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Abstract. Recent developments in the field of stochastic mechanics and particularly re-
garding the stochastic finite element method allow to model uncertain behaviours for more
complex engineering structures. In reliability analysis, polynomial chaos expansion is a
useful tool because it helps to avoid thousands of time-consuming finite element model
simulations for structures with uncertain parameters. The aim of this paper is to review
and compare available techniques for both the construction of polynomial chaos and its
use in computing failure probability. In particular, we compare results for the stochastic
Galerkin method, stochastic collocation, and the regression method based on Latin hyper-
cube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative
engineering example, we consider a simple frame structure with uncertain parameters in
loading and geometry with prescribed distributions defined by realistic histograms.
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1. Introduction

Reliability analysis and modelling of structures in general need to take into account

all relevant information as well as any uncertainties in environmental conditions,

loading, or structural properties. Input uncertainties influence the behaviour of the

investigated system, which thus also becomes uncertain. Description of this phe-

nomenon is provided with an uncertainty quantification process. Extensive develop-

ment of efficient methods for stochastic modelling enables uncertainty quantification,

even for complex models.
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Methods quantifying uncertainties can be classified into two groups: (i) reli-

ability analysis methods such as the first- and second-order reliability method

(FORM/SORM [8]) for computing the probability of failure related to limit states;

(ii) higher moment analysis focused on estimation of higher-order statistical mo-

ments of structural response such as stochastic finite element methods (SFEM), see

[23], [30], [14] for a review. SFEM is a powerful tool in computational stochastic

mechanics extending the classical deterministic finite element method (FEM) to the

stochastic framework involving finite elements whose properties are random [13].

In this contribution, we concentrate on SFEM based on polynomial chaos expan-

sion (PCE) [31]. PCE is used to accelerate reliability analysis by replacing time-

consuming FEM simulations within the Monte Carlo (MC) sampling of failure prob-

ability [21], [20], [27], [17]. To this end, PCE can be employed in two ways: (i) as

an approximation of the model response—typically displacements (subsequently re-

ferred to as Variant A) or (ii) as an approximation of the resulting safety margin

(Variant B). While statistical moments for any approximated quantity can then be

computed analytically from the PCE coefficients, failure probability still needs to be

estimated from MC simulations. The acceleration of the latter case comes from the

replacement of an FEM simulation with rapid evaluation of the constructed PCE.

The efficiency of SFEM thus depends on the computational requirements of PCE

construction and its consequent accuracy.

There are several methods for constructing PCE-based surrogates: the regression

method [4], [5], [7], the stochastic collocation methods [2], [32], and the stochastic

Galerkin method [13], [3], [24], [9]. The principal differences between these methods

are outlined. The regression method constructs the polynomial approximation of

a response by using the least squares method. It is a stochastic method based on

a set of model simulations performed for a stochastic design of experiments, usually

obtained using Latin Hypercube Sampling. PCE coefficients are then obtained by

regression of the model outputs at the design points. This leads to a solution of

a system of equations. In contrast, the stochastic collocation method is a determin-

istic method involving a set of model simulations on a sparse grid constructed for

a chosen level of accuracy. The computation of PCE coefficients is based on an ex-

plicit formula. The stochastic Galerkin method leads to a solution of a large system

of deterministic equations and requires an intrusive modification of the numerical

model itself [11], [29]. These methods were compared within the uncertainty quan-

tification of stiff systems in [6]. The aim of this paper is to extend the previous work

presented in [19] devoted to a comparison of these methods in the prediction of fail-

ure probability in reliability analysis. In particular, we compare the three methods

in terms of computational requirements and the resulting accuracy for failure proba-

bility of a simple frame structure, where uncertain parameters occur in the geometry
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of a structure and its loading [12]. The underlying random variables are described

by discrete histograms to illustrate a common situation in engineering practice.

Methods for construction of PCE-based surrogates are briefly recalled in the fol-

lowing section. The selected example of a frame structure with uncertain parameters

is described in Section 3, followed by a numerical study in Section 4. The obtained

results are then summarized in Section 5.

2. Polynomial chaos expansion

In order to accelerate the sampling procedure for an uncertainty quantification

process, the evaluations of a numerical model

(2.1) r = g(m),

where r = (r1, . . . , rnr
)T is a vector of model responses and m = (m1, . . . ,mnm

)T is

a vector of randommodel input parameters, can be replaced by evaluations of a model

surrogate. In the stochastic model problem, we assume the model parameters m to

be random variables defined over some probability space (Ω,A,P), where Ω is the

basic probability set of elementary events, A a σ-algebra of subsets of Ω, and P

a probability measure.

In particular, we search for an approximation of response r using the polynomial

chaos expansion (PCE) [23], [30]. PCE can be used to approximate the response with

respect to the probability distribution of random variables. For example, Hermite

polynomials are associated with Gaussian distribution, Legendre polynomials with

the uniform distribution, and so on.

In the case of model variables m having another distribution, new standard ran-

dom variables ξ with the appropriate distribution defined by joint probability density

function wξ must be introduced. Once we have expressed the model parametersm as

functions of standard variables ξ = (ξ1, . . . , ξnξ
)T, the model response also becomes

a function of these variables. In this paper, we assume particular components of m

as well as ξ to be independent random variables. When we use PCE-based approxi-

mation such that each model input is expressed as a polynomial with one standard

variable (i.e., mj is a univariate function of ξj), then the number of newly introduced

standard variables nξ equals nm. Let the random model output r be approximated

by a PCE r̃ whose polynomials are orthogonal to the probability density function of

the distribution of ξ. We write

(2.2) r̃(ξ) =
∑

α

βαψα(ξ),
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where α = (α1, . . . , αnξ
) is a vector of nξ non-negative integer components that

indicates the degrees of multivariate ponynomial ψα(ξ1, . . . , ξnξ
) = ψα1

(ξ1) · . . . ·
ψαnξ

(ξnξ
) with ψαj

(ξj) being univariate polynomials with a degree αj . The vector

βα is a vector of PCE coefficients βα,i corresponding to a particular component of

system response ri.

Expansion (2.2) is usually truncated to a limited number of terms, often related

to nξ and np, the number of random variables and the maximal degree of polynomials,

respectively [32]. Denoting |α| =
nξ∑

j=1

αj and considering |α| 6 np, the number of all

terms is nβ given as

(2.3) nβ =
(np + nξ)!

np!nξ!
.

Polynomial chaos-based surrogate modelling enables computation of statistical

moments for an approximated model response r̃i analytically from the PCE coeffi-

cients [33]. In particular, the mean value can be computed as

(2.4) µr̃i = E[r̃i] =

∫

. . .

∫

︸ ︷︷ ︸

nξ

∑

|α|6np

βα,iψα(x)wξ(x) dx1 . . . dxnξ
= β0,i

and the standard deviation as

(2.5) σr̃i =
√

E[(r̃i − µr̃i)
2] =

√
∑

0<|α|6np

E[ψ2
α(ξ)]β

2
α,i,

where

(2.6) E[ψ2
α(ξ)] =

∫

. . .

