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1. Introduction and statement of the results

Consider the finite reflection group generated by σj , j = 1, . . . , d (see [2]),

σj(x1, . . . , xj , . . . , xd) = (x1, . . . ,−xj , . . . , xd),

and isomorphic to Zd2 = {0, 1}d.
The reflection σj is in the hyperplane orthogonal to ej , the jth coordinate vector

in R
d. Given a root system R by R = {±

√
2ej : j = 1, . . . , d}, and the positive

root system R+ defined by R+ = {
√
2ej : j = 1, . . . , d}, we recall the nonnegative

multiplicity function k : R → [0,∞) which is Zd2-invariant, so only values of k on R+

are considered. Hence k = (α1 +
1
2 , . . . , αd +

1
2 ), such that αj > − 1

2 .

Let Tαj , j = 1, . . . , d, α ∈ [− 1
2 ,∞)d, be the Dunkl differential-difference operators,

(see [11]) defined by

Tαj = ∂jf(x) +
(
αj +

1

2

)f(x)− f(σjx)

xj
, f ∈ C1(Rd),
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here ∂j is the jth partial derivative and σj denotes the reflection in the hyperplane

orthogonal to ej, the jth coordinate vector in R
d.

In Dunkl’s theory the operator

∆α =

d∑

j=1

(Tαj )
2

plays the role of the Euclidean Laplacian. The explicit form is

∆αf(x) =

d∑

j=1

(
∂2f

∂x2j
(x) +

2αj + 1

xj

∂f

∂xj
(x)−

(
αj +

1

2

)f(x)− f(σjx)

x2j

)
.

We recall the definition of the Dunkl Ornstein-Uhlenbeck operator, given in [10] by

Lα = −∆α + 2x·∇.

Note that ∆α, when restricted to the even subspace

(1) {f ∈ C1(Rd) : ∀ j = 1, . . . , d, f(x) = f(σjx)}

coincides with the multi-dimensional Bessel differential operator

d∑

j=1

(
∂2j +

2αj + 1

xj
∂j

)
,

and consequently Lα reduces to the Laguerre-type operator

(2) Lα = −∆+ 2x·∇ −
d∑

j=1

2αj + 1

xj

∂

∂xj
.

The corresponding measure µα has the form

dµα(x) =

d∏

j=1

|xj |2αj+1e−x
2
j dxj , x = (x1, . . . , xd) ∈ R

d.

We denote by Lp(Rd, dµα), 1 6 p 6 ∞, the Lebesgue space constituted of measurable

functions on R
d. By 〈f, g〉α we mean

∫
Rd f(x)g(x) dµα(x) whenever the integral

makes sense.

Given α ∈ [− 1
2 ,∞)d, the associated generalized Hermite polynomials (see [1],

[9], [10]) are tensor products

Hα
n(x) = Hα1

n1
× . . .×Hαd

nd
, x = (x1, . . . , xd) ∈ R

d, n = (n1, . . . , nd) ∈ N
d,
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where Hαi
ni
are the one-dimensional generalized Hermite polynomials

Hαi

2ni
(xi) = (−1)ni

( ni!

Γ(ni + αi + 1)

)1/2
Lαi

ni
(x2i ),

Hαi

2ni+1(xi) = (−1)ni

( ni!

Γ(ni + αi + 2)

)1/2
xiL

αi+1
ni

(x2i ),

here Lαi
ni
denotes the Laguerre polynomial of degree ni and order αi (see [4]).

The system {Hα
n : n ∈ N

d} is an orthonormal basis in L2(Rd, dµα) consisting of

eigenfunctions of Lα (see [10]), recall that

LαHα
n = 2|n|Hα

n ,

where we denote |n| = n1 + . . .+ nd.

We define the jth partial “derivative” δα,j , for 1 6 j 6 d, related to Lα, by

δα,j = Tαj .

The formal adjoint of δα,j in L
2(Rd, dµα) is

δ∗α,j = −Tαj + 2xj .

This precisely means that

〈δα,jf, g〉α = 〈f, δ∗α,jg〉α, f, g ∈ C1
c (R

d).

