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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 6 , P A G E S 1 2 6 4 – 1 2 8 3

MULTIVARIATE STOCHASTIC DOMINANCE
FOR MULTIVARIATE NORMAL DISTRIBUTION

Barbora Petrová

Stochastic dominance is widely used in comparing two risks represented by random variables
or random vectors. There are general approaches, based on knowledge of distributions, which
are dedicated to identify stochastic dominance. These methods can be often simplified for
specific distribution. This is the case of univariate normal distribution, for which the stochastic
dominance rules have a very simple form. It is however not straightforward if these rules are
also valid for multivariate normal distribution. We propose the stochastic dominance rules for
multivariate normal distribution and provide a rigorous proof. In a computational experiment
we employ these rules to test its efficiency comparing to other methods of stochastic dominance
detection.

Keywords: multivariate stochastic dominance, multivariate normal distribution, stochas-
tic dominance rules

Classification: 91B16, 91B28

1. INTRODUCTION

Stochastic dominance is a concept which has been widely used in probability theory,
decision theory or stochastic optimization for decades. Univariate stochastic dominance
is a partial order between random variables which is applied in situations where one
decision represented by a random variable can be ranked as superior to another one for
a broad class of decision-makers. It is based on shared preferences regarding sets of pos-
sible outcomes and their associated probabilities. Only limited knowledge of preferences
is required for determining dominance. There exists an extensive theory concerning uni-
variate stochastic dominance of different orders, we refer, for instance, to [10]. Univariate
stochastic dominance can be extended into multiple dimension by introducing multivari-
ate stochastic dominance which provides a partial order between random vectors. There
is no consent between researches how to define this type of stochastic dominance. Some
authors consider independence of marginals of random vectors or restrict a generator of
multivariate stochastic dominance to very special classes of utility functions. For more
details we refer, for instance, to papers [6, 9] or [12]. Another authors define a map-
ping which converts random vectors into random variables and consequently they can
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define multivariate stochastic dominance between random vectors as univariate stochas-
tic dominance between the corresponding random variables. This approach is adopted,
for instance, by [4]. The most important work related to our paper is the concept by
[8] which provides a very general approach to multivariate stochastic dominance stem-
ming from utility theory. This concept was applied by many other researches in solving
practical issues.

Stochastic dominance between random variables or random vectors can be detected by
examining their distribution functions. However, this approach can be very demanding
from the calculation perspective, especially when one deals with random vectors of high
dimension. Situation becomes easier if we have information about family from which
both distributions come from. In the univariate case, researches have developed stochas-
tic dominance rules for dozens of distributions. These rules enable to avoid working with
probability distributions and detect stochastic dominance just based on comparing pa-
rameters of the corresponding distributions. In the multivariate case, there has not been
many paper focusing on this topic. In [7], we have already proposed stochastic domi-
nance rules for general discrete distribution and continuous uniform distribution. This
article aims to investigate stochastic dominance rules for multivariate normal distribu-
tion. The work is inspired by the rules valid for univariate normal distribution that has
been known for decades. Theorem 1.1 summarizes the rule (for a proof we refer to [11]).
There can be found more general results in the literature, see, for instance, [14, 15] or
[16].

Theorem 1.1. (Levy [11]) Let X and Y be two normally distributed random variables,
X ∼ N(µx, σx) and Y ∼ N(µy, σy). Then X stochastically dominates Y in the first
order if and only if µx ≥ µy and σx = σy.

We are interested whether the rules stated in the theorem can be extended into mul-
tiple dimension. In other words, considering two random vectors with d-dimensional
normal distributions XXX ∼ Nd(µµµx,Σx) and YYY ∼ Nd(µµµy,Σy), can we say that XXX stochas-
tically dominates YYY if and only if µµµx ≥ µµµy and Σx = Σy? As a departing point to
answer this question, we used a very simple simulation. We generated randomly realiza-
tions of two random vectors with 2-dimensional normal distributions with parameters
set according to the desired stochastic dominance rules (see Figure 1). In the next step,
we employed technique for detecting stochastic dominance between two discrete random
vectors with equiprobable scenarios which was described in detail in [7]. We repeated this
procedure for different parameters setting and found out that the suggested stochastic
dominance rules are empirically valid.

The paper is organized as follows. Section 2 provides an overview on multivariate
stochastic dominance. We recall basic definitions and formulate several statements that
are relevant for construction of stochastic dominance rules for multivariate normal dis-
tribution. Section 3 describes basic properties of multivariate normal distribution that
are relevant for our next work. The most important part of this paper is Section 4
in which we formulate stochastic dominance rules for multivariate normal distribution
and provide a rigorous proof. In Section 5 we execute a simulation in which we employ
the stochastic dominance rules to test their efficiency comparing to another method de-
scribed in [7]. The secondly mentioned method uses sampling from distributions and
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Fig. 1. Simulation of 1000 realizations of 2-dimensional random

vectors XXX ∼ N2((2, 4),Σ) and YYY ∼ N2((1, 2),Σ).

consequently compares the samples by an optimization procedure in order to detect
stochastic dominance. Section 6 summarizes obtained results and concludes the paper.

2. MULTIVARIATE STOCHASTIC DOMINANCE

In the following section we provide a brief introduction to multivariate stochastic dom-
inance that is relevant to our topic. For a general framework of multivariate stochastic
dominance, we refer to [7]. In the whole text we employ the usual partial order relation
on Rd, that is for any xxx = (x1, . . . , xd) and yyy = (y1, . . . , yd) in Rd, we say that xxx ≤ yyy
if and only if xi ≤ yi, i = 1, . . . , d. For defining multivariate stochastic dominance, the
concept of upper sets is commonly used.

Definition 2.1. A closed subset M ⊂ Rd is called an upper set if for each yyy ∈ Rd such
that yyy ≥ xxx it holds that yyy ∈M whenever xxx ∈M . We denote by M the set of all upper
sets in Rd.

The following definition of multivariate stochastic dominance is inspired by work
of [8].

Definition 2.2. (Levhari et al. [8]) LetXXX and YYY be two d-dimensional random vectors.
Then XXX stochastically dominates YYY , denoted as XXX � YYY , if for every upper set M ∈ M
one has P(XXX ∈M) ≥ P(YYY ∈M).

Remark 2.3. In Definition 2.2 we use close upper sets instead of open upper sets as
it is usual in defining one dimensional stochastic dominance. In the univariate case the
condition given by Definition 2.2 reduces into P(X ≥ x) ≥ P(Y ≥ x) for every x ∈ R.
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The first order stochastic dominance is usually defined as P(X ≤ x) ≤ P(Y ≤ x) for
every x ∈ R.