∫

︸ ︷︷ ︸

nξ

nξ∏

j=1

(ψ2
αj
(xj))wξ(x) dx1 . . . dxnξ

.

Specifically, the expected value of the product of Hermite polynomials, which are

employed in this paper, is

(2.7) E[ψ2
α(ξ)] =

nξ∏

j=1

αj !,

where α
j
is a polynomial degree of the variable ξj in a polynomial ψα.

The efficiency of this method thus depends mainly on the computational demands

of the PCE construction and its accuracy, likewise connected with the method chosen

for the construction of the surrogate model [28], [25], [1].
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2.1. Regression method. A very general method of computing PC coefficients

in equation (2.2) is a well-known regression method [4]. The underlying assump-

tion of this method is that the surrogate r̃ is a linear combination of multivariate

polynomials ψα, but does not have to be linear in the independent variables ξ. The

application is based on the following three steps:

(i) Preparation of data X ∈ R
nξ×nd obtained as nd samples {xk, k = 1, . . . , nd} of

the parameter vector ξ,

(ii) Evaluation of the model for samples {xk, k = 1, . . . , nd} resulting in response
samples {rk, k = 1, . . . , nd} organised into a matrix R ∈ R

nr×nd , where nr is

the number of response components, and

(iii) Computation of PCE coefficients βα organised into a matrix B ∈ R
nr×nβ using

e.g. the ordinary least square method.

Since the most time-consuming part of this method consists in evaluating the

model for samples of random variables, the choice of these samples represents a cru-

cial task with the highest impact on computational time requirements. The simplest

way is to choose samples using the Monte Carlo method, i.e., to draw them ran-

domly from a prescribed probability distribution. However, the accuracy of the

resulting surrogate depends on the quality with which the samples cover the defined

domain [16]. The same quality can be achieved with a smaller number of sam-

ples when drawn according to a stratified procedure called the design of experiments

(DoE). Latin hypercube sampling (LHS) is a well-known DoE able to respect the pre-

scribed probability distributions. There also exist more enhanced ways of optimising

LHS (see e.g. [18]), but these are out of scope for this paper. Here, the simplest

version of unoptimised LHS is employed. Each computation of a response sample rk

then includes an evaluation of the transformations between model variables m and

standard variables ξ and the evaluation of model (2.1).

The computation of PCE coefficients B starts with an evaluation of all polynomial

terms ψ for all samples {xk, k = 1, . . . , nd} and saving them in a matrix Z ∈ R
nd×nβ .

The ordinary least square method then leads to

(2.8) Z
T
ZB

T = Z
T
R

T,

which is nr linear systems of nβ equations.

2.2. Stochastic collocation. The stochastic collocation method [34], [26], [22],

[10] is based on an explicit expression of the PCE coefficients of orthogonal polyno-

mials with respect to the probability distribution:

(2.9) βα,i =
1

E[ψ2
α(ξ)]

∫

. . .

∫

︸ ︷︷ ︸

nξ

ri(x)ψα(x)wξ(x) dx1 . . . dxnξ
,
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which can be calculated numerically using an appropriate integration rule (quadra-

ture) on R
nξ . Equation (2.9) then becomes

(2.10) βα,i ≈
1

E[ψ2
α(ξ)]

nd∑

l=1

ri(xl)ψα(xl)vl,

where xl stands for an integration node and vl is the corresponding weight. Here

we employ versions of the Smolyak quadrature rule, in particular quadratures with

Gaussian rules (GQN) and nested Kronrod-Patterson quadrature rules (KPN) de-

rived for normal distribution, see [15].

It is clear that the stochastic collocation method is similar to the regression

method, because in both cases the evaluation of a set of model simulations requires

the most computational effort. The principal difference can be seen in sample gener-

ation, where the stochastic collocation method uses preoptimized sparse grids while

the regression method is based on stochastic LHS.

2.3. Stochastic Galerkin. The stochastic Galerkin method is principally differ-

ent from the previous ones based on a set of independent model simulations. This

method spreads the classical finite element method into the stochastic space given

by the equation

(2.11) K(m)r = f(m),

where K is an nr × nr stiffness matrix, f is an nr × 1 loading vector, and r is an

nr×1 unknown displacement vector. The stochastic Galerkin method is an intrusive

method, i.e., it requires reformulation of this governing equation. To this end, we

rewrite equation (2.2) using a matrix notation

(2.12) r̃(ξ) = (I⊗ψT(ξ))β,

where I ∈ R
nr×nr is the identity matrix, ⊗ is the Kronecker product, ψ(ξ) is an nβ-

dimensional column vector of polynomials, and β is an (nβ ·nr)-dimensional column

vector of PCE coefficients organized here as β = (βT
1 , . . . ,β

T
i , . . . ,β

T
nr
)T, where

βi = (. . . , βα,i, . . .)
T consists of PCE coefficients corresponding to the ith response

component.

Substituting the model response r in equation (2.11) with its PCE approximation

r̃ given in equation (2.12) and applying the Galerkin projection, we obtain

(2.13)

∫

. . .

∫

︸ ︷︷ ︸

nξ

ψ(x)⊗K(x)⊗ψT(x)wξ(x) dxβ =

∫

. . .

∫

︸ ︷︷ ︸

nξ

ψ(x)⊗ f(x)wξ(x) dx,
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which is a linear system of (nβ · nr) equations with unknowns in the vector β. In-

tegration can be performed numerically or analytically. The analytical solution is

available e.g. when all terms in the stiffness matrix and in the loading vector are

polynomials with respect to ξ. In such cases, the method is called fully intrusive. In

other cases, a numerical integration leading to a semi-intrusive Galerkin method is

inevitable and can be again solved with help of the Smolyak integration rule, namely

GQN [15].

3. Description of a frame structure with uncertain parameters

The goal of the work presented here is to compare the methods described for

approximating the model response and accelerating the Monte Carlo (MC) sampling

performed in order to estimate the probability distribution of the safety margin and

the probability of structural failure.

In order to demonstrate the performance of the methods described on an engi-

neering structure, we have chosen a simple frame with two beams (cross-section

HEB 100) and a column (cross-section HEB 120) presented in [12]. To keep the

comparison study clear, the geometry, loading conditions, input material parame-

ters, random variables, and their corresponding notation are preserved as in [12]. As

an illustration, the initial geometry and loading conditions are displayed in Figure 1.

G

q 3

1 2

D A B

C

3.0m 2.5m 2.5m

uA

wA

ϕA

4
.0
m

HEB 100 HEB 100

HEB 120

uD

ϕD

Figure 1. Scheme of the frame structure.

The frame is made of steel with Young’s modulus E = 210 [GPa] and uncertain

yield stress fy obtained by the product of the nominal value fy,µ and the dimension-

less variation fy,σ defined by a prescribed histogram (see Figure 2).
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Figure 2. Histograms of uncertain parameters and the corresponding cumulative density
functions.