A direct computation shows that

Lα + (2|α|+ 2d) =
1

2

d∑

j=1

(δ∗α,jδα,j + δα,jδ
∗
α,j).

We recall that for 1 6 j 6 d (see [7])

δα,jHα
n = m(nj , αj)Hα

n−ej ,

where

m(nj , αj) =

{√
2nj if nj is even,

√
2nj + 4αj + 2 if nj is odd,

by convention, Hα
n−ej ≡ 0 if nj = 0.
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Note that for each j the system {δα,jHα
n : nj > 1} is orthogonal in L2(Rd, dµα).

The self-adjoint extension of Lα initially considered on C∞
c (Rd) is given by the

operator

Lαf =
∑

n∈Nd

2|n|〈f,Hα
n〉αHα

n ,

and defined on the domain

Dom(Lα) =
{
f ∈ L2(Rd, dµα) :

∑

n∈Nd

|2|n|〈f,Hα
n〉α|2 <∞

}
.

The spectrum of Lα is the discrete set {2m : m ∈ N}, and the spectral decomposition
of Lα is

Lαf =

∞∑

m=0

2mPαmf, f ∈ Dom(Lα),

where the spectral projections are

Pαmf =
∑

|n|=m

〈f,Hα
n〉αHα

n .

Observe that since zero is an eigenvalue of Lα, then denoting by Π0 the orthogonal

projection operator onto the orthogonal complement of the subspace spanned by the

constant functions, it is also given

Π0f = f −
∫

Rd

f(y) dµα(y).

We have for M ∈ N
∗,

L−M/2
α Π0f =

∞∑

m=1

(2m)−M/2Pαmf,

and this operator is bounded on L2(Rd, dµα).

The Riesz transforms related to the Dunkl harmonic oscillator and to the Dunkl

Ornstein-Uhlenbeck operator have been intensively studied in recent years by many

authors, see e.g. [6], [7], [8], and references therein. In [7] Nowak, Roncal and Stem-

pak introduced the Riesz transforms of order one related to the Dunkl Ornstein-

Uhlenbeck operator Lα and they proved that these transforms are L
p bounded with

1 < p < ∞ in the one-dimensional setting. The aim of this paper is to present an

extension of this result to the Riesz-Dunkl transforms of order M with M ∈ N
∗. We

note that for technical reasons, we have considered the Zd2 group case.
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According to a general principle, see [3], we now define higher order Riesz-Dunkl

transforms in the following way: let τ = (τ1, . . . , τd) ∈ N
d be a multi-index and

α = (α1, . . . , αd) ∈ [− 1
2 ,∞)d. Then for M ∈ N

∗, the family of the Riesz-Dunkl

transforms (Rα
τ ) of order M such that |τ | = τ1 + . . . + τd = M (the length of τ) is

given by

Rα,M = (Rα
τ )|τ |=M = (δταL−M/2

α Π0)|τ |=M ,

where

δτα = δτ1α,1 . . . δ
τd
α,d.

In the one-dimensional case, to prove our main result Theorem 1, we split a function f

into its even, and odd parts fe and fo and we observe that if the order m is odd then

the Riesz-Dunkl transform of order m ∈ N
∗ Rα

mfe is odd and Rα
mfo is even, and if

the order m is even then Rα
mfe is even and Rα

mfo is odd.

Due to these symmetries we consider the operatorsRα
e,m andRα

o,m on L
2(R+, dµα)

emerging naturally from restrictions of Rα
m to the subspaces of L

2(R, dµα) of even

and odd functions, respectively.

The Lp-boundedness of the even and odd Riesz-Dunkl operators follows from the

Lp-boundedness of the Riesz-Laguerre-type transforms and of shift and multiplier

operators depending on m.

In the Z
d
2 group case we investigate a natural variant of the Dunkl Ornstein-

Uhlenbeck operator by means of the Dunkl gradient rather than the Euclidean one,

then we obtain higher order Riesz-Dunkl transforms which are L2-contractions. The

Lp-boundedness of these Riesz-Dunkl transforms is proved in the one-dimensional

case.

