
Applications of Mathematics

Iveta Hnětynková; Martin Plešinger; Jana Žáková
Solvability classes for core problems in matrix total least squares minimization

Applications of Mathematics, Vol. 64 (2019), No. 2, 103–128

Persistent URL: http://dml.cz/dmlcz/147664

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147664
http://dml.cz


64 (2019) APPLICATIONS OF MATHEMATICS No. 2, 103–128

SOLVABILITY CLASSES FOR CORE PROBLEMS IN MATRIX

TOTAL LEAST SQUARES MINIMIZATION

Iveta Hnětynková, Praha, Martin Plešinger, Liberec, Praha,

Jana Žáková, Liberec

Received September 20, 2018. Published online February 19, 2019.

Abstract. Linear matrix approximation problems AX ≈ B are often solved by the total
least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general.
The so-called core problem theory brought an insight into this effect. Moreover, it simplified
the solvability analysis if B is of column rank one by extracting a core problem having
always a unique TLS solution. However, if the rank of B is larger, the core problem may
stay unsolvable in the TLS sense, as shown for the first time by Hnětynková, Plešinger,
and Sima (2016). Full classification of core problems with respect to their solvability is
still missing. Here we fill this gap. Then we concentrate on the so-called composed (or
reducible) core problems that can be represented by a composition of several smaller core
problems. We analyze how the solvability class of the components influences the solvability
class of the composed problem. We also show on an example that the TLS solvability class
of a core problem may be in some sense improved by its composition with a suitably chosen
component. The existence of irreducible problems in various solvability classes is discussed.

Keywords: linear approximation problem; core problem theory; total least squares; clas-
sification; (ir)reducible problem

MSC 2010 : 15A06, 15A09, 15A18, 15A23, 65F20

1. Introduction

1.1. The core problem theory. Let us consider a linear approximation problem

(1.1) AX ≈ B, where A ∈ R
m×n, B ∈ R

m×d, X ∈ R
n×d

are matrices representing the system matrix of a discretized model, observation ma-
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trix of measurements (together forming the data matrix [B,A]), and the matrix

of unknowns, respectively. For simplicity we usually assume R(B) 6⊆ R(A) and

R(B) 6⊆ N (AT), otherwise the problem has either a solution in a classical sense

AX = B with X ≡ A†B, or the column spaces of both matrices are orthogonal

ATB = 0 and it makes no sense to approximate columns of B by columns of A,

(where R(K), N (K), and K† denote respectively the range, null-space, and Moore–

Penrose pseudoinverse of K).

The core problem theory developed in [8], [4], [5] gives the following. For ev-

ery (1.1), there exist orthogonal matrices P ∈ R
m×m, PT = P−1, Q ∈ R

n×n,

QT = Q−1, R ∈ R
d×d, RT = R−1 so that

(1.2) (PTAQ)(QTXR) ≡
[
A11 0

0 A22

] [
X11 X12

X21 X22

]
≈
[
B1 0

0 0

]
≡ (PTBR),

with conforming partitioning of matrices (i.e., in particular, A11 and B1 have the

same number of rows) satisfying the following three conditions:

(CP1) The matrix A11 is of full column rank.

(CP2) The matrix B1 is of full column rank.

(CP3) Let A11 have ξ distinct nonzero singular values with multiplicities µj and

µξ+1 ≡ dim(N (AT
11)), and let U

′
j be matrices having orthonormal bases of

left singular vector subspaces of A11 as their columns.

The matrix (U ′
j)

TB1 is of full row rank µj for j = 1, . . . , ξ, ξ + 1.

In [8] and [4], it was shown, that (CP1)–(CP3) are equivalent to the minimality

of [B1, A11] (and maximality of A22) over all orthogonal transformations giving the

same zero-nonzero block structure of the system and observation matrices. Note

that [8] focuses on the case d = 1, i.e., when B and therefore also B1 are vectors,

while [4] focuses on the matrix right-hand side case d > 1. The minimally dimen-

sioned subproblem

(1.3) A11X11 ≈ B1

is called the core problem (within (1.1)) and (1.2) is the core problem revealing

transformation.