In the next definition we introduce a different type of stochastic dominance which uti-
lizes joint survival functions of considered random vectors. The joint survival function F̄
of a random vector XXX is defined as F̄ (mmm) = P(XXX ≥mmm) = P(XXX ∈[m1,∞)× · · ·×[md,∞))
for mmm = (m1, . . . ,md) ∈ Rd.

Definition 2.4. (Shaked and Shanthikumar [17]) Let XXX and YYY be two d-dimensional
random vectors with joint survival functions F̄ and Ḡ. Then XXX orthantly dominates YYY ,
denoted as XXX �ort YYY , if for each mmm ∈ Rd one has F̄ (mmm) ≥ Ḡ(mmm).

When we consider random variables instead of random vectors, both above stated
definitions of stochastic dominance are equivalent and we only talk about stochastic
dominance. Indeed, in R all upper sets have the form of intervals [m,∞), m ∈ R and
thus P(X ∈[m,∞)) = P(X ≥ m) = F̄ (m). In this case, we obtain a standard definition
of the first order univariate stochastic dominance. The situation is more complicated in
the multivariate case. While stochastic dominance always implies orthant dominance,
the opposite implication is valid only under some restrictive assumptions. For more
details about this topic we refer to [7].

There are different types of multivarite stochastic dominance in the literature. Au-
thors often work with linear type of stochastic dominance. This framework can be found
for instance in [4]. We state below the definition and a basic rule describing the relation
to stochastic dominance defined in Definition 2.2 since we employ this concept in the
proof of stochastic dominance rules in Section 4.

Definition 2.5. (Dentcheva and Ruszczýnski [4]) A random vector XXX dominates lin-
early a random vector YYY in the first order, denoted as XXX �lin(1) YYY , if for all ccc ∈ Rd+ one

has cccTXXX �1 ccc
TYYY , where �1 denotes the first order univariate stochastic dominance.

Theorem 2.6. (Műller and Stoyan [13]) If XXX stochastically dominates YYY , then XXX also
linearly stochastically dominates YYY in the first order.

P r o o f . We refer to [7] or [13]. �

In the next theorem we clarify the relationship between multivariate stochastic dom-
inance of random vectors and univariate stochastic dominance between coordinates of
the considered vectors. The following statement will be very important when proving
the stochastic dominance rules for multivariate normal distribution.

Theorem 2.7. (Műller and Stoyan [13]) Assume that the random vector XXX = (X1, . . .
. . . , Xd) stochastically dominates the random vector YYY = (Y1, . . . , Yd). Then the random
variable Xi dominates in the first order the random variable Yi for each i = 1, . . . , d.

P r o o f . We refer to [7] or [13]. �
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In the final part of this section we will briefly focus on stochastic dominance between
random vectors that have uniform discrete distribution on sets of equal cardinalities.
As we have already mentioned in Section 1, we aim to compare efficiency of detecting
stochastic dominance between two normally distributed random vectors by stochastic
dominance rules with the method using sampling from both distributions. The later
mentioned method treats the samples as realizations of random vectors with uniform
discrete distribution on sets with the same cardinality.

The following theorem provides a necessary and sufficient condition for stochastic
dominance of two random vectors with uniform discrete distribution on sets of the same
cardinalities.

Theorem 2.8. (Armbruster and Luedtke [3]) LetXXX be a d-dimensional random vector
with uniform distribution on the set {xxx1, . . . ,xxxm} and let YYY be a d-dimensional random
vector with uniform distribution on the set {yyy1, . . . , yyym}, xxxi ∈ Rd for all i = 1, . . . ,m
and yyyj ∈ Rd for all j = 1, . . . ,m. Then XXX stochastically dominates YYY if and only if
there exists a permutation Π : {1, . . . ,m} → {1, . . . ,m} such that xxxi ≥ yyyΠ(i) for all
i = 1, . . . ,m.

P r o o f . We refer to [7]. �

When dimension of random vectors is considerably high or if the number of real-
izations is high, seeking the right permutation can become complicated. Therefore we
propose to use optimization. We note that each permutation can be identified with a
permutation matrix which is a square binary matrix that has exactly one entry equal to
1 in each row and each column and zeros elsewhere. Denote by zij elements of a desired
permutation matrix (i, j = 1, . . . ,m). Then the realization xxxi can be assigned to the
realization yyyj if and only if xxxi ≥ yyyj , i. e.

xik ≥ yjk for each k = 1, . . . , d =⇒ zij ∈ {0, 1},
xik < yjk for some k = 1, . . . , d =⇒ zij = 0.

In other words, the decision variable zij can acquire values 0 or 1 if xxxi ≥ yyyj . In case
that zij = 1, the realization xxxi is assigned to the realization yyyj . If xik < yjk the decision
variable zij has to equal to 0 since the assignment is not possible.

The following optimization problem, inspired by [3], seeks for a desired permutation:

(SD) maximize
zij

m∑
i=1

m∑
j=1

zij

subject to

m∑
i=1

zij = 1 j = 1, . . . ,m, (1)

m∑
j=1

zij = 1 i = 1, . . . ,m, (2)

(xik − yjk)zij ≥ 0 i, j = 1, . . . ,m, k = 1, . . . , d, (3)

zij ∈ {0, 1} i, j = 1, . . . ,m.
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Constraints (1) and (2) ensure that the decision variables zij constitute a permutation
matrix. Constraint (3) ensures that zij can be positive, and thus xxxi can be assigned to
yyyj if and only if xxxi ≥ yyyj . We emphasize that the formulation of the objective function
is not important, we only need to know if the set of feasible solutions is not empty. In
this particular case, if the optimization problem has a feasible solution then the optimal
value equals to m.

3. CHARACTERISTICS OF MULTIVARIATE NORMAL DISTRIBUTION

In this short section we state a definition of multivariate normal distribution mainly for
notational purposes and recall basic properties of this distribution.

Definition 3.1. Let ZZZ = (Z1, . . . , Zd)
T be a d-dimensional random vector with in-

dependent marginals such that each marginal has standard normal distribution, i. e.
Zi ∼ N(0, 1) for i = 1, . . . , d. Let A be a d×n matrix with the range equal to n (n ≤ d)
and let µµµ ∈ Rd be a vector of constants. Then XXX = AZZZ + µµµ has multivariate normal
distribution with parameters µµµ and Σ = AAT , i. e. XXX ∼ Nd(µµµ,Σ).