The paper is organized as follows. In Section 2 we give the expansions of higher

order Riesz transforms associated with the Dunkl Ornstein-Uhlenbeck operator of

f =
∑
n∈Nd

〈f,Hα
n〉Hα

n on L
2(Rd, dµα) and we study the L

2-boundedness of this trans-

form.

In Section 3, for the one-dimensional case, we establish Lp-boundedness of shift

operators, we define and study the Riesz-Laguerre-type transforms of order m ∈ N
∗.

After that, we prove our main result.

Finally in Section 4, we discuss higher order Riesz transforms related to the alter-

native Dunkl Ornstein-Uhlenbeck operator by the methods developed in the previous

section.
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2. Higher order Riesz transforms associated with

the Dunkl Ornstein-Uhlenbeck operator

Let τ = (τ1, . . . , τd) ∈ N
d be a multi-index and α = (α1, . . . , αd) ∈ [− 1

2 ,∞)d, we

denote by δτα the operator

δτα = δτ1α,1 . . . δ
τd
α,d.

It is natural to define the Riesz transform of order M ∈ N
∗ for the Dunkl Ornstein-

Uhlenbeck operator by

Rα,M = (Rα
τ )|τ |=M = (δταL−M/2

α Π0)|τ |=M ,

where |τ | = τ1 + . . .+ τd is the length of τ .

In order to study the higher order Riesz transforms Rα,M of order M ∈ N
∗, we

shall see how δτα acts on Hα
n .

We begin by observing that

δ
τj
α,jHα

n = m(nj , αj, τj)Hα
n−τjej

by the convention thatHα
n−τjej ≡ 0 if nj < τj , so we takem(nj , αj , τj) = 0 if nj < τj .

Otherwise m(nj , αj , τj) is given by the next lemma.

Lemma 1. (i) If τj = 1, then m(nj , αj , 1) = m(nj , αj) given by

m(nj , αj) =

{√
2nj if nj is even,

√
2nj + 4αj + 2 if nj is odd.

(ii) If 2 6 τj 6 nj and τj even, then

m(nj , αj , τj) =






√
2τjnj(nj − 2) . . . (nj − τj + 2)(nj + 2αj)

×
√
(nj + 2αj − 2) . . . (nj + 2αj − τj + 2) if nj is even,√

2τj (nj − 1)(nj − 3) . . . (nj − τj + 1)(nj + 2αj + 1)

×
√
(nj + 2αj − 1) . . . (nj + 2αj − τj + 3) if nj is odd.

(iii) If 3 6 τj 6 nj and τj odd, then

m(nj , αj , τj) =





√
2τjnj(nj − 2) . . . (nj − τj + 1)(nj + 2αj)

×
√
(nj + 2αj − 2) . . . (nj + 2αj − τj + 3) if nj is even,√

2τj (nj − 1)(nj − 3) . . . (nj − τj + 2)(nj + 2αj + 1)

×
√
(nj + 2αj − 1) . . . (nj + 2αj − τj + 2) if nj is odd.
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P r o o f. We have in [7] that for 1 6 j 6 d

δα,jHα
n = m(nj , αj)Hα

n−ej ,

where

m(nj , αj) =

{√
2nj if nj is even,

√
2nj + 4αj + 2 if nj is odd,

by convention, Hα
n−ej ≡ 0 if nj = 0. So we obtain (i).

To prove (ii) and (iii) we give some computations of δ
τj
α,jHα

n :

If nj is even we can see that

δα,jHα
n =

√
2njHα

n−ej

δ2α,jHα
n =

√
22nj(nj + 2αj)Hα

n−2ej

δ3α,jHα
n =

√
23nj(nj + 2αj)(nj − 2)Hα

n−3ej .

On the other hand, if nj is odd we show that

δα,jHα
n =

√
2(nj + 2αj + 1)Hα

n−ej

δ2α,jHα
n =

√
22(nj + 2αj + 1)(nj − 1)Hα

n−2ej

δ3α,jHα
n =

√
23(nj + 2αj + 1)(nj − 1)(nj + 2αj − 1)Hα

n−3ej .