The geometrical parameters of the particular beams are considered to be uncer-

tain and defined as products of the corresponding nominal values and dimensionless

variations given in [12] and listed in Table 1. The particular histograms are also

depicted in Figure 2.
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Variable Nominal Dimensionless
value variation

Yield stress fy,µ = 235 [GPa] fy,σ [−]

Moment of inertia I1 = 449.5 [cm4] Iσ1 [−]

Cross-sectional area A1 = 26.04 [cm2] Iσ1 [−]

Moment of inertia I2 = 449.5 [cm4] Iσ2 [−]

Cross-sectional area A2 = 26.04 [cm2] Iσ2 [−]

Moment of inertia I3 = 864.4 [cm4] Iσ3 [−]

Cross-sectional area A3 = 34.01 [cm2] Iσ3 [−]

Elastic section modulus W3 = 144.1 [cm3] Iσ3 [−]

Length l1 = 3.0 [m] lσ [−]

Length l2 = 5.0 [m] lσ [−]

Length l3 = 4.0 [m] lσ [−]

Dead load D1 = 11 [kNm−1] Dσ1 [−]

Short-lasting load S1 = 9 [kNm−1] Sσ1 [−]

Long-lasting load L1 = 5.5 [kNm−1] Lσ1 [−]

Dead load D2 = 3.5 [kN] Dσ2 [−]

Short-lasting load S2 = 2.2 [kN] Sσ2 [−]

Long-lasting load L2 = 1.7 [kN] Lσ2 [−]

Table 1. Material, geometrical, and loading data with the corresponding variations.

The prescribed loading conditions are linear combinations of dead, long-lasting,

and short-lasting load given as:

(3.1) q = D1Dσ1 + S1Sσ1 + L1Lσ1 [kNm−1],

and

(3.2) G = D2Dσ2 + S2Sσ2 + L2Lσ2 [kN],

where the particular loads are statistically independent and described by random

variables with nominal values (D1, S1, L1, D2, S2, L2) and variations (Dσ1, Sσ1, Lσ1,

Dσ2, Sσ2, Lσ2) defined in Table 1 and by the histograms depicted in Figure 2.

Let us simplify the notation and denote all random variables as mi,

(3.3) m = (m1, . . . ,mnm
)T = (Iσ1, Iσ2, Iσ3, lσ, Dσ1, Sσ1, Lσ1, Dσ2, Sσ2, Lσ2)

T.

None of these variables has a continuous probability density function (PDF), which

is necessary for constructing the PCE-based approximation, but their distribution is

described by discrete histograms. For this reason, we introduce new standard random
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variables ξ = (ξ1, . . . , ξnξ
)T, nξ = nm, with a continuous PDF. The variables mj can

be then expressed by transformation functions tj with variables ξj , i.e.

(3.4) mj = tj(ξj).

For discrete histograms, the transformation functions are non-smooth. Particular

examples of transformation functions will be discussed in Section 4.

Since the axial force in the column does not achieve critical intensity, instability

does not play any role and thus the column has only one failure mode determined

by the material yield stress. The maximal internal forces will appear in the column

at support ‘C’ and can be computed from the displacement and rotation of joint ‘A’.

The unknown displacements r = (uD, ϕD, uA, wA, ϕA) can be—for the geometrical

and material linearity considered here—computed using the finite element method

or the displacement method, both of which are very well-known. Hence, we start

directly with the latter method with a discretized form of the equilibrium equations

given in equation (2.11), which—after applying the boundary conditions—comprises

a system of five linear equations for the unknown vector r = (uD, ϕD, uA, wA, ϕA).

The stiffness matrix is given as

(3.5) K =
12E

lσ
·



















A1Iσ1

12l1
0 −A1Iσ1

12l1
0 0

0
I1Iσ1

3l1
0

I1Iσ1

2l21lσ

I1Iσ1

6l1

−A1Iσ1

12l1
0 k33 0

I3Iσ3

2l23lσ

0
I1Iσ1

2l21lσ
0 k44

I1Iσ1

2l21lσ
− I2Iσ2

2l22lσ

0
I1Iσ1

6l1

I3Iσ3

2l23lσ

I1Iσ1

2l21lσ
− I2Iσ2

2l22lσ
k55



















,

where

k33 =
A1Iσ1

12l1
+
A2Iσ2

12l2
+
I3Iσ3

l33l
2
σ

, k44 =
I1Iσ1

l31l
2
σ

+
I2Iσ2

l32l
2
σ

+
A3Iσ3

12l3
,

k55 =
I1Iσ1

3l1
+
I2Iσ2

3l2
+
I3Iσ3

3l3
,

and the loading vector as

(3.6) f =











0

0
1
2
(D1Dσ1+S1Sσ1+L1Lσ1))l3lσ
1
2
(D2Dσ2+S2Sσ2+L2Lσ2)

− (D2Dσ2+S2Sσ2+L2Lσ2)l2lσ
8

+
(D1Dσ1+S1Sσ1+L1Lσ1)(l3lσ)

3

12











.
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Safety margin M of the column is the difference between the yield stress fy and

the stress σ produced by the external load and given as

(3.7) σ = −wAE +
( ql23l

2
σ

12Iσ3
+

2EI3
l3lσ

ϕA +
6EI3
l3lσ

uA

)/

W3.

Failure F occurs when σ exceeds fy. The probability of failure Pr(F ) is then es-

timated to be the number of failures divided by the total number of performed

simulations n:

(3.8) Pr(F ) =
1

n

n∑

s=1

I[fy − σs 6 0],

where I[fy − σ 6 0] is an indicator function with value one if fy − σ 6 0, and zero

otherwise.

In this numerical study, two variants of the model response are considered. For the

first variant, the safety margin is calculated from the vector r̃ that approximates the

displacements r (Variant A). In the second case, the approximated random output

is directly the safety margin M (Variant B). In the first variant, the stochastic

Galerkin method can be applied and compared with the other two methods described

in Section 2.

The results for the constructed surrogate models are compared with reference

results obtained by MC sampling with n = 107 samples. For Variant A, the relative

errors [%] in an estimation of the mean of the particular response components are

defined as

(3.9) εµi
=

|µi,PCE − µi,MC|
µi,MC

· 100, i = 1, . . . , nr,

where µi,MC is the MC-based estimation of the mean and µi,PCE is the mean com-

puted for a particular surrogate model. An analogous expression is also used to

evaluate errors in estimating the standard deviation.

In both variants of model response, the relative errors [%] in predicting the safety

margin are obtained with

(3.10) εM =
1

n

n∑

s=1

|MPCE,s −MMC,s|
maxMMC −minMMC

· 100,

where MMC stands for the samples of the safety margin estimated using the MC

method. In (3.10), MMC,s and MPCE,s stand for a particular sample of the safety

margin obtained by the MC method with the full numerical model or a chosen

surrogate model, respectively.
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4. Numerical study

We assume that the components of ξ are standard Gaussian variables and thus

we employ Hermite polynomials for the model surrogate. The study involves several

variants of distributions for model parameters m.

First, each model parameter mj is distributed according to the prescribed his-

togram and the corresponding transformation to the standard variable ξj consists of

two steps. The variable ξj is transformed using the cumulative distribution function

of the standard normal distribution

(4.1) Φ(ξj) =

∫ ξj

−∞

1√
2π

e−t2/2 dt

to the uniformly distributed variables on the interval 〈0; 1〉. Then, the final trans-
formation step is based on piecewise linear inverse cumulative distribution functions

arising from the prescribed histogram.