1.2. The total least squares minimization. Problems of the form (1.1) are

solved in many applications by using plenty of different approaches, usually based

on least squares techniques. Total least squares (TLS) minimization represents one

of them. It typically seeks for

(1.4) min
G∈Rm×d, E∈Rm×n

‖[G,E]‖F subject to R(B +G) ⊆ R(A+ E)

104



(where ‖K‖F denotes the Frobenius norm of K). Then any matrix XTLS satisfying

(A+ E)XTLS = B +G

is called the TLS solution of (1.1).

The TLS problem differs from the basic (ordinary) LS in including a correction E

of the model matrix A into the minimization formulation. Problems, for which

a TLS solution represents better approximation than a LS solution have been widely

discussed in the literature in the past decades. A nice overview can be found, e.g.,

in [10], Chapter 1.2 or [7]. For example, the TLS approach is advantageous in

classical errors-in-variables (EIV) models, where the aim is to reveal the existing

unknown model (representing relations between variables) from its approximation A

rather than obtaining a precise approximation of X , or in cases where model errors

are significantly larger than observation errors. The TLS method is applied (under

various names) in areas such as experimental modal analysis, system identification,

signal processing, image processing or chemometrics, see [7] for references, where LS

often fails to give reliable approximations.

However, allowing corrections of A in (1.4) has significant impact on the solvability

of the minimization problem. While LS solution always exists (and one can uniquely

select a solution with minimum norm), this is no longer true for TLS. The existence

and uniqueness ofXTLS has been analyzed in many papers starting from [1], [10], [12],

[13], and in particular [14]. Moreover, the so-called nongeneric solution was defined

in [10] for cases where the standard TLS solution does not exist or is complicated to

construct (as revealed and explained later in [3]). The question of TLS solvability

of a general problem (1.4) was finally resolved in [14] and [3]. In particular, [3]

introduced a novel full classification of problems (1.1) with respect to their TLS

solvability. The problems (1.1) are there divided into four solvability classes and for

each of them the (non)existence and (non)uniqueness of the TLS solution is proved.

Thus, the solvability class of a given problem reveals how its approximate solution

can be computed, and what is the meaning of this solution in terms of the original

data.

The TLS minimization (1.4) employs the Frobenius, i.e., orthogonally invariant

norm, and the core problem revealing transformation (1.2) is an orthogonal trans-

formation. Thus the TLS minimizations applied to the original and transformed

problems result in the same minima (up to the transformation). Taking into ac-

count the zero blocks in the transformed right-hand side (1.2), it is reasonable to

put X12 = 0, X21 = 0, X22 = 0. Consequently, using the core reduction as a sort

of preprocessing of the data A,B, it is obvious that we in fact need to solve the

single nontrivial and typically smaller subproblem—the core problem (1.3). The link
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between the TLS solution of the core problem and the TLS or non-generic solution of

the original problem if d = 1 was explained in [8]. There it was also proved that the

core problem with d = 1 is always uniquely TLS solvable. For problems with d > 1,

the first attempts of clarification were published in [2]. In particular it was shown

that if d > 1, the core problem may stay unsolvable in the TLS sense. However, com-

plete classification of core problems with respect to their solvability is still missing.

Such knowledge would indicate in which cases the core reduction simplifies the solv-

ability of the TLS problem, and clarify the meaning of the TLS solution of the core

problem with respect to the original data. Thus we study this open question here.

1.3. Contribution of this work. In this paper we present some further pieces of

the missing mosaic. We show which solvability classes are possible for core problems

with d = 2 and d > 2, resulting in full solvability classification of core problems

with respect to the number of their right-hand sides. Then we concentrate on the

so-called composed (or reducible) core problems introduced in [2]. Such problems

can be equivalently represented by a composition of several (in some sense block

independent) core problems of smaller dimensions. Assuming the solvability classes

of the components are known, we analyze feasible solvability classes of the resulting

composed problem. We also show on an example that the TLS solvability of a core

problem may be in some sense improved by its composition with a suitably chosen

component. For completeness, examples of irreducible problems in various solvability

classes are presented.