Thus, by iteration method, we deduce the results. �

Lemma 2. For τ = (τ1, . . . , τd) ∈ N
d and α = (α1, . . . , αd) ∈ [− 1

2 ,∞)d, we have

δταHα
n = (δτ1α,1δ

τ2
α,2 . . . δ

τd
α,d)Hα

n = M(n, α, τ)Hα
n−

∑
d
j=1

τjej
,

where

M(n, α, τ) =

d∏

j=1

m(nj , αj , τj).

Also, for τ = (τ1, . . . , τd) ∈ N
d, we have

0 6 M(n, α, τ) 6 C(|n|+ 2|α|+ 1)|τ |/2,

where |α| =
d∑
j=1

|αj | and C is a positive constant independent of significant quantities.

AndM(n, α, τ) vanishes if and only if there exists 1 6 j 6 d such that nj−τj < 0.
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P r o o f. A direct composition gives

(δτ1α,1δ
τ2
α,2 . . . δ

τd
α,d)Hα

n =

d∏

j=1

m(nj , αj , τj)Hα
n−

∑
d
j=1

τjej
,

where m(nj , αj , τj) is defined as in the previous lemma.

For 1 6 j 6 d, we see that each factor under the square root in the expression of

m(nj , αj , τj) is bounded by |n|+ 2|α|+ 1 and there is τj factors, so

m(nj , αj , τj) 6 C(|n|+ 2|α|+ 1)τj/2.

We deduce that

M(n, α, τ) 6 C(|n|+ 2|α|+ 1)|τ |/2.

�

The higher order Riesz-Dunkl transform Rα
τ of Hα

n is defined by

Rα
τHα

n =
M(n, α, τ)

(2|n|)|τ |/2 Hα
n−

∑
d
j=1

τjej
.

So the higher order Riesz-Dunkl transformRα
τ of f =

∑
n∈Nd

〈f,Hα
n〉αHα

n in L
2(Rd, dµα)

is given by

(3) Rα
τ f =

∑

n∈Nd,|n|>0

M(n, α, τ)

(2|n|)|τ |/2 〈f,Hα
n〉αHα

n−
∑

d
j=1

τjej
.

From equality (3) and Lemma 2, the L2-boundedness can easily be seen.

Remark 1. We note that Rα
τ is not a contraction on L2(Rd, dµα) if α ∈

[− 1
2 ,∞)d.

3. Z2 -Higher order Riesz transforms associated with the Dunkl

Ornstein-Uhlenbeck operator

Our main result, Theorem 1 below, is an extension to higher order of Nowak,

Roncal and Stempak’s Lp results given in [7] for the Riesz transform Rα
1 related to

the Dunkl Ornstein-Uhlenbeck operator in one-dimension setting.

Theorem 1. Let d = 1 and assume that α > − 1
2 . Then for each 1 < p < ∞

and m ∈ N
∗, the Riesz-Dunkl transform Rα

m of order m, associated with the Dunkl

Ornstein-Uhlenbeck operator, defined on L2(R, dµα) by (3), extends to a bounded

operator on Lp(R, dµα).
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First of all we recall some results in the one-dimensional setting and in the case

when the order of the Riesz-Dunkl transform is one.

By the change of variable x 7→ x2 on R+, the authors in [7] translate some results

from the classical Laguerre setting to the so called “squared” Laguerre setting.

For α > − 1
2 , the restriction of µα to R+ will be denoted by the same symbol. The

Dunkl Ornstein-Uhlenbeck operator (2) in this case is

Lα = − d2

dx2
− 2α+ 1− 2x2

x

d

dx
,

which is positive and symmetric in L2(R+, dµα). The Laguerre polynomials L
α
n(x

2),

n ∈ N, are eigenfunctions of Lα,

LαL
α
n(x

2) = 4nLαn(x
2),

and the set {LαLαn(x2) : n ∈ N} forms an orthogonal basis in L2(R+, dµα).

Also the authors in [7] considered the polynomials

ϕαn(x) =
( 2n!

Γ(n+ α+ 1)

)1/2
Lαn(x

2)

and

ψαn(x) =
( 2n!

Γ(n+ α+ 2)

)1/2
xLα+1

n (x2),

which form two orthonormal bases in L2(R+, dµα).

