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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 5 , P A G E S 1 0 3 3 – 1 0 4 8

MODELING OF THE TEMPERATURE DISTRIBUTION
OF A GREENHOUSE USING FINITE ELEMENT
DIFFERENTIAL NEURAL NETWORKS

Juan Carlos Bello-Robles, Ofelia Begovich, Javier Ruiz-León
and Rita Quetziquel Fuentes-Aguilar

Most of the existing works in the literature related to greenhouse modeling treat the tem-
perature within a greenhouse as homogeneous. However, experimental data show that there
exists a temperature spatial distribution within a greenhouse, and this gradient can produce
different negative effects on the crop. Thus, the modeling of this distribution will allow to study
the influence of particular climate conditions on the crop and to propose new temperature con-
trol schemes that take into account the spatial distribution of the temperature. In this work,
a Finite Element Differential Neural Network (FE-DNN) is proposed to model a distributed
parameter system with a measurable disturbance input. The learning laws for the FE-DNN are
derived by means of Lyapunov’s stability analysis and a bound for the identification error is
obtained. The proposed neuro identifier is then employed to model the temperature distribu-
tion of a greenhouse prototype using data measured inside the greenhouse, and showing good
results.

Keywords: differential neural networks, distributed parameter systems, greenhouse tem-
perature modeling

Classification: 93C95, 93C20

1. INTRODUCTION

A greenhouse is a structure designed to create a microclimate that allows an adequate
growth of the crop and isolates it from adverse external conditions. In this sense, cli-
mate control schemes have been created to provide a favorable environment inside the
greenhouse, improving the development of the crop and reducing the water supply and
energy consumption. In order to develop a climate control scheme for a greenhouse,
it is necessary to obtain a mathematical model which describes accurately enough the
dynamic behavior of the climate variables.

Numerous works have handled this modeling problem, assuming that the tempera-
ture is uniformly distributed within the greenhouse [7, 9, 12, 14]. However, experimental
data show that there exists a temperature gradient within the greenhouse; this gradient
can produce different negative effects on the crop, like plague generation, a decrease in
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growth, early aging, etc. [2, 6], then a model that captures these temperature variations
due to the spatial distribution is necessary. Systems that exhibit temporal and spa-
tial distribution are called Distributed Parameter Systems (DPS) and are described by
Partial Differential Equations (PDEs), and these equations can model different physical
phenomena like diffusion process, wave propagation, and potential fields, among others
[15]. In general, the greenhouse dynamics are nonlinear, coupled and with external dis-
turbances, such as solar radiation, external air temperature, and humidity. Since the
greenhouse temperature gradient follows a heat diffusion dynamics, it can be modeled
by PDEs, but obtaining an analytic solution for PDEs is a difficult task, and not always
possible to solve [5]. One way to overcome this problem is by using a numerical method
to approximate a solution to these equations. But in this case it is necessary to know all
the parameters of the PDEs that describe the system, which are not always available.
When not all the parameters of the system are known or there is uncertainty in the
mathematical description, Differential Neural Networks (DNN) could be used to obtain
a nonparametric model, with additional advantages like dealing with disturbances and
unmodeled dynamics [8, 11]. Indeed, DNNs have found a wide range of applications
in different fields, and fundamental properties like stability and time delays have been
deeply investigated [13, 16, 17]. Moreover, the facility to propose the number of layers
and its neurons allows to incorporate different PDE discretization procedures in the
neural network. For instance, in [3] a finite difference scheme is employed to discretize
the spatial partial derivatives of certain PDEs obtaining a set of Ordinary Differential
Equations (ODEs), and then each ODE that corresponds to a node of the constructed
mesh is approximated by a DNN. Also in [1], the Finite Element Method (FEM) is
employed to discretize the domain of certain PDEs, where the stiffness matrix defines
the hidden layer weight of the neural network, called Finite Element Differential Neural
Networks (FE-DNN). However the network considered in this reference is only for an
autonomous PDE, so no input is considered.

The main contributions of the present work are the following. First, we extend the
results from [1], considering also the presence of an input in the PDE. Thus, an FE-
DNN is proposed to identify the dynamics of a DPS with a measurable disturbance
input, where the learning laws for the FE-DNN are derived using Lyapunov stability
analysis and a bound for the identification error is obtained. Then, the FE-DNN is used
to model the greenhouse temperature using data measured at different points inside
the greenhouse, and considering the solar radiation as disturbance input. As shown
in the simulation results, the proposed FE-DNN achieves well the identification of the
temperature distribution of the greenhouse prototype, obtaining a good performance in
terms of the Total Mean Square Error (TMSE).