The text is organized as follows. Section 2 recapitulates the TLS classification, the

previous TLS solvability results for core problems, and the core problem composition.

Section 3 gives the full solvability classification of core problems with respect to the

number of their right-hand sides. Section 4 analyzes solvability classes in the course

of core problems composing. Section 5 comments on the irreducible core problems,

and Section 6 concludes the paper.

2. Recapitulation of known results

2.1. Classification of TLS problems. First of all we briefly recall the above-

mentioned full classification of problems with respect to their TLS solvability devel-

oped in [3]. It employs the singular value decompositions (SVD) of the data matrix

[B,A] ∈ R
m×(n+d) (we assume m > n + d for simplicity; in the other case one can

add zero rows to the data matrix, which is equivalent to adding (n + d) − m zero

singular values). Let

(2.1) [B,A] = UΣV T, where Σ =

[
diag(σ1, . . . , σn+d)

0

]
∈ R

m×(n+d),
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let q (0 6 q 6 n) and e (1 6 e 6 d) be the left- and right-multiplicity of σn+1, e.g.,

(2.2) σn−q > σn−q+1 = . . . = σn+1 = . . . = σn+e︸ ︷︷ ︸
(q + e)-tuple singular value

> σn+e+1

in the typical case (if q = n or e = d, then σn−q or σn+e+1 do not exist, respectively).

The classification is then based on ranks of individual blocks of V ,

(2.3) V =

[
V1

V2

]} d
}n =

[
V11 V12 V13

V21 V22 V23

]} d
}n

︸︷︷︸
n−q

︸︷︷︸
q+e

︸︷︷︸
d−e

(if q = n or e = d, then [V T
11, V

T
21]

T or [V T
13, V

T
23]

T have no columns, respectively).

Then (1.1) with the minimization (1.4) belongs to the class:

F if rank([V12, V13]) = d (so-called generic problem), in particular to its sub-class:

F1 if rank(V12) = e,

F2 if rank(V12) > e and rank(V13) = d− e, or

F3 if rank(V13) < d− e (i.e., F = F1 ∪ F2 ∪ F3); or

S if rank([V12, V13]) < d (so-called non-generic problem).

The problem has a TLS solution if and only if it belongs to F1 ∪F2, as shown in [3].

Thus problems in F3∪S (i.e., even the generic problems in F3) have no TLS solution.

This classification has been recently extended to TLS formulations with an arbitrary

unitarily invariant norm in (1.4), see [11].

Note that the so-called classical TLS algorithm (see [10], [3]) returns the TLS

solution only for problems from F1, moreover it always returns the solution minimal

in both the Frobenius and spectral norms. For problems from F2, the algorithm

requires a small modification (see [6]), but it is not able to return the minimal norm

solution in general.

2.2. Solvability of core problems. The key result proved in [8] for d = 1 is the

following: The core problem with single right-hand side has always the unique TLS

solution XTLS
11 . Moreover, its back-transformation X = Q

[
(XTLS

11 )T, 0
]T

RT (since

d = 1, R becomes equal to 1 or −1) is the (unique or minimum norm) TLS solution

of the original problem (if it is TLS solvable), or the so-called (unique or minimum

norm) nongeneric solution (otherwise).

In the context of solvability classification, it was shown in [3] that a problem

AX ≈ B with a single right-hand side belongs either to F1 or S, and the core
problem A11X11 ≈ B1 with a single right-hand side belongs always to F1. (Recall
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that all problems in F1 are TLS solvable, whereas in S they are not.) Note that
in [2] it was also shown that any core problem (i.e., with d = 1 as well as d > 1)

in F1 has a unique TLS solution.

Since the solution of the original problem and the core problem within are closely

linked, authors of [8] say that for d = 1 the core problem contains only the neces-

sary and all the sufficient information for solving the original problem in the TLS

sense. Therefore, the transition from the original general problem (GP) to the core

problem (CP) is called the core problem reduction. To simplify the exposition, we

schematically describe this by the diagram:

(2.4) (GP, 1,F1 or S)
core problem

reduction
// (CP, 1,F1),

where the first component of each triplet identifies whether we deal with general or

core problem, the second component specifies the number of its right-hand sides d,

and the last component denotes its solvability class. In the general case d > 1, such

scheme takes the form:

(2.5) (GP, d, any class)
core problem

reduction
// (CP, d, unknown class), d > d > 1,

since nothing is known about the resulting class of the core problem.