These polynomials ϕαn and ψ
α
n coincide, up to constant factors independent of n

and α, with the generalized Hermite polynomials Hα
2n and Hα

2n+1, respectively.

The definition of the first order Riesz-Dunkl transform is inherited from the clas-

sical Laguerre setting given by [5], and induced by the mapping

Rα
ϕ : ϕ

α
n → −ψαn−1, n ∈ N,

where ψα−1 ≡ 0.

Muckenhoupt proved in [5] the following:

Theorem 2. Let α > − 1
2 and 1 < p <∞. Then

‖Rα
ϕf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, dµα).
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In [7] the authors give the adjoint operator of Rα
ϕ, taken in L

2(R+, dµα), by the

mapping

Rα
ψ : ψ

α
n → −ϕαn+1, n ∈ N,

they proved by Theorem 2 and duality that for 1 < p <∞

(4) ‖Rα
ψf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, dµα).

Also, they translate the multiplier theorem below, given in [3], to the squared

Laguerre setting after restricting it to one dimension and taking β = 1,

Theorem 3. Let 1 < p <∞ and α > − 1
2 . Assume that h is an analytic function

in a neighborhood of the origin. Let {ξ(n)}n∈N be a sequence of real numbers such

that ξ(n) = h(n−1) for n > n0 > 0. Then the multiplier operator given by

Mξ : ϕ
α
n → ξ(n)ϕαn

satisfies

‖Mξf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, dµα).

In our context, in order to prove our Theorem 1 we consider the right and left shift

operators of order m, for m > 1, related to the system {ϕαn}, respectively denoted
by

Sr,m : ϕαn → ϕαn+m

and

Sl,m : ϕαn → ϕαn−m,

where ϕαn−m ≡ 0 if n−m < 0.

We establish Lp-boundedness of these shift operators, which may be regarded as

an extension of Theorem 6.3 stated in [7].

Theorem 4. Let 1 < p < ∞ and α > − 1
2 . Then the shift operators of order

m ∈ N
∗ defined above satisfy

‖Sl,mf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα)

and

‖Sr,mf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, dµα).
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P r o o f. If m 6 n, we can see that

Sl,m : ϕαn → ϕαn−m,

so

Sl,m(ϕαn) = (Sl)m(ϕαn),

where Sl is the left shift operator of order 1 given in [7] and verifies that

‖Slf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα).

We deduce that

‖Sl,mf‖Lp(R+,dµα) 6 Cm‖f‖Lp(R+,dµα),

where Cm is a positive constant depending on m.

Similarly we have

Sr,m : ϕαn → ϕαn+m

so

Sr,m(ϕαn) = (Sr)m(ϕαn)

with Sr the right shift operator of order 1 which verifies that

‖Srf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα).

We deduce that

‖Sr,mf‖Lp(R+,dµα) 6 C(m)‖f‖Lp(R+,dµα),

where C(m) is a positive constant depending on m. �

Now we define the operators Rα
ϕ,m and Rα

ψ,m, for m > 1, induced, respectively,

by the mappings

Rα
ϕ,m : ϕαn → (−1)mψαn−m, n ∈ N,

where ψαn−m ≡ 0 if m > n, and

Rα
ψ,m : ψαn → (−1)mϕαn+m, n ∈ N.

We establish Lp-boundedness of these transforms in the theorem below.

Theorem 5. Let 1 < p <∞, α > − 1
2 and m ∈ N

∗. Then

‖Rα
ϕ,mf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα)

and

‖Rα
ψ,mf‖Lp(R+,dµα) 6 C‖f‖Lp(R+,dµα),

with a constant C independent of f ∈ L2 ∩ Lp(R+, dµα).
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P r o o f. We have, for n > m

Rα
ϕ,m(ϕαn) = (−1)m−1Rα

ϕSl,m−1(ϕ
α
n).

We can deduce the Lp-boundedness of Rα
ϕ,m by Theorem 2 and Theorem 4.