The following theorems summarize characteristics of multivariate normal distribution
that will be crucial for the proof of stochastic dominance rule formulated in the next part.
Let us divide a d-dimensional random vector XXX with multivariate normal distribution
Nd(µµµ,Σ) as follows:

XXX =

(
XXX1

XXX2

)
, µµµ =

(
µµµ1

µµµ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (4)

where XXX1 is a q-dimensional random vector, XXX2 is a (d− q)-dimensional random vector,
µµµ1 is a q-dimensional vector of constants, µµµ2 is a (d−q)-dimensional vector of constants,
and Σ11,Σ12,Σ21 and Σ22 are matrices of constants of sizes q× q, (d− q)× q, q× (d− q)
and (d− q)× (d− q).

Theorem 3.2. (Tong [18]) Let XXX be a d-dimensional random vector with multivariate
normal distribution Nd(µµµ,Σ). Consider a partition of the vector XXX as described by (4).
Then

(1) q-dimensional random vectorXXX1 has multivariate normal distribution with param-
eters µµµ1 and Σ11, i. e. XXX1 ∼ Nq(µµµ1,Σ11),

(2) if the matrix Σ22 is regular, the conditional distribution of XXX1 given XXX2 = xxx2 is
multivariate normal with parameters µ̄µµ and Σ̄, i. e. XXX1|XXX2 = xxx2 ∼ Nq(µ̄µµ, Σ̄), where
µ̄µµ = µµµ1 + Σ12Σ−1

22 (xxx2 −µµµ2) and Σ̄ = Σ11 − Σ12Σ−1
22 Σ21.

Theorem 3.3. (Tong [18]) Let XXX = (X1, X2) be a 2-dimensional random vector with
bivariate normal distribution N2(µµµ,Σ), where

µµµ =

(
µ1

µ2

)
, Σ =

(
σ11 σ12

σ21 σ22

)
.

Then the random variable X1 +X2 has normal distribution N(µ̄, σ̄), where µ̄ = µ1 +µ2

and σ̄ =
√
σ2

11 + σ2
22 + 2σ12.
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In the last definition we recall a special case of bivariate distribution. We assume
a 2-dimensional random vector XXX = (X1, X2) for which both elements have standard
normal distribution and their correlation equals to ρ ∈ (−1, 1), i. e. X1 ∼ N1(0, 1),
X2 ∼ N1(0, 1) and corr(X1, X2) = ρ.

Definition 3.4. (Tong [18]) The random vector XXX = (X1, X2) is said to have standard
bivariate normal distribution with correlation coefficient ρ if its joint probability density
function is given by

f(x1, x2) =
1

2π
√

1− ρ2
exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}
where ρ ∈ (−1, 1).

4. MULTIVARIATE STOCHASTIC DOMINANCE FOR MULTIVARIATE
NORMAL DISTRIBUTION

In this section we formulate stochastic dominance rules for multivariate normal distri-
bution and provide a detailed proof. Our proof of the statement differs from that one
in [13] by employing the concept of upper sets.

Theorem 4.1. (Műller and Stoyan [13]) Let XXX be a d-dimensional random vector
with normal distribution Nd(µµµ

X ,ΣX) and let YYY be a d-dimensional random vector with
normal distribution Nd(µµµ

Y ,ΣY ). Then XXX stochastically dominates YYY if and only if
µµµX ≥ µµµY and ΣX = ΣY .

Remark 4.2. In the univariate case the above stated theorem is identical to Theo-
rem 1.1 formulated in Section 1. When proving the statement in the univariate case,
authors usually rely on the relation between cumulative distribution functions, or equiv-
alently on the relation between survival functions. As it has been already indicated in
Section 2, this approach is not possible in multiple dimension. The relation between
joint survival functions corresponds to orthant stochastic dominance and this type of
stochastic dominance does not imply stochastic dominance in a general setting. There-
fore another technique has to be applied when proving the above formulated stochastic
dominance rule.

P r o o f . We firstly assume that µµµX ≥ µµµY and ΣX = ΣY = Σ and show that in this case
XXX stochastically dominates YYY . The proof of the statement proceeds by induction on the
number of dimensions d. For d = 1 we refer to Theorem 1.1. For d = 2 let us consider
the random vectors XXX = (X1, X2)T ∼ N2(µµµX ,Σ) and YYY = (Y1, Y2)T ∼ N2(µµµY ,Σ) and
an auxiliary random vector ZZZ = (Z1, Z2)T ∼ N2(µµµZ ,Σ), where

µµµX =

(
µX1
µX2

)
, µµµY =

(
µY1
µY2

)
, µµµZ =

(
µY1
µX2

)
, Σ =

(
σ11 σ12

σ21 σ22

)
.

Since stochastic dominance is transitive relation it suffices to show that XXX stochastically
dominates ZZZ and ZZZ stochastically dominates YYY . In other words, we will prove that
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P(XXX ∈ M) ≥ P(ZZZ ∈ M) and P(ZZZ ∈ M) ≥ P(YYY ∈ M) for an arbitrary upper set
M ∈ R2. For each x2 ∈ R we define a set M2(x2) = {x1 : (x1, x2) ∈ M}. Similarly, we
define a set M1(x1) = {x2 : (x1, x2) ∈M}. Both sets are upper sets in R since M is an
upper set in R2. In fact both upper sets are intervals of type (m1,∞], m1 ∈ R.

Let us start with showing that XXX stochastically dominates ZZZ. According to Theo-
rem 3.2, the second coordinate of each random vector is normally distributed, namely
X2 ∼ F2 = N1(µX2 , σ22) and Z2 ∼ H2 = N1(µX2 , σ22). Take an arbitrary upper set
M ∈ R2. We can derive the following inequality

P(XXX ∈M) =

∫
R
P(X1 ∈M2(x2) | X2 = x2) dF2(x2) =

∫
R
P(X̄1 ∈M2(x2)) dF2(x2),

P(ZZZ ∈M) =

∫
R
P(Z1 ∈M2(x2) | Z2 = x2) dH2(x2) =

∫
R
P(Z̄1 ∈M2(x2)) dH2(x2),

where X̄1 ∼ N1(µ̄X1 , σ̄1) and Z̄1 ∼ N1(µ̄Z1 , σ̄1). The parameters of the distributions can
be calculated as:

µ̄X1 = µX1 + σ12σ
−1
22 (x2 − µX2 ),

µ̄Z1 = µY1 + σ12σ
−1
22 (x2 − µX2 ),

σ̄1 = σ11 − σ2
12σ
−1
22 .