2.3. Composing of core problems. In [2], it was shown that we can compose

the core problems as follows. If A
(l)
11X

(l)
11 ≈ B

(l)
1 , l = α, β, represent two core problems

(i.e., each satisfies (CP1)–(CP3)), then the problem

(2.6) A11X11 ≡
(
PT

[
A

(α)
11 0

0 A
(β)
11

]
Q

)
X11 ≈

(
PT

[
B

(α)
1 0

0 B
(β)
1

]
R

)
≡ B11,

where P , Q, R are orthogonal matrices, also satisfies (CP1)–(CP3) and therefore

represents a core problem. We call such a core problem composed or reducible.

Schematically, we describe the composition by the sign “⊞” with the particular

summands indexed by small Greek letters from the beginning of the alphabet.

The relationship between X
(α)
11 , X

(β)
11 , and X11 is not clear, except for some special

cases. In particular, it was shown by examples in [2] that there exist two components

such that

(2.7) (CP, 1,F1)α ⊞ (CP, 1,F1)β = (CP, 2,F1) or (CP, 2,F2) or (CP, 2,S).

Further, there exist three components such that

(2.8) (CP, 1,F1)α ⊞ (CP, 1,F1)β ⊞ (CP, 1,F1)γ = (CP, 3,F3).
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Thus the core problem with d > 1 can belong to any of the four solvability classes.

Note that not every core problem with d > 1 can be written as a composition of single

right hand-side core problems. In [2], an example of irreducible F2 core problem was

presented.

Even though we have excluded compatible problems (i.e., with R(B) ⊆ R(A)) and

“fully incompatible” problems (i.e., with R(B) ⊆ N (AT), or equivalently R(B) ⊥
R(A) or ATB = 0), a component of a core problem can still have such properties. If

we try to find the core problem within a fully incompatible problem, we see that B1

is square invertible, and formally A11 has no columns, i.e., the data matrix takes the

form [B1, A11] = B1. Such degenerated core problem can play a role of a component

(which cannot be approximated and only increases the residual) in a composed prob-

lem. The degenerated component is always of F1. For illustration, we give examples

of the proper incompatible, compatible, and degenerated core problems (or their com-

ponents) A11X11 ≈ B1, A11 ∈ R
m×n, B1 ∈ R

m×d, with d = 1. Their so-called SVD

forms always look like

[B1, A11] =




b1 ς1

b2 ς2
...

. . .

bn ςn

bn+1 0 0 . . . 0



,




b1 ς1

b2 ς2
...

. . .

bn ςn


 , and [ b1 ] ,

respectively, where bj 6= 0 and ςj > ςj+1 > 0. Clearly m = n + 1, n, and 1 in these

three respective cases, and n = 0 in the last one.

3. Solvability classes of core problems with respect to the number

of their right-hand sides

The single right-hand side core problem always belongs to the class F1, see [8].

Examples of F2, and S core problems are in (2.7) built up from two single right-hand
components, whereas F3 core problem in (2.8) is built up from three, see [2]. This

motivates a question whether the number of right-hand sides d restricts the available

classes of core problems not only for d = 1 but also for d > 1. We analyze this below.

3.1. Core problems with two right-hand sides. The following theorem gives

all possible classes for d = 2.

Theorem 3.1. Let A11X11 ≈ B1, B1 ∈ R
m×d, be a core problem with d = 2 right-

hand sides. Then the core problem belongs to the class F1, F2, or S. Equivalently,
the core problem with d = 2 cannot belong to the class F3.
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P r o o f. Recalling that there exist composed core problems with d = 2 in F1,

F2, and S (see (2.7)), we only need to exclude F3.