On the other hand

Rα
ψ,m(ψαn) = (−1)m−1Sr,m−1Rα

ψ(ψ
α
n),

so the Lp-boundedness of Rα
ψ,m is a consequence of Theorem 4 and inequality (4).

�

We are now in a position to prove Theorem 1.

P r o o f of Theorem 1. In the one-dimensional setting for α > − 1
2 and for the

Riesz-Dunkl transform of order m ∈ N
∗, defined on L2(R, dµα) by

Rα,m = Rα
m = δmα L−m/2

α Π0,

and for

f =
∑

n∈N

〈f,Hα
n〉αHα

n ,

we have

(5) Rα
mf =

∑

n>0

M(n, α,m)

(2n)m/2
〈f,Hα

n〉αHα
n−m.

Given f ∈ L2 ∩ Lp(R, dµα), we decompose it into its even and odd parts,

f = fe + fo.

Then to prove Theorem 1 it is sufficient to show the Lp estimates

‖Rα
mfe‖Lp(R,dµα) 6 C‖fe‖Lp(R,dµα)

and

‖Rα
mfo‖Lp(R,dµα) 6 C‖fo‖Lp(R,dµα).

Since the generalized Hermite polynomial Hα
n is even if n is even and odd for n odd,

expansions of fe and fo are given only by even and odd Hα
n , respectively.

In view of (5), we observe that if the order m is odd, then Rα
mfe is odd and Rα

mfo

is even.

And if the order m is even, then Rα
mfe is even and Rα

mfo is odd.
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Due to these symmetries we consider the operatorsRα
e,m andRα

o,m on L
2(R+, dµα)

emerging naturally from restrictions of Rα
m to the subspaces of L

2(R, dµα) of even

and odd functions, respectively.

Observe that by relation (5) we have:

(i) If m is even, then

Rα
e,m : ϕαn → M(2n, α,m)

(4n)m/2
ϕαn−m/2,

and

Rα
o,m : ψαn → M(2n+ 1, α,m)

(4n+ 2)m/2
ψαn−m/2.

Thus we can see that

Rα
e,m(ϕαn) = Mξ1Sl,m/2(ϕαn)

with

ξ1(n) =
M(2n, α,m)

(4n)m/2
.

And

Rα
o,m(ψαn ) = Rα

ϕ,m/2+1Mξ2Rα
ψ(ψ

α
n )

with

ξ2(n) = (−1)m/2
M(2n+ 1, α,m)

(4n+ 2)m/2
.

Consequently, the relevant Lp estimate follows by relation (4) accordingly with The-

orems 3, 4 and 5.

(ii) On the other hand, if m is odd, then

Rα
e,m : ϕαn → (−1)(m+1)/2M(2n, α,m)

(4n)m/2
ψαn−(m+1)/2

and

Rα
o,m : ψαn → (−1)(m−1)/2M(2n+ 1, α,m)

(4n+ 2)m/2
ϕαn−(m−1)/2.

Thus we can see that

Rα
e,m(ϕαn) = Rϕ,(m+1)/2Mξ3(ϕ

α
n),

with

ξ3(n) =
M(2n, α,m)

(4n)m/2
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and

Rα
o,m(ψαn ) = Mξ4Sl,(m+1)/2Rα

ψ(ψ
α
n ),

with

ξ4(n) = (−1)(m+1)/2M(2n+ 1, α,m)

(4n+ 2)m/2
.

Thus we see again that the relevant Lp estimate follows by relation (4) and Theo-

rems 3, 4 and 5. �

Remark 2. We conjecture in our context that an analogue of Theorem 1 holds

for arbitrary dimension d and α ∈ [− 1
2 ,∞)d.

4. Higher order Riesz transforms associated with the alternative

Dunkl Ornstein-Uhlenbeck operator

In this section we consider the alternative Dunkl Ornstein-Uhlenbeck operator

given in [7] by

L̃α = −∆α + 2x · ∇α,

where the Dunkl gradient ∇α is defined by

∇α = (Tα1 , . . . , T
α
d ).

The authors in [7] define, in the Zd2 group case, the Riesz-Dunkl transforms of order

one associated with L̃α. These transforms are contractions in L
2(Rd, dµα), which is

not true in the case of Lα.