For transformation functions, the stochastic Galerkin method can be applied in

its semi-intrusive form. In our particular example, we multiply the governing equa-

tion (2.11) involving the expressions in equations (3.5) and (3.6) by (lσ)
3 so as to

obtain polynomials in terms of model parameters m. However, we will not obtain

polynomials in terms of ξ due to non-smooth transformations (equation (3.4)) pro-

duced by the discrete nature of the histograms prescribed to m.

Table 2 contains results of uncertainty quantification for response components

in terms of their means and standard deviations. These results are obtained for

Variant A, where one PCE is used to approximate each response component. The

presented methods are compared here in this specific form: the regression method

(LHS), the stochastic collocation method in two variants (KPN, GQN), and semi-

intrusive Galerkin method based on GQN quadrature rules (GM GQN) for four

polynomial degrees np.

The results show good predictions obtained using the regression method, while

stochastic collocation based on KPN rules leads to significant errors in estimating

standard deviations, with the method based on GQN rules appearing to be even

divergent. The semi-intrusive Galerkin method achieves better results in estimating

standard deviations than the stochastic collocation based on the same quadrature

rules. Estimated PDFs for displacement uA depicted in Figure 3 are not sufficient,

even for the regression method.

Moreover, the PCE-based approximations are compared to the polynomial ap-

proximation (PA) without orthogonality of the polynomial basis with respect to the

input distribution. In this case, the polynomials approximate directly the relations

between the model parametersm and the model responses r. The PA coefficients are
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Method np nd Time [s] µuA
σuA

µwA
σwA

µϕA
σϕA

[mm] [mm] [mm] [mm] [mrad] [mrad]

MC − 107 22191 0.207 0.033 0.009 0.002 4.090 0.795
εµuA

εσuA
εµwA

εσwA
εµϕA

εσϕA

[%] [%] [%] [%] [%] [%]

LHS 1 21 0 0.18 11.96 0.32 60.63 0.20 14.20

2 201 0 0.26 4.76 0.36 2.49 0.34 4.41

3 1201 3 0.08 1.36 0.01 0.02 0.10 1.54

4 5301 19 0.02 1.31 0.09 0.98 0.04 1.21
KPN 1 21 0 4.81 9.34 4.26 8.42 4.90 9.38

2 201 0 4.81 5.54 4.26 4.32 4.90 5.53

3 1201 3 2.26 7.37 1.98 3.73 2.31 5.18

4 5301 13 0.30 11.36 0.29 6.20 0.30 7.96
GQN 1 21 0 6.68 22.99 6.06 15.52 6.78 23.00

2 221 0 4.81 73.94 4.25 50.93 4.90 58.21

3 1581 4 3.11 59.73 2.81 37.07 3.16 46.92

4 8761 21 1.13 187.92 1.10 129.41 1.14 147.83
GM GQN 1 21 1 0.37 17.50 1.28 16.47 0.29 19.82

2 221 0 0.37 1.81 1.28 6.67 0.29 7.90

3 1581 3 0.37 1.24 1.28 4.97 0.29 4.13

4 8761 41 0.37 6.51 1.28 5.44 0.29 1.29

PA 1 21 302 0.01 0.41 0.17 1.32 3 ·10−3 0.36

2 201 377 3 ·10−4 0.01 1 ·10−4 5 ·10−3 2 ·10−4 2 ·10−3

3 1201 540 5 ·10−6 2 ·10−4 2 ·10−5 2 ·10−4 1 ·10−6 3 ·10−5

4 5301 1117 4 ·10−6 9 ·10−5 1 ·10−6 7 ·10−5 2 ·10−6 1 ·10−5

Table 2. Time requirements and errors in predicting means and standard deviations of
displacement vector components for the prescribed histograms with model param-
eters m.
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Figure 3. Probability density functions of displacement uA for different np for the prescribed
histograms with model parameters m.
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computed by the regression method based on LHS design respecting the prescribed

histograms of the model parameters. The benefit of this approach is the elimination

of the nonlinear transformation functions from the approximated relations which

enables to reach a higher accuracy with the same polynomial degree in comparison

with PCE, see Table 2. On the other hand, there are disadvantages associated with

the computational aspects. No restrictions on the model parameters’ distribution

can lead to an ill-conditioned system of equations in the least square method as it

occurs in this investigated case. On top of that, the polynomial coefficients cannot

be used to compute statistical moments of the approximated model response ana-

lytically, but for this purpose the Monte Carlo samples of PA have to be employed,

which increases the computation time.

Predictions of safety margin M and failure probability Pr(F ) are summarised in

Table 3 for Variant A as well as for Variant B, where PCE is used as a direct surro-

Variant B Variant A

Method np nd Time [s] Pr(F ) [−] εM [%] nd Time [s] Pr(F ) [−] εM [%]

MC − 107 23825 7 ·10−5 − 107 22191 7 ·10−5 −
LHS 1 23 32 7 ·10−7 4.20 21 473 3 ·10−5 1.33

2 243 164 16 ·10−5 2.66 201 549 6 ·10−5 0.63

3 1607 757 157 ·10−5 2.12 1201 772 18 ·10−5 0.44

4 7767 2702 138 ·10−5 1.79 5281 1416 18 ·10−5 0.37

KPN 1 23 31 1 ·10−6 4.31 21 487 2 ·10−5 0.88

2 243 164 49 ·10−5 3.11 201 547 9 ·10−5 0.64

3 1607 760 113 ·10−5 2.98 1201 801 13 ·10−5 0.59

4 7767 2701 84 ·10−5 3.43 5281 1416 11 ·10−5 0.65

GQN 1 23 31 0 3.51 21 475 4 ·10−6 0.71

2 265 164 5 ·10−5 9.75 221 549 4 ·10−5 1.78

3 2069 764 719 ·10−5 6.98 1581 759 62 ·10−5 1.29

4 12453 2713 3229 ·10−5 15.74 8761 1404 93 ·10−5 2.75

GM GQN 1 − − − − 21 500 1 ·10−5 0.67

2 − − − − 221 586 5 ·10−5 0.48

3 − − − − 1581 807 15 ·10−5 0.38

4 − − − − 8761 1461 15 ·10−5 0.37

PA 1 23 467 4 ·10−5 0.14 21 328 7 ·10−5 0.03

2 243 583 7 ·10−5 2 ·10−3 201 382 8 ·10−5 2 ·10−4

3 1607 916 7 ·10−5 4 ·10−5 1201 713 8 ·10−5 3 ·10−6

4 7767 5604 7 ·10−5 6 ·10−5 5281 1420 8 ·10−5 6 ·10−6

Table 3. Time requirements, probability of failure and errors in predicting safety margin
for the prescribed histograms with model parameters m.
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gate for safety marginM . One can see that the estimations of failure probability are

unsatisfactory for all methods examined. Predictions of the safety margin seems bet-

ter in both variants, but Variant A significantly outperforms Variant B, see Figure 4.