Since the distributions F2 and H2 are both normal with the same parameters, we have∫
R
P(X̄1 ∈M2(x2)) dF2(x2) ≥

∫
R
P(Z̄1 ∈M2(x2)) dH2(x2)

if P(X̄1 ∈M2(x2)) ≥ P(Z̄1 ∈M2(x2)) for all M2(x2) ∈ R.

We observe that the random variables X̄1 and Z̄1 have normal distributions with the
same variance and µ̄X1 ≥ µ̄Z1 . Therefore according to Theorem 1.1, X̄1 stochastically
dominates Z̄1 in the first order. Since M2(x2) is an upper set in R, we must have
P(X̄1 ∈ M2(x2)) ≥ P(Z̄1 ∈ M2(x2)) due to stochastic dominance. We have thus shown
that P(XXX ∈M) ≥ P(ZZZ ∈M) for an arbitrary choice of upper set in R2 and therefore XXX
stochastically dominates ZZZ.

In order to show that ZZZ stochastically dominates YYY , we proceed similarly as in the
previous case. By Theorem 3.2, the first coordinate of each random vector is normally
distributed, namely Z1 ∼ H1 = N1(µY1 , σ11) and Y1 ∼ G1 = N1(µY1 , σ11). We now have

P(ZZZ ∈M) =

∫
R
P(Z2 ∈M1(x1) | Z1 = x1) dH1(x1) =

∫
R
P(Z̄2 ∈M1(x1)) dH1(x1),

P(YYY ∈M) =

∫
R
P(Y2 ∈M1(x1) | Y1 = x1) dG1(x1) =

∫
R
P(Ȳ2 ∈M1(x1)) dG1(x1),

where Z̄2 ∼ N1(µ̄Z2 , σ̄2) and Ȳ2 ∼ N1(µ̄Y2 , σ̄2). The parameters of the distributions are
given as:

µ̄Z2 = µX2 + σ12σ
−1
11 (x1 − µY1 ),

µ̄Y2 = µY2 + σ12σ
−1
11 (x1 − µY1 ),

σ̄2 = σ22 − σ2
12σ
−1
11 .
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Since the distributions H1 and G1 are both normal with the same parameters, we have∫
R
P(Z̄2 ∈M1(x1)) dH1(x1) ≥

∫
R
P(Ȳ2 ∈M1(x1)) dG1(x1)

if P(Z̄2 ∈M1(x1)) ≥ P(Ȳ2 ∈M1(x1)) for all M1(x1) ∈ R.

The random variables Z̄2 and Ȳ2 have normal distributions with the same variance and
µ̄Z2 ≥ µ̄Y2 and therefore Z̄2 stochastically dominates Ȳ2 in the first order. Since M1(x1)
is an upper set in R, we must have P(Z̄2 ∈ M1(x1)) ≥ P(Ȳ2 ∈ M1(x1)). We conclude
that P(ZZZ ∈M) ≥ P(YYY ∈M) for an arbitrary choice of upper set in R2 and therefore ZZZ
stochastically dominates YYY .

We proceed the proof with the induction step. We assume that if XXX and YYY are two
(d−1)-dimensional random vectors such thatXXX ∼ Nd−1(µµµX ,ΣX) and YYY ∼ Nd−1(µµµY ,ΣY ),
µµµX ≥ µµµY and ΣX = ΣY , then XXX stochastically dominates YYY . Now let us consider
d-dimensional random vectors XXX = (X1, . . . , Xd)

T ∼ Nd(µµµX ,ΣX) and YYY = (Y1, . . . , Y2)T

∼ Nd(µµµ
Y ,ΣY ) such that µµµX ≥ µµµY and ΣX = ΣY = Σ. We again define an auxiliary

random vector ZZZ = (Z1, . . . , Zd)
T ∼ Nd(µµµ

Z ,Σ). The parameters can be written down
as

µµµX =

(
µµµX1
µXd

)
=


µX1
...

µXd−1

µXd

 , µµµY =

(
µµµY1
µYd

)
=


µY1
...

µYd−1

µYd

 ,

µµµZ =

(
µµµZ1
µXd

)
=


µX1
...

µYd−1

µXd

 ,

where µµµX1 , µµµY1 and µµµZ1 are (d− 1)-dimensional vectors of parameters, and

Σ =

(
Σ11 Σ12

Σ21 σdd

)
=


σ11 σ12 · · · σ1d

σ21 σ22 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σdd

 ,

where Σ11 corresponds to the (d− 1)-dimensional left-top submatrix of Σ, Σ12 and Σ21

are the d-column, the d-th row respectively, of the matrix Σ. We employ transitivity of
stochastic dominance and show that XXX stochastically dominates ZZZ and ZZZ stochastically
dominates YYY . We will again prove that P(XXX ∈M) ≥ P(ZZZ ∈M) and P(ZZZ ∈M) ≥ P(YYY ∈
M) for an arbitrary upper set M ∈ Rd. For each xi ∈ R, i = 1, . . . , d, we define a set
Mi(xi) = {(x1, . . . , xi−1, xi+1, . . . , xd) : (x1, . . . , xd) ∈ M}. This set is an upper set in
Rd−1, since M is an upper set in Rd.

Firstly we show that XXX stochastically dominates ZZZ. According to Theorem 3.2,
the last coordinate of each random vector is normally distributed, i. e. Xd ∼ Fd =
N1(µXd , σdd) and Zd ∼ Hd = N1(µXd , σdd). Take an arbitrary upper set M ∈ Rd. We
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can derive the following inequality

P(XXX ∈M) =

∫
R
P((X1, . . . , Xd−1) ∈Md(xd) | Xd = xd) dFd(xd)

=

∫
R
P(X̄XX1 ∈Md(xd)) dFd(xd),

P(ZZZ ∈M) =

∫
R
P((Z1, . . . , Zd−1) ∈Md(xd) | Zd = xd) dHd(xd)

=

∫
R
P(Z̄ZZ1 ∈Md(xd)) dHd(xd),

where X̄XX1 ∼ Nd−1(µ̄µµX1 , Σ̄1) and Z̄ZZ1 ∼ Nd−1(µ̄µµZ1 , Σ̄1). By Theorem 3.2, the parameters
of the distributions can be calculated as:

µ̄µµX1 = µµµX1 + σ−1
dd (xd − µXd )Σ12

µ̄µµZ1 = µµµZ1 + σ−1
dd (xd − µXd )Σ12

Σ̄1 = Σ11 − σ−1
dd Σ12Σ21.