Assume by contradiction that there exists a core problem with d = 2 in F3. The

classification is based on the ranks of blocks of V (see (2.3)), and the class F3 is

characterized by rank([V12, V13]) = d and rank(V13) < d− e, where e (1 6 e 6 d) is

the right-multiplicity of the singular value σn+1. Since d = 2, we have e ∈ {1, 2}.
The inequality rank(V13) < d− e = 2− e then implies that

(3.1) e = 1, rank(V13) = 0, and V13 ∈ R
2×1.

Because the number of columns of V13 is equal to the sum of multiplicities of singular

values strictly smaller than σn+1, we see that there is only one simple (possibly zero)

singular value with this property, i.e., σn+1 > σn+2 > 0. Here we need to use another

property of core problems that has not been mentioned yet:

(CP5) Let [B1, A11] have χ distinct nonzero singular values with multiplicities ̺j
and ̺χ+1 ≡ dim(N ([B1, A11])), and let V

′
j be matrices having orthonormal

bases of left singular vector subspaces of [B1, A11] as their columns.

The leading d × ̺j submatrix of V
′
j is of full column rank ̺j for j =

1, . . . , χ, χ+ 1; see [5] and [2].

We see that [V T
13, V

T
23]

T is one of the matrices V ′
j , and V13 is one of the d× ̺j blocks.

Therefore, V13 has linearly independent columns, i.e., is of rank one which is in

contradiction with (3.1). �

Note that in the case of composed core problem (i.e., having two single right-hand

side components), this theorem directly implies that, schematically:

∀(CP, 1,F1)α, ∀(CP, 1,F1)β ,

(CP, 1,F1)α ⊞ (CP, 1,F1)β = (CP, 2,F1), (CP, 2,F2), or (CP, 2,S),

or equivalently

(CP, 1,F1)α ⊞ (CP, 1,F1)β 6= (CP, 2,F3).

3.2. Core problems with three and more right-hand sides. First we prove

a theorem stating that it is always possible to compose a general core problem with

a single right-hand side component without changing the solvability class.

Theorem 3.2. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 , A

(α)
11 ∈ R

mα×nα , B
(α)
1 ∈ R

mα×dα be a core

problem (that will serve as a component) and let it be in the class C ∈ {F1,F2,F3,S}.
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Then there exists a single right-hand side component A
(β)
11 X

(β)
11 ≈ B

(β)
1 , A

(β)
11 ∈

R
mβ×nβ , B

(β)
1 ∈ R

mβ×1 such that the composed core problem

A11X11 ≡
(
PT

[
A

(α)
11 0

0 A
(β)
11

]
Q

)
X11 ≈

(
PT

[
B

(α)
1 0

0 B
(β)
1

]
R

)
≡ B11,

is also in the class C.
Schematically: ∀(CP, dα, C)α, ∃(CP, 1,F1)β such that

(CP, dα, C)α ⊞ (CP, 1,F1)β = (CP, dα + 1, C),

where C ∈ {F1,F2,F3,S}.
P r o o f. Let σ

(α)
i , i = 1, . . . nα + dα, be the singular values of the α-component

[B
(α)
1 , A

(α)
11 ]. Denote ql, el the left- and right-multiplicity of the singular value of inter-

est, i.e., σ
(α)
nl+1. Construct a core problem representing the β-component [B

(β)
1 , A

(β)
11 ]

arbitrarily with the only restriction that

σ
(β)
nβ+1 = σ

(α)
nα+1.

Since dβ = 1, the singular values of the β-component are simple and thus the left-

and right-multiplicity of σ
(β)
nβ+1 is qβ = 0, eβ = 1. Then in the partitioning of the

V (l) matrix from the SVDs of the extended matrices, we get

V
(α)
1 = [V

(α)
11︸ ︷︷ ︸

nα − qα

, V
(α)
12︸ ︷︷ ︸

qα + eα

, V
(α)
13 ]︸ ︷︷ ︸

dα − eα

}
dα, V

(β)
1 = [V

(β)
11︸ ︷︷ ︸
nβ

, V
(β)
12 ]︸ ︷︷ ︸
1

}
1,

here V
(β)
13 does not exist (it has zero columns). Moreover, V

(β)
12 = v

(β)
1,nβ+1 6= 0. Then,

similarly to (3.3),

[V11, V12, V13 ] = RT

[
V

(α)
1 0

0 V
(β)
1

]
Ψ,

= RT

[
V

(α)
11 0 V

(α)
12 0 V

(α)
13

0 V
(β)
11 0 V

(β)
12 0

]

Ψ11

I

I


 .

