lnMε

lnMε0
]

for each transformation of type 2. While in this paper, according to Theorem 3.3, the
number of equations we need to solve is m(n− 1) + 1. In Algorithm 2, we do not always
have to compute all the elements of

W1 := {y|ψj0(ζT l
k(y)Pm0) = ψj1(ζT l

k(y)Pm1) = γ̄i(y),

∀j1, j0 ∈ n̄,m0,m1 ∈ 2̄, (j1,m1) 6= (j0,m0)},(19)

which is obtained by solving mn(mn−1)
2 quadratic equations. Compared with Theorem

3.10 in [9], the number of quadratic equations we need to solve is less than mn(mn−1)
2 .

Therefore, Algorithm 2 has much reduced the computational cost, especially for the case
di = 0.

4. NUMERICAL EXAMPLE

In this section, we give an example to show the performance of the algorithms for
solving (4) and (16), respectively. Consider the following 4th-order switched linear
system consisting of two subsystems described by

A1 =


−1.7672 −0.0715 1.1008 0.5852

0.2073 −2.1981 0.2368 0.6913
0.7711 1.1407 −2.9919 0.3340
1.2187 −0.2046 0.3339 −1.1840

 ,
and

A2 =


−2.9930 0.4460 0.7098 −0.2002

0.4367 −4.1214 0.1275 0.1464
0.7786 0.8034 −3.9662 −0.3073
−0.0371 0.6581 0.0611 −3.4581

 .
It is not hard to obtain that λ(A1, A2) = −0.2204, µ1(A1, A2) = 0.4299 and k = 3.
Solving (5) in Algorithm 1 gives the minimum of matrix set measure h1 = 0.2640,

the corresponding transformation matrix

T1(d1) = diag(1, 1, d1, 1) = diag(1, 1, 1.9479, 1),

and k = 2. Substituting T1(d1) into (6) leads to P 2
r = ζT1(d1)Ar, r ∈ {1, 2}. Accordingly,

by solving
min
z2 6=0

max
j∈n̄

(ψj(ζT2(z2)P
2
1 ), ψj(ζT2(z2)P

2
2 ),
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i = 1, . . . , 6 i = 7, . . . , 12 i = 13, . . . , 16

k di hi k di hi k di hi

2 1.9479 0.2640 1 1.0147 -0.0955 2 1.0004 -0.0993

4 2.5332 -0.0152 3 1.0056 -0.0965 4 1.0002 -0.0993

1 1.0926 -0.0591 2 1.0044 -0.0983 1 1.0001 -0.0993

3 1.0652 -0.0702 4 1.0021 -0.0985 3 1.0000 -0.0994

2 1.0411 -0.0869 1 1.0012 -0.0991

4 1.0195 -0.0885 3 1.0005 -0.0991

Tab. 1. Sequence {hi}, {di} and {k} via transformations of type 2.

z1 z2 z3 z4 ς α β

0.9432 0.8832 0.7255 0.8705 0.4299 -0.2204 0.4299

0.9297 0.6242 0.5074 0.9422 0.1047 -0.2204 0.1047

0.8993 0.3758 0.4890 0.8638 -0.0578 -0.2204 -0.0578

0.0000 0.0000 0.0000 0.0000 -0.1391 -0.1391 -0.0578

0.8698 0.3609 0.4573 0.8396 -0.0985 -0.1391 -0.0985

0.0000 0.0000 0.0000 0.0000 -0.1188 -0.1188 -0.0985

0.0000 0.0000 0.0000 0.0000 -0.1086 -0.1086 -0.0985

0.0000 0.0000 0.0000 0.0000 -0.1036 -0.1036 -0.0985

0.0000 0.0000 0.0000 0.0000 -0.1010 -0.1010 -0.0985

0.0000 0.0000 0.0000 0.0000 -0.0997 -0.0997 -0.0985

0.8562 0.3547 0.4502 0.8265 -0.0991 -0.0997 -0.0991

0.0000 0.0000 0.0000 0.0000 -0.0994 -0.0994 -0.0991

0.8472 0.3508 0.4455 0.8178 -0.0993 -0.0994 -0.0993

0.8448 0.3498 0.4443 0.8156 -0.0994 -0.0994 -0.0994

Tab. 2. Solutions for Problem (15) by bisection method.

one obtains h2 = −0.0152, d2 = 2.5332 and k = 4. Using a similar idea, it then follows
from Algorithm 1 that the sequences {hi} and {di} are derived. Table 1 shows the
numerical result obtained by Algorithm 1. Since d16 = 1, it follows from Proposition 3.5
that the least µ1 measure is reached, i. e., µ1(P 16

1 , P 16
2 ) = −0.0994. This indicates that

the spectral abscissa lies in the interval [−0.2204,−0.0994].