The organization of this work is as follows. In Section 2, the representation of the
greenhouse temperature dynamics as a DPS and its approximation by means of an FE-
DNN is introduced. In Section 3, the description of the neural network structure and
the learning laws are presented. The experimental setup, which includes the physical
characteristics of the greenhouse prototype is described in Section 4. Section 5 shows
the obtained results, where different parameters of the FE-DNN were tested to obtain
a desired TMSE. Finally, we end with some conclusions.
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2. PROBLEM FORMULATION

In order to study the temperature spatial distribution, we will consider in this work a
greenhouse prototype as a distributed parameter system whose temperature dynamics
are described by a 2D parabolic PDE:

ut = f(uxx, uyy, uxy, ux, uy, u) + r + ξ (1)

where u = u(x, y, t) ∈ < is the temperature at the point (x, y) at time t defined in

a domain x ∈ [0, a], y ∈ [0, b], time t ≥ 0, and ut := ∂u
∂t , ux := ∂u

∂x , uxx := ∂2u
∂x2 ,

uy := ∂u
∂y , uyy := ∂2u

∂y2 , uxy := ∂2u
∂x∂y ; r = r(x, y, t) is a measurable disturbance input to

the system and ξ = ξ(x, y, t) is considered as a nonmeasurable but bounded deterministic
disturbance in the system.

Following the procedure described in [1], the Finite Element Method is applied to (1)
and the next n ODEs are obtained:

du

dt
= g(x, y, t)u+ h(r) + ξ (2)

where g(x, y, t) is the spatial discretization of Equation (1) given by the stiffness matrix
of the spatial derivative terms and h(r) is a function of the input. It is assumed that
there exists a set of parameters

W ∗1 ∈ <n×n, V ∗1 ∈ <n×n, W ∗2 ∈ <n×n, V ∗2 ∈ <n×n

such that Equation (2) can be represented by the next differential neural network:

du

dt
= Au+W ∗1 σ(V ∗1 u) +W ∗2 ϕ(V ∗2 r) + f̃ + ξ (3)

where u = u(x, y, t) ∈ <n is the vector state of the system, r = Γr′, where Γ ∈ <n is a
vector of ones, r′ is a measurable disturbance input, A ∈ <n×n is a Hurtwitz matrix, and
σ and ϕ are common sigmoid activation functions. The term f̃ = f̃(x, y, t) represents
the modeling error defined as:

f̃ = g(x, y, t)u+ h(r)− [Au+W ∗1 σ(V ∗1 u) +W ∗2 ϕ(V ∗2 r)].

Additionally, the assumptions and properties for the DNN are the following [13]:

Assumption 1. The differences of the sigmoid function σ fulfill the generalized Lips-
chitz condition given by

σ̃TΛ1σ̃ ≤ ∆TΛσ∆ (4)

where

σ̃ := σ(V ∗1 û)− σ(V ∗1 u)

∆ := û− u

and Λ1 ∈ <n×n and Λσ ∈ <n×n are known as normalizing positive constants matrices.
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Property 1. Because the sigmoid functions σ and ϕ are differentiable and satisfy the
Lipschitz conditions, the next properties are satisfied:

σ̃′ = σ(V1û)− σ(V ∗1 û) = DσṼ1û+ vσ

Dσ =
∂σ(Z)

∂Z

∣∣∣
Z=V1û

∈ <m×m, ‖vσ‖2Λ1
≤ l1‖Ṽ1û‖2Λ1

, l1 > 0

Ṽ1 = V1 − V ∗1 ,

(5)

ϕ̃′ := ϕ(V2r)− ϕ(V ∗2 r) = DϕṼ2r + vϕ

Dϕ =
∂ϕ(Z)

∂Z

∣∣∣
Z=V2r

∈ <m×m, ‖vσ‖2Λ2
≤ l2‖Ṽ2r‖2Λ2

, l2 > 0

Ṽ2 = V2 − V ∗2 .