The number of random variables involved in the PCEs constructed appears to be

a crucial factor here. The total number of random variables for Variant B is eleven,

including the uncertain yield stress fy, missing from Variant A PCEs except during

the sampling of failure probability. Therefore, even though Variant B requires the

construction of only one PCE, the additional variable causes an enormous increase in

complexity because of an increasing polynomial degree, which also quickly increases

computational times.
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Figure 4. Probability density functions of safety marginM for different np for the prescribed
histograms with model parameters m.

The overall unsatisfactory results of PCE approximations are a result of a highly

nonlinear transformation (equation (3.4)). This hypothesis is supported by the good

results of PA. The most problematic relations are likely the transformations of pa-

rameters with the prescribed histograms Sσ1, Sσ2 and Lσ1, Lσ2, respectively, to

standard normal variables, as shown in Figure 5. In order to test this assumption,
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we have replaced these two prescribed histograms by new ones closer to the normal

distribution, see Figure 6. The new histograms respect the initial values of means

and standard deviations from the prescribed histograms.
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Figure 5. Transformation relations for prescribed histograms.
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Figure 6. New histograms of model parameters with the corresponding cumulative density
functions and transformation relations.
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Method np nd Time [s] µuA
σuA

µwA
σwA

µϕA
σϕA

[mm] [mm] [mm] [mm] [mrad] [mrad]

MC − 107 21874 0.206 0.033 0.009 0.002 4.056 0.789
εµuA

εσuA
εµwA

εσwA
εµϕA

εσϕA

[%] [%] [%] [%] [%] [%]

LHS 1 21 0 0.01 0.91 0.13 3.06 0.02 0.02

2 201 0 0.01 0.08 0.02 0.16 0.01 0.09

3 1201 3 0.00 0.13 0.03 0.34 0.00 0.13

4 5301 19 0.01 0.00 0.01 0.06 0.01 0.00

KPN 1 21 0 0.05 0.13 0.04 0.06 0.05 0.11

2 201 0 0.05 0.09 0.04 0.00 0.05 0.09

3 1201 3 0.01 0.27 0.01 0.19 0.01 0.26

4 5301 13 0.01 0.13 0.01 0.13 0.01 0.13

GQN 1 21 0 0.08 0.21 0.06 0.20 0.08 0.20

2 221 0 0.05 0.07 0.04 0.01 0.05 0.07

3 1581 4 0.03 0.47 0.03 0.30 0.03 0.47

4 8761 21 0.01 0.20 0.01 0.21 0.01 0.20

GM GQN 1 21 1 0.07 0.31 0.01 0.09 0.01 0.32

2 221 0 0.07 0.35 0.01 0.15 0.01 0.28

3 1581 3 0.07 0.35 0.01 0.16 0.01 0.21

4 8761 41 0.07 0.36 0.01 0.17 0.01 0.07

Table 4. Time requirements and errors in predicting means and standard deviations for
displacement vector components for the new histograms with model parametersm.

Results obtained for the case of the new histograms and Variant A are listed in

Table 4. One can see that the replacement of the two histograms led to a signifi-

cant improvement in results achieved for all methods. GQN based collocation yields

the worst results and the method still suffers from problems with convergence. The

regression method LHS provides the worst estimation for polynomials of the first de-

gree, but the error here decreases with increasing polynomial degree. The behaviour

of the semi-intrusive Galerkin method and stochastic collocation is very similar due

to numerical integration based on GQN rules.

The same improvement can be seen also in the prediction of the whole probability

density function for safety margin M . The corresponding errors in predicting the

safety margin and the failure probability are listed in Table 5.

We can also notice that GQN-based collocation provides the worst results for the

response corresponding to the safety margin. The semi-intrusive Galerkin method

delivers the worst prediction. The resulting estimation of failure probability is now

satisfactory; in Variant A, it is excellent.
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Variant B Variant A

Method np nd Time [s] Pr(F ) [−] εM [%] nd Time [s] Pr(F ) [−] εM [%]

MC − 107 23833 5 ·10−7 − 107 21874 5 ·10−7 −
LHS 1 23 32 9 ·10−7 2.86 ·10−1 21 479 5 ·10−7 3.20 ·10−2

2 243 165 6 ·10−7 7.98 ·10−2 201 537 5 ·10−7 1.42 ·10−2

3 1607 753 3 ·10−7 8.26 ·10−2 1201 782 5 ·10−7 1.43 ·10−2

4 7767 2701 15 ·10−7 2.00 ·10−1 5281 1437 5 ·10−7 2.75 ·10−2

KPN 1 23 31 10 ·10−7 2.59 ·10−1 21 475 5 ·10−7 2.02 ·10−2

2 243 164 6 ·10−7 8.21 ·10−2 201 551 5 ·10−7 1.32 ·10−2

3 1607 758 1 ·10−7 1.66 ·10−1 1201 778 5 ·10−7 2.41 ·10−2

4 7767 2786 8 ·10−7 1.30 ·10−1 5281 1425 5 ·10−7 2.20 ·10−2

GQN 1 23 31 10 ·10−7 2.41 ·10−1 21 484 5 ·10−7 2.12 ·10−2

2 265 164 6 ·10−7 1.47 ·10−1 221 560 5 ·10−7 2.35 ·10−2

3 2069 763 1 ·10−7 1.98 ·10−1 1581 781 5 ·10−7 3.39 ·10−2

4 12453 2714 2 ·10−7 2.94 ·10−1 8761 1418 5 ·10−7 3.48 ·10−2

GM GQN 1 − − − − 21 491 5 ·10−7 1.99 ·10−2

2 − − − − 221 575 5 ·10−7 2.67 ·10−2

3 − − − − 1581 782 5 ·10−7 4.03 ·10−2

4 − − − − 8761 1446 6 ·10−7 4.45 ·10−2

Table 5. Time requirements, probability of failure and errors in predicting safety margin
for the new histograms with model parameters m.

In both previous examples, the discrete nature of prescribed histograms led to the

necessity of numerical integration in the stochastic Galerkin method resulting in its

semi-intrusive variant. In order to investigate the performance of the fully intrusive

stochastic Galerkin method avoiding all numerical approximations, we have changed

the prescribed distributions for model parameters once more. This time, we assume

all the parameters to be normally distributed with the original values of means and

standard deviations. In such cases, the transformation (3.4) becomes a 1st order

polynomial and hence, analytical integration is available.

Figure 7 shows the functional dependence of safety marginM for considered types

of probability distribution prescribed to model parameters. Figure 7(a) shows that

the relation betweenM and the model parametersm is linear, while high nonlinearity

appears in the relation to standard variables ξ for the prescribed histograms, see

Figure 7(b). Replacement of the two histograms Sσ1, Sσ2 and Lσ1, Lσ2, respectively,

with new ones more similar to normal distributions leads to an almost linear M − ξ

relation, namely in the high probability region, see Figure 7(c). Finally, prescription

of the normal distribution to model parameters leads to a linear M − ξ relation as

shown in Figure 7(d).
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Figure 7. Functional dependence of safety margin M on model parameters m (a), on stan-
dard variables ξ for the prescribed histograms (b), new histograms (c), and normal
distribution (d).