Since the distributions Fd and Hd are both normal with the same parameters, we have∫
R
P(X̄XX1 ∈Md(xd))dFd(xd) ≥

∫
R
P(Z̄ZZ1 ∈Md(xd)) dHd(xd)

if P(X̄XX1 ∈Md(xd)) ≥ P(Z̄ZZ1 ∈Md(xd)) for all Md(xd) ∈ Rd−1.

The random vectors X̄XX1 and Z̄ZZ1 have (d− 1)-dimensional normal distribution with the
same covariance matrix and µ̄µµX1 ≥ µ̄µµZ1 . By assumption we must have that X̄XX1 stochas-
tically dominates Z̄ZZ1. Since Md(xd) is an upper in Rd−1 we get P(X̄XX1 ∈ Md(xd)) ≥
P(Z̄ZZ1 ∈ Md(xd)). We have shown that P(XXX ∈ M) ≥ P(ZZZ ∈ M) for an arbitrary choice
of upper set in Rd and therefore XXX stochastically dominates ZZZ.

Now we need to show that ZZZ stochastically dominates YYY . The (d− 1)-th coordinate
of each random vector is normally distributed, i. e. Zd−1 ∼ Hd−1 = N1(µYd−1, σd−1,d−1)

and Yd−1 ∼ Gd−1 = N1(µYd−1, σd−1,d−1). We can obtain the following inequality

P(ZZZ ∈M) =

∫
R
P((Z1, . . . , Zd−2, Zd) ∈Md−1(xd−1) | Zd−1 = xd−1) dHd−1(xd−1) =∫

R
P(Z̄ZZ2 ∈Md−1(xd−1)) dHd−1(xd−1),

P(YYY ∈M) =

∫
R
P((Y1, . . . , Yd−2, Yd) ∈Md−1(xd−1) | Yd−1 = xd−1) dGd−1(xd−1) =∫

R
P(ȲYY 2 ∈Md−1(xd−1)) dGd−1(xd−1),

where Z̄ZZ2 ∼ Nd−1(µ̄µµZ2 , Σ̄2) and ȲYY 2 ∼ Nd−1(µ̄µµY2 , Σ̄2). Derivation of parameters µ̄µµZ2 ,
µ̄µµY2 and Σ̄2 is not straightforward as in the previous case. In order to obtain the
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formulas, we need to employ the parameters of the random vectors Z̃ZZ and ỸYY which
are created by switching the last two coordinates of the vectors ZZZ and YYY , i. e. Z̃ZZ =
(Z1, . . . , Zd−2, Zd, Zd−1) and ỸYY = (Y1, . . . , Yd−2, Yd, Yd−1). Obviously, these vectors have
normal distributions Z̃ZZ ∼ Nd(µ̃µµZ , Σ̃), ỸYY ∼ Nd(µ̃µµY , Σ̃), where

µ̃µµZ =

(
µ̃µµX1
µYd−1

)
=


µX1
...

µXd−2

µXd
µYd−1

 , µ̃µµY =

(
µ̃µµY1
µYd−1

)
=


µY1
...

µYd−2

µYd
µYd−1

 ,

where µ̃µµX1 and µ̃µµY1 are (d− 1)-dimensional vectors of parameters, and

Σ̃ =

(
Σ̃11 Σ̃12

Σ̃21 σ̃dd

)
=


σ11 · · · σ1,d−2 σ1d σ1,d−1

...
. . .

...
...

...
σd−2,1 · · · σd−2,d−2 σd−2,d σd−2,d−1

σd,1 · · · σd,d−2 σd,d σd,d−1

σd−1,1 · · · σd−1,d−2 σd−1,d σd−1,d−1

 ,

where Σ̃11 corresponds to the (d− 1)-dimensional left-top submatrix of Σ̃, Σ̃12 and Σ̃21

are the d-column, the d-th row respectively, of the matrix Σ̃. By Theorem 3.2, the
parameters of the distributions can be calculated as:

µ̄µµZ2 = µ̃µµX1 + σ−1
d−1,d−1(xd−1 − µYd−1)Σ̃12,

µ̄µµY2 = µ̃µµY1 + σ−1
d−1,d−1(xd−1 − µYd−1)Σ̃12,

Σ̄2 = Σ̃11 − σ−1
d−1,d−1Σ̃12Σ̃21.

Since the distributions Hd−1 and Gd−1 are both normal with the same parameters, then∫
R
P(Z̄ZZ2 ∈Md−1(xd−1))dHd−1(xd−1) ≥

∫
R
P(ȲYY 2 ∈Md−1(xd−1)) dGd−1(xd−1)

if P(Z̄ZZ2 ∈Md−1(xd−1)) ≥ P(ȲYY 2 ∈Md−1(xd−1)) for all Md−1(xd−1) ∈ Rd−1.

The random vectors Z̄ZZ2 and ȲYY 2 have (d − 1)-dimensional normal distribution with
the same covariance matrix and µ̄µµZ2 ≥ µ̄µµY2 . By assumption we must have that Z̄ZZ2

stochastically dominates ȲYY 2. Since Md−1(xd−1) is an upper in Rd−1 we get P(Z̄ZZ2 ∈
Md−1(xd−1)) ≥ P(ȲYY 2 ∈Md−1(xd−1)). We have shown that P(ZZZ ∈M) ≥ P(YYY ∈M) for
an arbitrary choice of upper set in Rd and therefore ZZZ stochastically dominates YYY .

We now aim to show the opposite implication of the statement, i. e. let us assume two
d-dimensional random vectors XXX ∼ Nd(µµµX ,ΣX) and YYY ∼ Nd(µµµY ,ΣY ). Assume that XXX
stochastically dominates YYY . We need to show that in this case µµµX ≥ µµµY and ΣX = ΣY .
By Theorem 2.7, the random vector XXX stochastically dominates the random vector YYY
element-wise, i. e. Xi stochastically dominates Yi for every i = 1, . . . , d in the first order.
Moreover, both random variables have normal distribution, namely Xi ∼ N(µXi , σ

X
ii )

and Yi ∼ N(µYi , σ
Y
ii ). Employing Theorem 1.1 we must have µXi ≥ µYi and σXii = σYii
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for each i = 1, . . . , d. It remains to show that one also has σXij = σYij for arbitrary
i, j = 1, . . . , d such that i 6= j. In order to show this result, we use the concept of linear
stochastic dominance given by Definition 2.5. Take arbitrary i, j ∈ {1, . . . , d}, i 6= j.
If XXX stochastically dominates YYY then the random variable Xi/2 + Xj/2 stochastically
dominates in the first order the random variable Yi/2+Yj/2, or equivalently the random
variable Xi+Xj stochastically dominates in the first order the random variable Yi+Yj .
According to Theorem 3.3, Xi+Xj has normal distribution N(µXi +µXj , ((σ

X
ii )2+(σXjj)

2+

2σXij )1/2) and Yi + Yj has normal distribution N(µYi + µYj , ((σ
Y
ii )

2 + (σYjj)
2 + 2σYij)

1/2).
Since Xi +Xj stochastically dominates Yi + Yj , we must have

(σXii )2 + (σXjj)
2 + 2σXij = (σYii )

2 + (σYjj)
2 + 2σYij .