Since λ(A1, A2) = −0.2204, µ1(A1, A2) = 0.4299, let the initial interval of the bisec-
tion method be [-0.2204,0.4299]. Then, according to Remark 3.11, combining the bisec-
tion method and the linear programming tool for each fixed ς, we get the least µ1 measure
µ1(ζT−1A1, ζT−1A2) = −0.0994 with z1 = 0.8448, z2 = 0.3498, z3 = 0.4443, z4 = 0.8156.
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i = 1, . . . , 26 i = 27, . . . , 52 i = 53, . . . , 78

di hi di hi di hi

-0.0033 0.4285 0.0000 -0.0544 0.0000 -0.1131

0.4469 0.4098 0.0233 -0.0588 0.0063 -0.1146

-0.1242 0.2396 0.0000 -0.0588 0.0000 -0.1146

0.6182 0.0974 0.0000 -0.0588 0.0003 -0.1146

-0.0391 0.0884 0.2763 -0.0713 0.0000 -0.1146

0.0003 0.0883 0.0000 -0.0713 0.0002 -0.1148

0.0000 0.0883 0.2344 -0.0713 0.0017 -0.1159

0.0000 0.0883 0.0000 -0.0713 0.0011 -0.1166

0.0000 0.0883 0.0000 -0.0713 -0.0017 -0.1167

0.1575 -0.0065 0.0000 -0.0713 0.0005 -0.1167

0.0000 -0.0065 0.0095 -0.0721 -0.0004 -0.1167

0.0416 -0.0315 0.0000 -0.0721 0.0000 -0.1167

0.0849 -0.0400 0.0000 -0.0721 0.0000 -0.1167

0.0000 -0.0400 0.1807 -0.1051 0.0000 -0.1167

0.0000 -0.0400 0.0000 -0.1051 0.0000 -0.1167

0.0051 -0.0410 0.0193 -0.1087 0.0000 -0.1167

0.0000 -0.0410 0.0000 -0.1087 0.0000 -0.1167

0.0000 -0.0410 0.0161 -0.1096 0.0000 -0.1167

0.0503 -0.0433 0.0000 -0.1096 0.0010 -0.1174

0.0000 -0.0433 0.0025 -0.1130 0.0003 -0.1176

0.0000 -0.0433 0.0000 -0.1130 -0.0008 -0.1176

0.0000 -0.0433 0.0001 -0.1131 0.0002 -0.1176

0.0077 -0.0541 -0.0003 -0.1131 -0.0002 -0.1176

0.0003 -0.0544 0.0002 -0.1131 0.0000 -0.1176

0.0001 -0.0544 -0.0002 -0.1131 0.0000 -0.1176

0.0000 -0.0544 0.0000 -0.1131 0.0000 -0.1176

Tab. 3. Sequence {hi} and {di} via transformations of type 3.

The least µ1 measure is exactly the same as the result obtained by Algorithm 1. Let
α and β be the end points of each interval respectively. The detail numerical result is
presented in Table 2.

Next, applying Algorithm 2 to solve

min
zi∈R

max
j∈n̄
{ψj(ζT 2

1 (zi)A1), ψj(ζT 2
1 (zi)A2)}, (20)

it can be seen that d1 = 0.4285. By using Procedure 2 in [9], it can be found that the
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least µ1 measure is reached: µ1(P 76
1 , P 76

2 ) = −0.1176. This exhibits that the spectral
abscissa lies in the interval [−0.2204,−0.1176]. This result not only characterizes the
stability of this system, but also indicates that the largest divergence rate of this system
is not more than −0.1176. The numerical result is presented in Table 3.

5. CONCLUSION

In this work, the coordinate transformation method has been presented for computing
the spectral abscissa for continuous-time switched linear systems. A computational
algorithm based on the coordinate transformations of type 2 was presented to obtain
the least µ1 measure. Furthermore, we also proposed the need steps to get the least µ1

matrix set measure with a desired accuracy. For the coordinate transformations of type
3, we gave a new detailed procedure to obtain the minimum of matrix set µ1 measure
after each transformation. And then a convergent sequence of the minima of matrix set
µ1 measure is generated. The limit of this sequence can be used as an upper bound
estimate of the spectral abscissa. We also examined a numerical simulation to show the
performance of these algorithms. However, it is worthwhile mentioning that the method
proposed in this paper can give the acceptable but not arbitrarily sharp estimation of
the spectral abscissa, since the size of the matrices is not increased.
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