(6)

Assumption 2. The unmodeled dynamics f̃ are bounded by

‖f̃‖2Λf̃ ≤ η, η ∈ <+. (7)

Assumption 3. The deterministic disturbance ξ is bounded by

‖ξ‖2Λξ ≤ γ, γ ∈ <+. (8)

Assumption 4. For a given matrix A there exist strictly positive definite matrices P
and Q such that the next LMI problem:[

−PA−ATP −Q P
P R−1

]
> 0 (9)

has a solution, where

R = 2W̄1 + W̄2 + Λ−1

f̃
+ Λ−1

ξ

W̄1 = W ∗1 Λ−1
1 W ∗T1

W̄2 = W ∗2 Λ−1
1 W ∗T2

Q = Q0 + Λσ

and Λf̃ , Λξ, and Q0 are predefined positive definite matrices.
Considering the definitions and properties presented above, now we can state the first

problem to be tackled in this work: to propose a neural representation of the form (3)
for the DPS (1), with the hidden layer V1 containing the nodal interconnection structure
provided by the stiffness matrix, to establish the learning laws and an upper bound for
the identification error:

µ := lim
t→∞

‖û(t)− u(t)‖2, (10)

and to find parameters participating in the FE-DNN structure in order to reduce µ to
its lowest achievable value. Then this FE-DNN along with the learning laws will be used
to model the temperature dynamics of a greenhouse.
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3. FINITE ELEMENT NEURAL NETWORK IDENTIFICATION

3.1. Differential neural network structure

Following the methodology described in [1], but considering the presence of a measurable
disturbance input, the next FE-DNN identifier is proposed:

dû

dt
= Aû+W1σ(V1û) +W2ϕ(V2r) (11)

where û = û(x, y, t) ∈ <n is the estimated state of the system, σ and ϕ are sigmoid
activation functions, r = Γr′, where Γ ∈ <n is a vector of ones, r′ is a measurable
disturbance input, A ∈ <n×n is a Hurtwitz matrix, W1 = W1(t), W2 = W2(t) ∈ <n×n
are output weight matrices and V1 = V1(t), V2 = V2(t) ∈ <n×n are hidden layer weight
matrices, where the hidden layer V1 takes the structure of the stiffness matrix K, i. e.,
where the stiffness matrix elements are zero, the elements of the hidden layer are zero
too.

3.2. Learning laws for the neuro identifier weights

The weight matrices in Equation (11) are updated by the next learning laws:

Ẇ1 = −k1P∆σT + k1P∆ûT Ṽ T1 D
T
σ − βW̃1

V̇1 = −k2D
T
σW

T
1 P∆ûT − k2l1

2
Λ1Ṽ1ûû

T − βṼ1

Ẇ2 = −k3P∆ϕT + k3P∆rT Ṽ T2 D
T
ϕ − βW̃2

V̇2 = −k4D
T
ϕW

T
2 P∆rT − k4l2

2
Λ2Ṽ2rr

T − βṼ2

(12)

where ki, i = 1, . . . , 4 and β ∈ < are positive real numbers, P is the solution of Equation
(9) and W̃i = Wi −W ∗i , i = 1, 2.

3.3. Identification error stability analysis

In this section, we show that the proposed neuro-identifier ensures a bound in the iden-
tification error of a distributed parameter system under the action of a measurable
disturbance input.

Consider the perturbed distributed parameter system described by the PDE (1) and
approximated by the FEM in Equation (2). It is assumed that it is possible to have
discrete measurements in a finite number of points on the domain, called nodes. The
measured data define the system state u(t) and the number of nodes defines the di-
mension of the state vector. Also, consider that the system is under the action of a
measurable disturbance input r(t).

Theorem 3.1. If the Assumptions 1 – 4 are satisfied and the weight matricesW1, V1, W2

and V2 of the FE-DNN (11) are adjusted by the learning laws (12), then the identification
error and the weights are bounded, i. e., (∆, W1, V1, W2, V2) ∈ L∞, and the norm of
the identification error converges exponentially to a bounded region given by

lim
t→∞

‖∆‖2 ≤
√

η + γ

βλmin(P )
. (13)
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P r o o f . Let us define the identification error as:

∆ = û− u. (14)

Thus, from (3) and (11), the derivative of the error is given by

∆̇ = A∆ + W̃1σ(V1û) +W ∗1 σ̃ +W ∗1 σ̃
′ + W̃2ϕ(V2r) +W2ϕ̃

′ − f̃ − ξ. (15)

Consider the Lyapunov-like function defined as:

V = ∆P∆ + tr{W̃T
1 k
−1
1 W̃1}+ tr{Ṽ T1 k−1

2 Ṽ1}+ tr{W̃T
2 k
−1
3 W̃2}+ tr{Ṽ T2 k−1

4 Ṽ2}. (16)

Taking its derivative we get

V̇ = 2∆TP ∆̇ + 2tr{W̃T
1 k
−1
1 Ẇ1}+ 2tr{Ṽ T1 k−1

2 V̇1}+ 2tr{W̃T
2 k
−1
3 Ẇ2}+ 2tr{Ṽ T2 k−1

4 V̇2}.
(17)

Using Equation (15) in the first term of (17), we have

2∆TP ∆̇ =2∆TPA∆ + 2∆TPW̃1σ(V1û) + 2∆TPW̃2ϕ(V2r) + 2∆TPW ∗1 σ̃

+ 2∆TPW ∗1 σ̃
′ + 2∆TPW ∗2 ϕ̃

′ − 2∆TP f̃ − 2∆TPξ.