Results for normally distributed model parameters m and Variant A are shown

in Table 6.

The results prove that the uA − ξ relation is now linear and thus the 1st order

polynomials are sufficient for constructing an excellent surrogate. The differences

between the various methods here are negligible in terms of accuracy and time re-

quirements.

Figure 8 compares the achieved accuracy in estimating the mean of displacement

uA for all variants of the presented distribution of the parameters. The graphs show

convergence of the mean estimation with help of the Monte Carlo method with 102

to 107 simulations for the full numerical model compared to the estimations obtained

with coefficients of polynomials of the 4th degree.

The most accurate estimation in the variant of the prescribed histograms (Fig-

ure 8(a)) is obtained with a surrogate model based on the regression method, while

stochastic collocation based on GQN rules yields the worst result. For the new his-
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Method np nd Time [s] µuA
σuA

µwA
σwA

µϕA
σϕA

[mm] [mm] [mm] [mm] [mrad] [mrad]

MC − 107 3692 0.207 0.033 0.009 0.002 4.090 0.795
εµuA

εσuA
εµwA

εσwA
εµϕA

εσϕA

[%] [%] [%] [%] [%] [%]

LHS 1 21 0 5.2 ·10−2 0.2800 5.8 ·10−2 0.5300 6.6 ·10−2 0.5800

2 201 0 7.9 ·10−3 0.0140 6.8 ·10−3 0.0042 7.5 ·10−3 0.0059

3 1201 2 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

4 5301 10 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

KPN 1 21 0 7.9 ·10−3 0.0490 5.5 ·10−3 0.0530 7.9 ·10−3 0.0260

2 201 0 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

3 1201 0 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

4 5301 3 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

GQN 1 21 0 7.9 ·10−3 0.0050 5.5 ·10−3 0.0530 7.9 ·10−3 0.0260

2 221 0 7.9 ·10−3 0.0069 5.5 ·10−3 0.0031 7.9 ·10−3 0.0029

3 1581 1 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

4 8761 5 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

GM 1 − 0 7.9 ·10−3 0.0045 5.5 ·10−3 0.0500 7.9 ·10−3 0.0170

2 − 0 7.9 ·10−3 0.0069 5.5 ·10−3 0.0031 7.9 ·10−3 0.0029

3 − 3 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

4 − 45 7.9 ·10−3 0.0069 5.5 ·10−3 0.0032 7.9 ·10−3 0.0029

Table 6. Time requirements and errors in predicting mean and standard deviation of dis-
placement vector components for normal distribution with model parameters m.

tograms (Figure 8(b)), all methods except the semi-intrusive Galerkin method pro-

vide very accurate results. The last graph in Figure 8(c) shows excellent estimations

for all methods investigated.
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Figure 8. Comparison of the predicted mean of displacement uA based on PCE and MC
with different numbers of simulations for the prescribed histograms (a), new his-
tograms (b), and normal distribution (c).
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The errors in prediction of safety margin and failure probability are given in Ta-

ble 7. The M − ξ relation is now linear and thus the 1st order polynomials are

sufficient for constructing an excellent surrogate using all the particular methods.

Variant B Variant A

Method np nd Time [s] Pr(F ) [−] εM [%] nd Time [s] Pr(F ) [−] εM [%]

MC − 107 3819 12 ·10−7 − 107 3773 12 ·10−7 −
LHS 1 23 32 12 ·10−7 1.14 ·10−1 19 439 12 ·10−7 2.49 ·10−2

2 243 179 12 ·10−7 2.10 ·10−3 163 515 12 ·10−7 2.50 ·10−4

3 1607 802 12 ·10−7 4.17 ·10−5 871 738 12 ·10−7 3.05 ·10−6

4 7789 2987 12 ·10−7 1.35 ·10−6 3481 1374 12 ·10−7 4.88 ·10−8

KPN 1 23 38 12 ·10−7 7.42 ·10−2 19 447 12 ·10−7 1.34 ·10−2

2 243 214 12 ·10−7 1.30 ·10−3 163 521 12 ·10−7 1.49 ·10−4

3 1607 875 12 ·10−7 3.32 ·10−5 871 725 12 ·10−7 2.21 ·10−6

4 7789 2997 12 ·10−7 1.00 ·10−6 3481 1362 12 ·10−7 4.08 ·10−8

GQN 1 23 31 12 ·10−7 7.42 ·10−2 19 444 12 ·10−7 1.34 ·10−2

2 265 212 12 ·10−7 1.30 ·10−3 181 520 12 ·10−7 1.49 ·10−4

3 2069 848 12 ·10−7 3.32 ·10−5 1177 734 12 ·10−7 2.21 ·10−6

4 12453 2796 12 ·10−7 9.98 ·10−6 5965 1376 12 ·10−7 4.08 ·10−8

GM 1 − − − − − 456 12 ·10−7 1.34 ·10−2

2 − − − − − 551 12 ·10−7 1.49 ·10−4

3 − − − − − 746 12 ·10−7 2.21 ·10−6

4 − − − − − 1425 12 ·10−7 4.07 ·10−8

Table 7. Time requirements, probability of failure and errors in predicting safety margin
for normal distribution with model parameters m.

5. Conclusion

The paper presents a survey and comparison of three methods for the construction

of a polynomial chaos-based surrogate for a numerical model assuming random model

parameters. The methods investigated include the regression method based on Latin

Hypercube Sampling, stochastic collocation, and the stochastic Galerkin method.

Particular features of these methods are discussed in the paper. The quality of

obtained surrogates in terms of accuracy and time requirements is demonstrated

using a comparison to the traditional Monte Carlo method with a frame structure

serving as a simple illustrative example.

To obtain a PCE-based surrogate model, specific orthogonal polynomials corre-

sponding to the probability distribution of the underlying variables must be used.

The orthogonality enables computing statistical moments of approximated model re-
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sponse analytically so PCE can be used very efficiently in uncertainty quantification

as well as in sensitivity analysis. In this study, Hermite polynomials are employed to

approximate a model response as a function of standard normal variables. The re-

gression method provides the most accurate PCE-based approximation and thus the

best results for uncertainty quantification. The stochastic collocation method has

a problem with convergence. The semi-intrusive stochastic Galerkin method behaves

similarly to the collocation method, because the same quadrature rules are used for

numerical integration in both methods. The stochastic Galerkin method is also em-

ployed in its fully intrusive form, where all numerical estimations are eliminated and

integration is performed analytically. Results of this form of the stochastic Galerkin

method are good, but it is worth mentioning that the application of this method

is more complicated than for the other methods, because reformulation of the full

numerical model is required.