We have already shown that σXii = σYii . Therefore the previous equation is valid if and
only if σXij = σYij , which finishes the proof. �

Example 4.3. In this example we demonstrate that comparing joint survival func-
tions of two normally distributed random vectors is not sufficient for claiming stochas-
tic dominance. Let us consider two 2-dimensional random vectors XXX = (X1, X2) and
YYY = (Y1, Y2) with normal distributions with parameters given as:

µµµX =

(
0
0

)
, µµµY =

(
0
0

)
, ΣX =

(
1 1

2
1
2 1

)
, ΣY =

(
1 0
0 1

)
,

i. e. XXX ∼ N2(µµµX ,ΣX) and YYY ∼ N2(µµµY ,ΣY ). By Definition 3.4, the random vector XXX
has standard bivariate normal distribution with the correlation coefficient ρX = 1/2 and
the random vector YYY has standard bivariate normal distribution with the correlation
coefficient ρY = 0. Let us denote by F̄ the joint survival function of the random vector
XXX and by Ḡ the joint survival function of the random vector YYY .

In the first part we prove that F̄ (m1,m2) ≥ Ḡ(m1,m2) for everymmm = (m1,m2) ∈ R2.
Note that the distributions of both random vectors are standard bivariate normal and
differ only in the correlation coefficient. Let us consider a random vector ZZZ = (Z1, Z2)
with standard bivariate normal distribution with the correlation coefficient ρ and denote
its joint distribution function by Φρ. Thus Φρ at point (m1,m2) ∈ R2 is given as

Φρ(m1,m2) =
1

2π
√

1− ρ2

∫ ∞
m2

∫ ∞
m1

exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}
dx1 dx2.

Obviously, we have F̄ (m1,m2) = Φ1/2(m1,m2) and Ḡ(m1,m2) = Φ0(m1,m2). Therefore
to show the inequality F̄ (m1,m2) ≥ Ḡ(m1,m2) for every mmm = (m1,m2) ∈ R2, it is
sufficient to prove that the function Φρ(m1,m2) is a strictly increasing function with
respect to the parameter ρ. Let us denote the integrand in the previous equation by
θ(x1, x2, ρ). By direct calculation we have

∂

∂ρ

∫ ∞
m1

1√
2π(1− ρ2)

θ(x1, x2, ρ) dx1

=
1√

2π(1− ρ2)3
(x2 − ρm1) exp

{
−m

2
1 − 2ρm1x2 + x2

2

2(1− ρ2)

}
,
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and therefore by direct calculation we get

∫ ∞
m2

(
∂

∂ρ

∫ ∞
m1

1

2π
√

1− ρ2
θ(x1, x2, ρ) dx1

)
dx2

=
1

2π
√

1− ρ2
exp

{
−m

2
1 − 2ρm1m2 +m2

2

2(1− ρ2)

}
= φρ(m1,m2).

Because the function φρ is a probability density function, we may reverse the order of
integration and differentiation, concluding that for all (m1,m2)

∂

∂ρ
Φρ(s, t) = φρ(s, t).

Because φρ(s, t) > 0 everywhere, Φρ is strictly increasing in ρ. Now since ρX > ρY , we
necessarily must have that F̄ (m1,m2) > Ḡ(m1,m2) for every (m1,m2) ∈ R2.

By Theorem 4.1, XXX does not stochastically dominate YYY . Indeed, let us consider
the following upper set M = {(x1, x2) : x1, x2 ∈ R, x1 ≥ −1 − x2}. Then by direct
calculation using the software Mathematica we get:

P(XXX ∈M) =

∫ ∞
−∞

∫ ∞
−1−x1

1

2π
exp

{
−x

2
1 + x2

2

2

}
dx2dx1 = 0.7181,

P(YYY ∈M) =

∫ ∞
−∞

∫ ∞
−1−x1

1√
3π2

exp

{
−2(x2

1 − x1x2 + x2
2)

3

}
dx2dx1 = 0.7603.

We found an upper set for which P(XXX ∈M) < P(YYY ∈M). An easy plot can be helpful
when searching for such upper set for which P(XXX ∈ M) < P(YYY ∈ M), see Figure 2. In
the first step one simulates two samples of the same size from both distributions. In
the second step one needs to find an upper set which contains more realizations of the
random vector YYY compared to the number of realization of the random vector XXX. Note
that whereas the realizations of the random vector YYY are evenly dispersed around its
mean, the realizations of XXX are concentrated around the axis of the first and the third
quadrant. In this case, the above stated choice for the set M is straightforward.

5. SIMULATION

In this part we carry out a simulation in which we consider two random vectors with 2-
dimensional normal distributionsXXX and YYY , i. e. XXX ∼ N2(µµµX ,ΣX) and YYY ∼ N2(µµµY ,ΣY ).
The parameters are set in the spirit of Theorem 4.1 so as the random vector XXX stochas-
tically dominates the random vector YYY , i. e. µµµX ≥ µµµY and ΣX = ΣY = Σ. We simulate
m realizations from both distributions and based on these two samples we investigate
whether the random vector XXX stochastically dominates the random vector YYY . We use
two different methods for detection of stochastic dominance. The first one uses the op-
timization technique, namely we employ the optimization problem (SD) introduced in
Section 2. The second one is a statistical approach which is based on testing hypotheses
about the relation of parameters of both distributions. We aim to compare accuracy
of these two methods and their behavior depending on the choice of parameters of the
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Fig. 2. Simulation of 500 realizations of 2-dimensional random

vectors XXX ∼ Φ1/2 and YYY ∼ Φ0.

distributions. For this reason we repeat the simulation for each choice of the parameters
n times.