Using the matrix lambda inequality: XTY +Y TX ≤ XTΛX+Y TΛ−1Y , proved in [13],
the Assumptions 1-3 and the Property 1 in the last five terms of the equation above, we
get the following inequalities:

2∆TPW ∗1 σ̃ ≤ ∆TPW ∗1 Λ−1
1 W ∗T1 P∆ + σ̃TΛ1σ̃

≤ ∆PW̄1P∆ + ∆TΛσ∆,

2∆TPW ∗1 σ̃
′ = 2∆TPW ∗1DσṼ1û+ 2∆TPW ∗1 vσ

≤ 2∆TPW1Dσ
˜V1û− 2∆TPW̃1DσṼ1û+ ∆TPW̄1P∆ + l1‖Ṽ1û‖2Λ1

,

2∆TPW ∗2 ϕ̃
′ = 2∆TPW ∗2DϕṼ2r + 2∆TPW ∗2 vϕ

≤ 2∆TPW2DϕṼ2r − 2∆TPW̃2DϕṼ2r + ∆TPW̄2P∆ + l2‖Ṽ2r‖2Λ2
,

−2∆TP f̃ ≤ ∆PΛ−1

f̃
P∆ + f̃TΛf̃ f̃ ,

−2∆TPξ ≤ ∆TPΛ−1
ξ P∆ + ξTΛξξ.
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So, using the above inequalities, the Equation (17) takes the form

V̇ ≤ ∆T (PA+ATP + P (2W̄1 + W̄2 + Λ−1
ξ + Λ−1

f̃
)P + Λσ)∆

+ 2∆TPW̃1σ − 2∆TPW̃1DσṼ1û+
1

k1
tr{W̃T

1 Ẇ1}+
β

k1
tr{W̃T

1 W̃1}

+ 2∆TPW1DσṼ1û+ l1û
T Ṽ T1 Λ1Ṽ1û+

1

k2
tr{Ṽ T1 V̇1}+

β

k2
tr{Ṽ T1 Ṽ1}

+ 2∆TPW̃2ϕ− 2∆TPW̃2DϕṼ2r +
1

k3
tr{W̃T

2 Ẇ2}+
β

k3
tr{W̃T

2 W̃2}

+ 2∆TPW2DϕṼ2r + l2r
T Ṽ T2 Λ2Ṽ2r +

1

k4
tr{Ṽ T2 V̇2}+

β

k4
tr{Ṽ T2 Ṽ2}

− β

k1
tr{W̃T

1 W̃1} −
β

k2
tr{Ṽ T1 Ṽ1} −

β

k3
tr{W̃T

2 W̃2} −
β

k4
tr{Ṽ T2 Ṽ2}+ η + γ.

Using Assumption 4 and the learning laws (12) in the inequality above, we have

V̇ ≤ −∆TP 1/2(P−1/2Q0P
−1/2)P 1/2∆− β

k1
tr{W̃T

1 W̃1} −
β

k2
tr{Ṽ T1 Ṽ1} −

β

k3
tr{W̃T

2 W̃2}

− β

k4
tr{Ṽ T2 Ṽ2}+ η + γ.

Choosing β = λmin(P−1/2Q0P
−1/2), then

V̇ ≤ − β
(
∆TP∆+tr{W̃1k

−1
1 W̃1}+tr{Ṽ1k

−1
1 Ṽ1}+tr{W̃2k

−1
3 W̃2}+tr{Ṽ2k

−1
4 Ṽ2}

)
+η+γ

≤ − βV + Ψ,

where Ψ := η + γ.
Solving the last inequality, we have

V ≤ e−βtV0 +
Ψ

β
(1− e−βt). (18)

From Equation (16) and using Rayleigh’s inequality we have

λmin(P )∆T∆ ≤ V. (19)

Inequalities (18) and (19) imply that

‖∆‖2 ≤

√
e−βtV0 + Ψ

β (1− e−βt)
λmin(P )

. (20)

Finally, taking the limit t→∞ on the last inequality, the bound of the identification
error (13) is obtained. �

4. EXPERIMENTAL SETUP

In this section, we present the main characteristics of the greenhouse prototype that
is considered in this research, including description, dimensions, sensors layout and the
data acquisition.