In terms of time requirements, all the methods investigated are comparable

and, in comparison to the Monte Carlo method, they are significantly less time-

consuming. The goal of the example presented is to predict the probability of

failure of a simple engineering structure. For this, two variants of PCE applications

are analyzed: A) approximation of selected structural displacements and rotations,

B) approximation of safety margin. It is worth mentioning that for Variant B,

where PCE approximates the safety margin, PCE involves one additional random

variable—yield stress—and the dimension of PCE is thus by one higher than for

Variant A. On the other hand, for Variant A, we approximate a set of five dis-

placements and rotations by constructing five PCEs. From Tables 2, 4 and 6 we

can conclude that the time required for construction of the PCEs (including the

evaluation of model simulations for LHS or stochastic collocation) is negligible

and most of the computational time is needed for repeated evaluations of PCE

within the sampling of failure probability. Computational time grows exponentially

with the number of variables and polynomial order. We can thus point out that

evaluating five ten-dimensional PCEs is faster than the evaluation of one eleven-

dimensional PCE up to the second order. With the third order, the computational

time needed for evaluation of one eleven-dimensional PCE becomes increasingly

more demanding.

The paper also demonstrates the practical aspects of PCE application related

to nonlinearity of the approximated relationship. Results in Table 7 correspond

to a utopian situation, where the approximated relationship is linear (see Fig. 7d).

The approximation is thus exact even in the case of the first order PCE for both

variants A and B. This leads to significant time savings.

In order to benefit from the orthogonality of the polynomial basis w.r.t. the dis-

tribution of random variables, we have to involve some transformation from some
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chosen standard distribution in the case of the random variables defined by his-

tograms. The nonlinearity of the approximated relationship thus consists not only

of nonlinearity of the relationship between model responses and random inputs, but

also of the transformation from standard random variables. Results in Tables 4

and 5 correspond to such a situation, with random inputs defined by histograms

very close to normal distribution and a nearly linear underlying transformation, see

Fig. 7c. Nevertheless, the predictions of failure probability are remarkably worse

for Variant B ; for Variant A, they are still precise. This is because of the yield

stress involved in the Variant B PCE. Its transformation is nonlinear only in the low

probability region, but this small nonlinearity is important due to high sensitivity of

the safety margin for this input (according to Fig. 7c, it belongs to the three most

important inputs). We can conclude that nonlinearity, even in only low probability

regions, is significant for predicting failure probability.

Finally, an even more significant difference between the two variants is demon-

strated in Table 3 for the prescribed histograms taken from the literature. Fig. 2

reveals that the histograms prescribed to short- and long-lasting loads are far from

exhibiting normal distributions, and the corresponding transformation from normal

variables depicted in Fig. 5 is highly nonlinear. This nonlinearity is thus remarkable,

also in the approximated relationship of the safety margin, as is visible in Fig. 7b.

This nonlinearity is present equally in both variants, but predictions for Variant

B worsened more significantly (even in terms of orders), although the difference

in both variants did not change and consists only of an additional variable—yield

stress—for Variant B. Therefore, significantly worse results for Variant B compared

to Variant A are caused only by a slightly higher dimension for the approximated

relationship.

We thus conclude that failure probability is extremely sensitive to approxima-

tion errors. This is related namely to the nonlinearity and dimensionality of the

approximated relationship. The results presented show that—regarding the compu-

tational time and accuracy of predictions—it is more efficient to construct a set of

five ten-dimensional approximations than one approximation with eleven dimensions.

Moreover, when applying orthogonal polynomial chaos, it is important to be careful

when introducing nonlinear transformations to standard random variables.

References

[1] F.Augustin, A.Gilg, M.Paffrath, P. Rentrop, M.Villegas, U.Wever: An accuracy com-
parison of polynomial chaos type methods for the propagation of uncertainties. J. Math.
Ind. 3 (2013), 24 pages. zbl MR doi

[2] I. Babuška, F.Nobile, R.Tempone: A stochastic collocation method for elliptic par-
tial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007),
1005–1034. zbl MR doi

735

https://zbmath.org/?q=an:1275.65004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3049138
http://dx.doi.org/10.1186/2190-5983-3-2
https://zbmath.org/?q=an:1151.65008
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2318799
http://dx.doi.org/10.1137/050645142


[3] I. Babuška, R.Tempone, G. E. Zouraris: Galerkin finite element approximations of
stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004),
800–825. zbl MR doi

[4] G.Blatman, B. Sudret: An adaptive algorithm to build up sparse polynomial chaos ex-
pansions for stochastic finite element analysis. Probabilistic Engineering Mechanics 25
(2010), 183–197. doi

[5] G.Blatman, B. Sudret: Adaptive sparse polynomial chaos expansion based on least angle
regression. J. Comput. Phys. 230 (2011), 2345–2367. zbl MR doi

[6] H.Cheng, A. Sandu: Efficient uncertainty quantification with the polynomial chaos
method for stiff systems. Math. Comput. Simul. 79 (2009), 3278–3295. zbl MR doi

[7] S.-K.Choi, R.V.Grandhi, R.A. Canfield, C. L. Pettit: Polynomial chaos expansion with
latin hypercube sampling for estimating response variability. AIAA J. 42 (2004),
1191–1198. doi

[8] O.Ditlevsen, H.O.Madsen: Structural Reliability Methods. John Wiley & Sons, Chich-
ester, 1996.

[9] M.Eigel, C. J. Gittelson, C. Schwab, E. Zander: Adaptive stochastic Galerkin FEM.
Comput. Methods Appl. Mech. Eng. 270 (2014), 247–269. zbl MR doi

[10] M.S. Eldred, J. Burkardt: Comparison of non-intrusive polynomial chaos and stochastic
collocation methods for uncertainty quantification. The 47th AIAA Aerospace Sciences
Meeting including The New Horizons Forum and Aerospace Exposition, Orlando. AIAA
2009-976, 2009, pp. 20. doi

[11] H.C. Elman, C.W.Miller, E. T.Phipps, R. S. Tuminaro: Assessment of collocation and
Galerkin approaches to linear diffusion equations with random data. Int. J. Uncertain.
Quantif. 1 (2011), 19–33. zbl MR doi

[12] A.Fülöp, M. Iványi: Safety of a column in a frame. Probabilistic Assessment of Struc-
tures Using Monte Carlo Simulation: Background, Exercises and Software (P.Marek et
al., eds.). Institute of Theoretical and Applied Mechanics, Academy of Sciences of the
Czech Republic, Praha, CD, Chapt. 8.10, 2003.