Whereas the optimization approach has been already explained in the previous part,
the statistical approach deserves a detailed description. In this procedure, we firstly
need to estimate parameters of both distributions. Let us denote by µ̂µµX = (µ̂X1 , µ̂

X
1 ) the

maximum likelihood estimate of µµµX = (µX1 , µ
X
2 ) and let Σ̂X be the maximum likelihood

estimate of ΣX . Similarly, we denote by µ̂µµY = (µ̂Y1 , µ̂
Y
1 ) the maximum likelihood esti-

mate of µµµY = (µY1 , µ
Y
2 ) and by Σ̂Y be the maximum likelihood estimate of ΣY . In the

simulation we aim to test the following null hypothesis H0 against its alternative H1:

H0 : µµµX ≥ µµµY and ΣX = ΣY H1 : µµµX < µµµY or ΣX 6= ΣY .

Then by Theorem 4.1 the hypothesis that the random vectorXXX stochastically dominates
the random vector YYY cannot be rejected if and only if the null hypothesis H0 is not
rejected. The null hypothesis can be equivalently written as a composite hypothesis
H0 =

⋂3
i=1H

i
0, where

H1
0 : µX1 ≥ µY1 H1

1 : µX1 < µY1

H2
0 : µX2 ≥ µY2 H2

1 : µX2 < µY2

H3
0 : ΣX = ΣY H3

1 : ΣX 6= ΣY .

In order to test the composite hypothesis, we employ Holm–Bonferroni method. It is
a stepwise algorithm which is used to counteract the problem of multiple comparisons
while controlling the family-wise error rate. It proceeds in the following steps.
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1. Let us consider a family of hypotheses H1
0 , . . . ,H

I
0 . Calculate the corresponding

p-values p1, . . . , pI .

2. Reorder the p-values into an increasing sequence p(1), . . . , p(I), i. e. p(i) ≤ p(i+1),

i = 1, . . . , I − 1. Let H
(1)
0 , . . . ,H

(I)
0 be the associated hypotheses.

3. For a given significance level α, let k be the minimal index such that p(k) >
α

m+1−k .

4. Reject the null hypotheses H
(1)
0 , . . . ,H

(k−1)
0 and do not reject the null hypotheses

H
(k)
0 , . . . ,H

(I)
0 .

Note that in Holm–Bonferroni procedure, we first test H
(1)
0 . If it is not rejected then

the intersection of all null hypotheses
⋂m
i=1H

(i)
0 is not rejected either. For more details

about this method we refer to [5].
For testing the hypotheses of inequality between elements of the means of the con-

sidered distributions H1
0 : µX1 ≥ µY1 and H2

0 : µX2 ≥ µY2 , we employ the standard two
sample one-sided t-test. For detailed description see for instance [2]. For testing the hy-
pothesis of the equality of two covariance matrices H3

0 : ΣX = ΣY , we employ a version
of Box’s test, namely the likelihood-ratio test. This is the multivariate generalization of
Bartletts test of homogeneity of variances. The test has the form:

−2 log λ = 2m log |Σ̂| −m
(

log |Σ̂X |+ log |Σ̂Y |
)

= m
(

log |Σ̂X−1Σ̂|+ log |Σ̂Y−1Σ̂|
)
,

where Σ̂X and Σ̂Y are sample biased covariance matrices of the random vectors XXX and
YYY , and Σ̂ = (Σ̂X +Σ̂y)/2 is the maximum likelihood estimate of the common covariance
matrix (under the null hypothesis). We emphasize that for derivation of the above
stated test statistics we used the fact that both random vectors have the same number
of realizations equal to m. The degrees of freedom of the asymptotic χ2 distribution are
(d+ 1)/2. For more details about the test statistics and its properties we refer to [1].

In the computational experiment we kept the means of both distribution fixed, namely
µµµX = (1, 2) and µµµY = (0, 1). The elements defining the common covariance matrix Σ
were taken from the following sets:

σ11, σ22 ∈ {0.5, 1, 2, 3, 5, 10}, ρ ∈ {−0.8,−0.4, 0, 0.4, 0.8},

where ρ is the correlation coefficient between elements of the considered random vectors,
i. e. cor(X1, X2) = cor(Y1, Y2) = ρ and thus σ12 = σ21 = ρ

√
σ11σ22. This means that

we considered 180 different settings of parameters specifying two normal distributions.
For each setting of parameters σ11, σ22 and ρ we carried out 100 simulations with 100
realizations (n = 100, m = 100). In the second part of the experiment we fixed a choice
of the distributions parameters and varied the size of the samples, we carried out the
simulation for m = {50, 100, 200, 500, 1000, 2000}. The entire statistical approach was
evaluated on the confidence level α = 0.95.

Tables 1 and 2 show results of the simulations for different choices of the covariance
matrices. Both tables display efficiency of detecting stochastic dominance between two
random vectors for the case when stochastic dominance between these vectors is present,
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corr. parameter ρ
σ11 σ22 -0.8 -0.4 0.0 0.4 0.8

0.5 0.5 0.99 1.00 0.98 1.00 1.00

0.5 1 0.93 0.88 0.88 0.88 0.83
0.5 2 0.58 0.40 0.47 0.49 0.50
0.5 3 0.20 0.20 0.22 0.29 0.21
0.5 5 0.11 0.04 0.10 0.12 0.07
0.5 10 0.01 0.02 0.02 0.05 0.02
1 0.5 0.85 0.86 0.90 0.84 0.88
1 1 0.80 0.77 0.65 0.73 0.75
1 2 0.32 0.19 0.19 0.25 0.44
1 3 0.14 0.12 0.12 0.14 0.21
1 5 0.03 0.03 0.06 0.06 0.08
1 10 0.02 0.02 0.02 0.02 0.02
2 0.5 0.49 0.39 0.49 0.46 0.51
2 1 0.41 0.23 0.22 0.26 0.40
2 2 0.09 0.05 0.01 0.09 0.14
2 3 0.02 0.00 0.03 0.01 0.10
2 5 0.00 0.01 0.00 0.00 0.04
2 10 0.00 0.00 0.01 0.00 0.01
3 0.5 0.24 0.18 0.23 0.23 0.29
3 1 0.21 0.13 0.10 0.15 0.18
3 2 0.01 0.00 0.01 0.03 0.10
3 3 0.00 0.00 0.02 0.03 0.07
3 5 0.00 0.00 0.00 0.01 0.03
3 10 0.00 0.00 0.00 0.00 0.00
5 0.5 0.07 0.05 0.09 0.11 0.08
5 1 0.07 0.03 0.04 0.06 0.02
5 2 0.00 0.00 0.00 0.00 0.03
5 3 0.00 0.00 0.00 0.00 0.04
5 5 0.00 0.00 0.00 0.00 0.01
5 10 0.00 0.00 0.00 0.00 0.00
10 0.5 0.05 0.01 0.02 0.03 0.03
10 1 0.03 0.03 0.01 0.05 0.02
10 2 0.00 0.00 0.00 0.00 0.03
10 3 0.00 0.00 0.00 0.00 0.00
10 5 0.00 0.00 0.00 0.00 0.00
10 10 0.00 0.00 0.00 0.00 0.00