1040 J. C. BELLO-ROBLES, O. BEGOVICH, J. RUIZ-LEÓN AND R. Q. FUENTES-AGUILAR

4.1. Experimental prototype

The experimental greenhouse prototype used in this work is located at Cinvestav Campus
Guadalajara in Zapopan, Jalisco, Mexico (20◦40’06.7”N, 103◦27’54.1”W). The green-
house is 12 m long, 5 m wide, and 5.14 m of maximal height. The greenhouse is equipped
with:

• A metallic structure cover with a plastic film, with 70 percent of transmittance

• 12 internal temperature sensors (◦C)

• Internal and external relative humidity sensors (%)

• Internal and external wind speed sensors (m/s)

• Internal solar radiation sensor (W/m2)

• Two fans of 1/4 HP and 750 m3/h each one

• An Arduino MEGA 2560 as data acquisition device

• A computer with an Intel Core i7-2600K 3.4 GHz processor, 15.7 GB RAM DDR3
833 MHz and Windows 10 operative system

The four principal views and dimensions in meters of the prototype are shown in Figure 1.

4.1.1. Temperature sensors

The temperature inside the greenhouse prototype was measured and collected at different
locations using 12 temperature sensors (LM35D Texas instruments, u11-u43) distributed
as shown in Figure 2. The LM35D temperature sensor was chosen because of its easy
implementation and technical specifications, in concrete his operating temperature range
(see Table 1).

Temperature Sensor LM35D

Operating temperature 0-100 ◦C
Supply Voltage 4-30 V
Current consumption at 5 V 40-80 (typ 56) µA
Accuracy at 25 ◦C ± 0.6 ◦C

Tab. 1. LM35D temperature sensor specifications.

The LM35D output voltage is given by

Vout = H · Tin (21)

where
H = 10 mV/◦C (22)

is the LM35D transfer function and Tin is the temperature input in ◦C.
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Fig. 1. Greenhouse dimensions diagram.
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Fig. 2. Greenhouse temperature sensors layout.
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4.2. Data acquisition

The temperature inside the greenhouse prototype was measured and collected at dif-
ferent locations every 5 seconds using 12 temperature sensors. The experiment was
conducted from 14:26 on July 25, 2017, to 14:26 on July 26, 2017. During the exper-
imental period, no actuators were used and no crop was in the greenhouse. Figure 3

shows the measured temperature data at nodes u11, u22 and u43 during all the experi-
ment. It is important to point out that the temperature is not homogeneous within the
greenhouse prototype, specially during the day when the solar radiation is present. This
temperature distribution is one of the motivations to employ the identification scheme
proposed in this work.
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u
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Fig. 3. Temperature data record at nodes u11, u22 and u43. (Top)

during all the experiment. (Bottom) during an interval of 1.2 hours.

5. RESULTS

This section presents the design of the Finite Element Differential Neural Network and
its implementation to model the temperature distribution of the greenhouse.

5.1. Temperature distribution identification

To perform the temperature distribution identification we consider the FE-DNN struc-
ture (11) and the learning laws (12) described in Section 3. The first step is to compute
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the stiffness matrix where the following parameters were considered: a = 5, b = 9,
n = 12, nx = 4 and ny = 3, where a is the length in the x direction and b the length in
the y direction of the area occupied by the sensors, n the total number of nodes (tem-
perature sensors), nx is the number of nodes in the x direction and ny the number of
nodes in the y direction. The procedure to compute the stiffness matrix is well known,
some references are [10] and [18]; the obtained stiffness matrix K is used as the mask of
the hidden layer V1 of the FE-DNN.