Clearly,

rank(V12) = rank

(
RT

[
V

(α)
12 0

0 v
(β)
1,nβ+1

])
= rank(V

(α)
12 ) + 1,

rank(V13) = rank

(
RT

[
V

(α)
13

0

])
= rank(V

(α)
13 ),

and rank([V12, V13]) = rank([V
(α)
12 , V

(α)
13 ]) + 1,
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where V12 ∈ R
d×(q+e), V13 ∈ R

d×(d−e), d ≡ dα+1, d−e = dα−eα so e ≡ eα+1, and

q+ e = qα + eα+1 so q ≡ qα. Thus the α-component [B
(α)
1 , A

(α)
11 ] and the composed

core problem [B1, A11] are of the same class. �

Consequently, applying the theorem to examples of core problems with d = 2

from [2], see (2.7), we find there exist core problems with d = 3 in F1, F2 and S.
Recalling the example (2.8), we see that for d = 3 there exist core problems in all

four solvability classes. For d > 3, we can proceed analogously giving full solvability

classification summarized in Table 1. Note that for any given d > 1 and any feasible

class, we can find a composed core problem having only single right-hand side com-

ponents. This result is interesting in view of the fact that any core problem with

d = 1 belongs to F1 (the set of problems having always the TLS solution).

d Classes

1 F1 — — —

2 F1 F2 — S
3 and more F1 F2 F3 S

Table 1. Core problem with d right-hand sides belongs to one of the following classes.

3.3. Note on composing identical components. In general, it is not known

what is the relation between the class of a composed problem and the classes of its

components. Now we show that when a core problem is composed with itself, the

solvability class cannot change. The theorem gives another way how to construct

composed core problems in selected classes.

Theorem 3.3. Let A11X11 ≈ B1 be a core problem. If it is composed of two

(or more) identical components A
(α)
11 X

(α)
11 ≈ B

(α)
1 , then the core problem and its

component belong to the same class.

Schematically:

∀(CP, dα, C)α, (CP, dα, C)α ⊞ (CP, dα, C)α = (CP, 2dα, C),

and thus also
k

⊞
i=1

(CP, dα, C)α = (CP, kdα, C),

where C ∈ {F1,F2,F3,S}.
P r o o f. The statement holds trivially for compatible and degenerated compo-

nents. Therefore, we focus on the proper incompatible components. Recall that

[B1, A11] = PT



B

(α)
1 0 0 A

(α)
11 0 0

0
. . . 0 0

. . . 0

0 0 B
(α)
1 0 0 A

(α)
11



[
R 0

0 Q

]
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= PT [ Ik ⊗B
(α)
1 Ik ⊗A

(α)
11 ]

[
R 0

0 Q

]
,

where “⊗” denotes the Kronecker product; A(α)
11 ∈ R

mα×nα , B
(α)
11 ∈ R

mα×dα , n ≡
knα, m ≡ kmα, and d ≡ kdα. Consider the full SVD [B

(α)
1 , A

(α)
11 ] = U (α)Σ(α)(V (α))T

with square U (α) and V (α), with partitionings

(3.2) V (α) =

[
V

(α)
1

V
(α)
2

]} dα
}nα

, and V
(α)
1 = [V

(α)
11 , V

(α)
12 , V

(α)
13 ]

as in (2.3). This immediately gives the SVD of the composed problem in the form

[B1, A11] = (PT(Ik ⊗ U (α))Π)︸ ︷︷ ︸
U

(ΠT(Ik ⊗ Σ(α))Ψ)︸ ︷︷ ︸
Σ

([
R 0

0 Q

]T [
Ik ⊗ V

(α)
1

Ik ⊗ V
(α)
2

]
Ψ

)

︸ ︷︷ ︸
V

T

,

where Π and Ψ are permutation matrices sorting the singular values in the nonin-

creasing order on the diagonal of Σ. Since the permutations realize the commutation

of the Kronecker product

ΠT(Ik ⊗ Σ(α))Ψ = Σ(α) ⊗ Ik,

where Σ is square, we have simply Π = Ψ, see [9]. Note that multiplicities of all

singular values are in the composed problem k-times larger than in its component.