Tab. 1. Simulation results for optimization approach (100

simulations with 100 realizations for each combination of parameters

σX , σY and ρ).
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corr. parameter ρ
σ11 σ22 -0.8 -0.4 0.0 0.4 0.8

0.5 0.5 0.95 0.93 0.91 0.93 0.92

0.5 1 0.96 0.87 0.92 0.92 0.95
0.5 2 0.96 0.87 0.94 0.93 0.92
0.5 3 0.96 0.93 0.88 0.96 0.86
0.5 5 0.91 0.87 0.90 0.92 0.96
0.5 10 0.93 0.96 0.90 0.93 0.89
1 0.5 0.92 0.93 0.93 0.92 0.92
1 1 0.92 0.90 0.93 0.94 0.90
1 2 0.93 0.92 0.94 0.91 0.93
1 3 0.94 0.94 0.95 0.92 0.96
1 5 0.93 0.95 0.91 0.91 0.94
1 10 0.92 0.88 0.95 0.94 0.89
2 0.5 0.93 0.95 0.90 0.92 0.92
2 1 0.91 0.89 0.95 0.94 0.89
2 2 0.91 0.96 0.92 0.94 0.92
2 3 0.95 0.95 0.86 0.97 0.94
2 5 0.93 0.88 0.95 0.87 0.93
2 10 0.97 0.89 0.87 0.89 0.92
3 0.5 0.91 0.94 0.95 0.94 0.96
3 1 0.92 0.94 0.95 0.84 0.97
3 2 0.94 0.92 0.87 0.93 0.91
3 3 0.88 0.94 0.90 0.86 0.95
3 5 0.93 0.90 0.91 0.93 0.95
3 10 0.93 0.92 0.91 0.95 0.89
5 0.5 0.90 0.92 0.98 0.93 0.92
5 1 0.87 0.91 0.92 0.94 0.94
5 2 0.89 0.96 0.95 0.94 0.95
5 3 0.92 0.88 0.88 0.89 0.90
5 5 0.86 0.93 0.93 0.94 0.95
5 10 0.93 0.94 0.95 0.88 0.93
10 0.5 0.88 0.94 0.91 0.91 0.92
10 1 0.90 0.96 0.95 0.93 0.92
10 2 0.94 0.89 0.95 0.92 0.92
10 3 0.93 0.93 0.92 0.94 0.95
10 5 0.92 0.93 0.95 0.96 0.95
10 10 0.92 0.92 0.97 0.90 0.96

Tab. 2. Simulation results for statistical approach (100 simulations

with 100 realizations for each combination of parameters σX , σY and

ρ).
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50 100 200 500 1000 2000

Optimization method 0.58 0.64 0.70 0.80 0.81 0.85

Statistical method 0.92 0.95 0.90 0.96 0.96 0.93

Tab. 3. Simulation results for various choice of sample size m (100

simulations with σ11 = σ22 = 1 and ρ = 0.4).

i. e. the tables provide ratio between the number of simulations for which we obtained
positive test of stochastic dominance and the total number of simulations. Table 1

shows results for the optimization method, whereas Table 2 provides results for the
statistical approach. We observe that efficiency of the statistical method is stable when
varying the covariance matrix and the probability that the approach is able to detect
stochastic dominance oscillate around 0.9. On the other hand, the optimization method
is highly dependent of the choice of the parameters σ11, σ22. When these parameters
have considerably low value, in comparison with the distance between the means of
the random vectors, the probability of detecting stochastic dominance is nearly 1. This
probability converges sharply to 0 as these parameters become higher. We do not observe
any dependence of the efficiency in the correlation parameters. We can conclude that
for small variances it is more confident to use the optimization method whereas for
higher values the statistical method should be preferred. In practice, it is hard to find
the right breakpoint for preferring one method against the other and one should always
take into consideration the distance between the estimated means of the vectors and
also the size of both samples. With increasing cardinality of the samples there is more
flexibility in assigning the realizations of one vector to the other one which is executed
by the optimization problem (SD) and therefore the optimization method becomes more
efficient as shown in Table 3.

6. CONCLUSION

This paper focused on multivariate stochastic dominance for the case of random vectors
with multivariate normal distribution. In the first part we provided a brief introduction
to multivariate stochastic dominance in which we included definitions of three important
types of multivariate stochastic dominance, namely strong, orthant and linear. In the
main part of the work we formulated stochastic dominance rule and provided a detailed
proof. We explained why one cannot use the same technique based on joint survival
functions as it is usual when proving the rule in the univariate case. In the last part of
this paper we executed a simulation in which we employed derived stochastic dominance
rule in order to validate the efficiency of detecting stochastic dominance. We compared
the method with another one based on an optimization problem. We examined behavior
of both approaches depending on the setting of the covariance matrix and size of the
simulated samples.
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[7] M. Kopa and B. Petrová: Strong and weak multivariate first-order stochastic dominance.
SSRN Electron. J. xx (2017), xxx–xxx. DOI:10.2139/ssrn.3144058

[8] D. Levhari, J. Paroush, and B. Peleg: Efficiency analysis for multivariate distributions.
Rev. Econom. Stud. 42 (1975), 87–91. DOI:10.2307/2296822

[9] H. Levy: Stochastic dominance, efficiency criteria and efficient portfolios: the multi-
period case. Amer. Econom. Rev. 63 (1973), 986–994. DOI:10.1142/9789814417358 0018

[10] H. Levy: Stochastic Dominance: Investment Decision Making under Uncertainty.
Springer 2006.

[11] H. Levy: Stochastic Dominance (Investment Decision Making Under Uncertainty).
Springer 2016.

[12] H. Levy and J. Paroush: Multi-period stochastic dominance. J. Financ. Quantitat. Anal.
21 (1974), 428–435. DOI:10.1287/mnsc.21.4.428
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