Similarly as Lα, when restricted to the even subspace (1), L̃α coincides with

the Laguerre-type operator (2), and for α = (− 1
2 , . . . ,− 1

2 ) it reduces to the classic

Ornstein-Uhlenbeck operator. We recall that

L̃α =

d∑

j=1

δ∗α,jδα,j.

It follows that L̃α is formally symmetric and nonnegative in L
2(Rd, dµα).

Also, we have

L̃αHα
n =

(
2|n|+

∑

{j : nj odd}

(4αj + 2)

)
Hα
n =

( d∑

j=1

[m(nj , αj)]
2

)
Hα
n .

Let L̃α be the self-adjoint extension of L̃α whose spectral decomposition is given
by Hα

n .
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Let τ = (τ1, . . . , τd) ∈ N
d be a multi-index and α = (α1, . . . , αd) ∈ [− 1

2 ,∞)d, we

denote by δτα the operator

δτα = δτ1α,1 . . . δ
τd
α,d.

It is natural to define the Riesz transform of orderM ∈ N
∗ for the alternative Dunkl

Ornstein-Uhlenbeck L̃α operator by

R̃α,M = (R̃α
τ )|τ |=M = (δταL̃−M/2

α Π0)|τ |=M ,

where |τ | = τ1 + . . .+ τd is the length of τ .

So the higher order Riesz-Dunkl transform R̃α
τ of f =

∑
n∈Nd

〈f,Hα
n〉αHα

n on

L2(Rd, dµα) is given by

(6) R̃α
τ f =

∑

n∈N
d

|n|>0

M(n, α, τ)
( d∑
j=1

[m(nj , αj)]2
)|τ |/2 〈f,H

α
n〉αHα

n−
∑

d
j=1

τjej
.

From formula (6) and Lemma 2, the L2-boundedness can easily be seen directly.

Remark 3. By Plancherel’s theorem the mapping

f →
( ∑

|τ |=M

|R̃α
τ f |2

)1/2

is a contraction on L2(Rd, dµα).

We now state an analogue of Theorem 1 in the context of L̃α.

Theorem 6. Let d = 1 and assume that α > − 1
2 . Then for each 1 < p < ∞

and m ∈ N
∗, the Riesz-Dunkl transform R̃α

m of order m, associated with the alterna-

tive Dunkl Ornstein-Uhlenbeck operator, defined on L2(R, dµα) by (6), extends to

a bounded operator on Lp(R, dµα).

P r o o f. We proceed as in the proof of Theorem 1 and arrive at the opera-

tors R̃α
e,m and R̃α

o,m on L
2(R+, dµα). Then to prove this theorem, it is sufficient to

show the Lp estimates for these two operators.

We recall that in one-dimensional setting, for α > − 1
2 and for the Riesz-Dunkl

transform of order m ∈ N
∗, defined on L2(R+, dµα) by

R̃α,m = R̃α
m = δmα L̃−m/2

α Π0,
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and for

f =
∑

n∈N

〈f,Hα
n〉αHα

n ,

we have

(7) R̃α
mf =

∑

n>0

M(n, α,m)

[m(n, α)]m
〈f,Hα

n〉αHα
n−m.

Notice that by (7) we have:

(i) If m is even, then

R̃α
e,m = Mξ1Sl,m/2

with

ξ1(n) =
M(2n, α,m)

[m(2n, α)]m
.

And

R̃α
o,m = Rα

ϕ,m/2+1Mξ2Rα
ψ

with

ξ2(n) = (−1)m/2
M(2n+ 1, α,m)

[m(2n+ 1, α)]m
.

(ii) If m is odd, then

R̃α
e,m = Rϕ,(m+1)/2Mξ3

with

ξ3(n) =
M(2n, α,m)

[m(2n, α)]m
.

And

R̃α
o,m = Mξ4Sl,(m+1)/2Rα

ψ

with

ξ4(n) = (−1)(m+1)/2M(2n+ 1, α,m)

[m(2n+ 1, α)]m
.

Consequently, the relevant Lp estimate follows by relation (4) accordingly with The-

orems 3, 4 and 5. �
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