Next, the parameters for the neuro identifier are chosen by a trial and error procedure
in such a way that the identification total mean square error (TMSE) is reduced to a
value of 1×10−2, the Table 2 shows the TMSE for different parameters of the FE-DNN.
The mean square error (MSE) at time j is defined as:

MSE(j) =
1

N

N∑
i=1

(
ûi(j)− ui(j)

)2
(23)

where N is the number of states of the DNN, ui(j) is the measured data and û(j) is the
approximate data obtained with the FE-DNN at node i and at time j; the total mean
square error (TMSE) is defined as:

TMSE =
1

M

M∑
j=1

MSE(j) (24)

where M is the total of sampled data.
The matrix A = λIn, with λ = −0.6 and the gains of the learning laws k1 = k2 = 0.03

and k3 = k4 = 0.06 were selected because the neuro-identifier achieves an acceptable
identification error and presents a good transient response, the remaining parameters of
the FE-DNN are the next:

V1(0) = 0.01V ∗1

W1(0) = W2(0) = V2(0) = 0.01M

W̄1 = W1(0)TW1(0)

W̄2 = W2(0)TW2(0)

Λ1 = Λσ = Λf = Λξ = Q0 = I

β = 1.3637

σ =
1

1 + e(−0.05V1û)
+ 0.005

ϕ =
1

1 + e(−0.01V2r)
+ 0.001

where M is a matrix of ones of dimension n × n, and P can be computed solving (9)
with the above parameters. The systems of ODEs in the FE-DNN (11) and the learning
laws (12) were solved in Simulink using the Bogacki-Shampine method with a fixed time
step of 5 s. Figure 4 shows the performance of the neuro-identifier at the nodes u11,
u22 and u43 during the first 100 s, where it is possible to notice that at time t = 40 s
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λ k1 k3 TMSE

-0.6 0.030 0.04 0.0774
-0.6 0.035 0.04 0.0739
-0.6 0.040 0.04 0.0716
-0.6 0.030 0.05 0.0721
-0.6 0.035 0.05 0.0705
-0.6 0.040 0.05 0.0704
-0.6 0.030 0.06 0.0703
-0.6 0.035 0.06 0.0723
-0.6 0.040 0.06 0.0875

Tab. 2. Comparison of the total mean square error with different

DNN parameters.

the FE-DNN dynamics are almost the same as the greenhouse temperature dynamics.
Figure 5 shows the performance of the neuro-identifier at nodes u11, u22 and u43 during
2.5 hours (17 to 19.5 hours).

0 20 40 60 80 100

T
 (

°C
)

0

10

20

30

u
11

FE-DNN

0 20 40 60 80 100

T
 (

°C
)

0

10

20

30

u
22

FE-DNN

t (s)

0 20 40 60 80 100

T
 (

°C
)

0

10

20

30

u
43

FE-DNN

Fig. 4. Comparison of the measured data against the estimated data

at 3 temperature nodes during the first 100 s.

Figure 6 shows the normalized MSE plotted against time. The total mean square
error throughout the duration of the experiment is computed, obtaining a value of
TMSE=0.0703. Figure 7 shows the temperature distribution measured at the 12
nodes u11− u43 and the respectively FE-DNN approximation of the temperature distri-
bution û11 − û43 at different times.
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Remark 1. The advantages of using the DNN based on the finite element method
instead of the finite difference procedure is that only one DNN is needed to identify all
the nodes, also the sparse structure of the hidden layer reduces its number of neurons,
this results in a faster computation of the learning laws and the FE-DNN.
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Fig. 7. Temperature distribution measured data in the left and

FE-DNN estimated data in the right at (Top) t=10 s, (Middle) t=20 s

and (Bottom) t=35 s.

Remark 2. Once that the identification problem is solved, the control stage can be
designed, where the actuator position can be chosen selecting a node as a control input
and studying the influence of this node in the system, an extra weight for the control
input is then necessary for the FE-DNN structure.
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6. CONCLUSIONS

In this paper, the representation of a greenhouse temperature dynamics as a distributed
parameter system was carried out by means of an FE-DNN that performs a nonparamet-
ric identification of the temperature distribution of a greenhouse prototype. The FEM
was employed to discretize the greenhouse area into 12 nodes defined as the DNN states.
The learning laws for the proposed FE-DNN were obtained by means of Lyapunov’s sec-
ond method and a bound for the identification error was obtained. The neuro identifier
shows good results in terms of the TMSE.

For the greenhouse modeling there always exist dynamics that are not considered
because it makes the model too complex or because they are unknown, also the exter-
nal perturbations affecting the greenhouse produce that dynamics from mathematical
models have deviations from measured data, in this context the differential neural net-
works are an appropriate solution to model the greenhouse dynamics. Moreover, due to
the slow dynamics of the greenhouse temperature, it is possible to execute this neuro-
identifier in real time.

As a future work, we shall increase the dimension of the state of the FE-DNN to
include the internal humidity distribution dynamics of the greenhouse in the neural
model.

(Received October 24, 2017)
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