[13] R.G.Ghanem, P.D. Spanos: Stochastic Finite Elements: A Spectral Approach, Revised
Edition. Dover Civil and Mechanical Engineering, Dover Publications, 2012. zbl MR doi

[14] M.Gutiérrez, S. Krenk: Stochastic finite element methods. Encyclopedia of Computa-
tional Mechanics (E. Stein et al., eds.). John Wiley & Sons, Chichester, 2004. zbl MR doi

[15] F.Heiss, V.Winschel: Likelihood approximation by numerical integration on sparse
grids. J. Econom. 144 (2008), 62–80. zbl MR doi

[16] S.Hosder, R.W.Walters, M.Balch: Efficient sampling for non-intrusive polynomial
chaos applications with multiple uncertain input variables. The 48th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Hon-
olulu. AIAA 2007-1939, 2007, pp. 16. doi

[17] C.Hu, B.D.Youn: Adaptive-sparse polynomial chaos expansion for reliability analy-
sis and design of complex engineering systems. Struct. Multidiscip. Optim. 43 (2011),
419–442. zbl MR doi

[18] E. Janouchová, A.Kučerová: Competitive comparison of optimal designs of experiments
for sampling-based sensitivity analysis. Comput. Struct. 124 (2013), 47–60. doi

[19] E. Janouchová, A.Kučerová, J. Sýkora: Polynomial chaos construction for structural re-
liability analysis. Proceedings of the Fourth International Conference on Soft Computing
Technology in Civil, Structural and Environmental Engineering (Y.Tsompanakis et al.,
eds.). Civil-Comp Press, Stirlingshire, 2015, Paper 9. doi

[20] J. Li, J. Li, D.Xiu: An efficient surrogate-based method for computing rare failure prob-
ability. J. Comput. Phys. 230 (2011), 8683–8697. zbl MR doi

736

https://zbmath.org/?q=an:1080.65003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2084236
http://dx.doi.org/10.1137/S0036142902418680
http://dx.doi.org/10.1016/j.probengmech.2009.10.003
https://zbmath.org/?q=an:1210.65019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2764550
http://dx.doi.org/10.1016/j.jcp.2010.12.021
https://zbmath.org/?q=an:1169.65005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2549773
http://dx.doi.org/10.1016/j.matcom.2009.05.002
http://dx.doi.org/10.2514/1.2220
https://zbmath.org/?q=an:1296.65157
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3154028
http://dx.doi.org/10.1016/j.cma.2013.11.015
http://dx.doi.org/10.2514/6.2009-976
https://zbmath.org/?q=an:1229.65026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2823001
http://dx.doi.org/10.1615/int.j.uncertaintyquantification.v1.i1.20
https://zbmath.org/?q=an:0722.73080
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1083354
http://dx.doi.org/10.1007/978-1-4612-3094-6
https://zbmath.org/?q=an:1190.76001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2288276
http://dx.doi.org/10.1002/0470091355.ecm044
https://zbmath.org/?q=an:06592098
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2439922
http://dx.doi.org/10.1016/j.jeconom.2007.12.004
http://dx.doi.org/10.2514/6.2007-1939
https://zbmath.org/?q=an:1274.74271
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2774576
http://dx.doi.org/10.1007/s00158-010-0568-9
http://dx.doi.org/10.1016/j.compstruc.2013.04.009
http://dx.doi.org/10.4203/ccp.109.9
https://zbmath.org/?q=an:1370.65005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2845013
http://dx.doi.org/10.1016/j.jcp.2011.08.008


[21] J. Li, D.Xiu: Evaluation of failure probability via surrogate models. J. Comput. Phys.
229 (2010), 8966–8980. zbl MR doi

[22] X.Ma, N. Zabaras: An adaptive hierarchical sparse grid collocation algorithm for the
solution of stochastic differential equations. J. Comput. Phys. 228 (2009), 3084–3113. zbl MR doi

[23] H.G.Matthies: Uncertainty quantification with stochastic finite elements. Encyclopedia
of Computational Mechanics (E. Stein et al., eds.). John Wiley & Sons, Chichester,
2007. zbl MR doi

[24] H.G.Matthies, A.Keese: Galerkin methods for linear and nonlinear elliptic stochas-
tic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005),
1295–1331. zbl MR doi

[25] H.N.Najm: Uncertainty quantification and polynomial chaos techniques in computa-
tional fluid dynamics. Annual Review of Fluid Mechanics 41 (S.H.Davis et al., eds.).
Annual Reviews, Palo Alto, 2009, pp. 35–52. zbl MR doi

[26] F.Nobile, R. Tempone, C.G.Webster: A sparse grid stochastic collocation method for
partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008),
2309–2345. zbl MR doi

[27] M.Paffrath, U.Wever: Adapted polynomial chaos expansion for failure detection. J.
Comput. Phys. 226 (2007), 263–281. zbl MR doi

[28] M.P. Pettersson, G. Iaccarino, J.Nordström: Polynomial chaos methods. Polynomial
Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for
Fluid Dynamics Problems in the Presence of Uncertainties. Mathematical Engineering,
Springer, Cham, 2015, pp. 23–29. zbl MR doi

[29] R.Pulch: Stochastic collocation and stochastic Galerkin methods for linear differential
algebraic equations. J. Comput. Appl. Math. 262 (2014), 281–291. zbl MR doi

[30] G.Stefanou: The stochastic finite element method: Past, present and future. Comput.
Methods Appl. Mech. Eng. 198 (2009), 1031–1051. zbl doi

[31] N.Wiener: The homogeneous chaos. Am. J. Math. 60 (1938), 897–936. zbl MR doi
[32] D.Xiu: Fast numerical methods for stochastic computations: A review. Commun. Com-

put. Phys. 5 (2009), 242–272. zbl MR
[33] D.Xiu: Numerical Methods for Stochastic Computations: A Spectral Method Approach.

Princeton University Press, Princeton, 2010. zbl MR doi
[34] D.Xiu, J. S. Hesthaven: High-order collocation methods for differential equations with

random inputs. SIAM J. Sci. Comput. 27 (2005), 1118–1139. zbl MR doi

Authors’ address: Eliška Janouchová, Jan Sýkora, Anna Kučerová, Czech Technical
University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
166 29 Praha 6, Czech Republic, e-mail: eliska.janouchova@fsv.cvut.cz, jan.sykora.1@
fsv.cvut.cz, Anna.Kucerova@cvut.cz.

737

https://zbmath.org/?q=an:1204.65010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2725383
http://dx.doi.org/10.1016/j.jcp.2010.08.022
https://zbmath.org/?q=an:1161.65006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2509309
http://dx.doi.org/10.1016/j.jcp.2009.01.006
https://zbmath.org/?q=an:1190.76001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2288276
http://dx.doi.org/10.1002/0470091355.ecm071
https://zbmath.org/?q=an:1088.65002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2121216
http://dx.doi.org/10.1016/j.cma.2004.05.027
https://zbmath.org/?q=an:1168.76041
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2512381
http://dx.doi.org/10.1146/annurev.fluid.010908.165248
https://zbmath.org/?q=an:1176.65137
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2421037
http://dx.doi.org/10.1137/060663660
https://zbmath.org/?q=an:1124.65011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2356359
http://dx.doi.org/10.1016/j.jcp.2007.04.011
https://zbmath.org/?q=an:1325.76004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3328389
http://dx.doi.org/10.1007/978-3-319-10714-1_3
https://zbmath.org/?q=an:1301.65090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3162322
http://dx.doi.org/10.1016/j.cam.2013.10.046
https://zbmath.org/?q=an:1229.74140
http://dx.doi.org/10.1016/j.cma.2008.11.007
https://zbmath.org/?q=an:0019.35406
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1507356
http://dx.doi.org/10.2307/2371268
https://zbmath.org/?q=an:1364.65019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2513686
https://zbmath.org/?q=an:1210.65002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2723020
http://dx.doi.org/10.2307/j.ctv7h0skv
https://zbmath.org/?q=an:1091.65006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2199923
http://dx.doi.org/10.1137/040615201

		webmaster@dml.cz
	2020-07-02T15:12:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