Let us focus on V and denote v
(α)
:,j the jth column of V

(α)
1 . Then we get

(3.3) V1 = [V11, V12, V13 ] = RT(Ik ⊗ V
(α)
1 )Ψ

= RT [ Ik ⊗ v
(α)
:,1 , Ik ⊗ v

(α)
:,2 , . . . , Ik ⊗ v

(α)
:,nα+dα

] .

Clearly, the dimensions of Vij in (3.3) are k-times larger than the dimensions of V
(α)
ij

in (3.2). From the structure of the last matrix, and since R is orthogonal, we see

that

rank(Vij) = rank(RVij) = k · rank(V (α)
ij ),

i.e., also the ranks of Vij are k-times larger than the ranks of V
(α)
ij .

Since the solvability classification is based on multiplicities of singular values, ranks

and sizes of the blocks (in particular on the relations between these quantities), and

all these quantities are in the composed problem just k-times larger, the component

and the composed problem must belong to the same class. �

Theorems 3.2 and 3.3 formulate basic relations between solvability classes in the

course of core problems composing in two special cases. Further results are given in

the next section.
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4. Solvability classes in the course of core problems composing

In all cases discussed previously (see Theorems 3.2 and 3.3, and examples (2.7)),

a composition of core problems leads to a composed problem with the same or worse

TLS solvability on the scale

F1 (the best)—F2—F3—S (the worst).

Recall that F1 problems always have a TLS solution (that can be computed by

the classical TLS algorithm), and core problems have a unique TLS solution; F2

problems also have a TLS solution (that cannot be simply computed by the classical

TLS algorithm); F3 problems are still generic, but they have no TLS solution; and S
problems are nongeneric and have no TLS solution. Such scale naturally corresponds

to “removing the linear independence” from the upper right corner of V (see (2.3)

and the classification below) and motivates the question whether the composition

always worsens the TLS solvability. First we build up an illustrative example, then

some general statements follow.

4.1. Does the composition always worsen the TLS solvability? The fol-

lowing example illustrates that composition of core problems can counter-intuitively

improve the TLS solvability class. First, we give a particular example of an F1

single right-hand side core problem. Then we start to compose it to obtain more

complicated problems.

E x am p l e 4.1. Consider the approximation problem

(4.1)

[
als

blc

]
x ≈

[
alc

−bls

]
, where al > bl > 0,

s = sin(ϕ), c = cos(ϕ), ϕ 6= 1
2πk, k ∈ Z.

Then

[B
(l)
1 , A

(l)
11 ] ≡

[
alc als

−bls blc

]
= I2

[
al 0

0 bl

] [
c −s

s c

]T

is in principle the SVD of the extended matrix. Since ml = 2, nl = 1, dl = 1, so

σ
(l)
nl+1 = bl is simple, so ql = 0, el = 1, and V

(l)
1 = [c, s], V12 = [s], and V13 has no

columns. Consequently (4.1) is of class F1 and has a unique TLS solution.

To show that (4.1) is a core problem, we need to verify that it satisfies (CP1)–

(CP3). Clearly A
(l)
11 as well as B

(l)
1 are of full column rank, i.e., (CP1) and (CP2)

hold. Employing the SVD

A
(l)
11 =

(
1√

(als)2 + (blc)2

[
als −blc

blc als

])[√
(als)2 + (blc)2

0

]
[ 1 ]T,
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it is easy to see that both

(U ′
1)

TB
(l)
1 =

(
1√

(als)2 + (blc)2

[
als

blc

])
B

(l)
1 =

(a2l − b2l )cs√
(als)2 + (blc)2

,

(U ′
2)

TB
(l)
1 =

(
1√

(als)2 + (blc)2

[−blc

als

])
B

(l)
1 =

−2albl√
(als)2 + (blc)2

are (one-by-one) full row rank matrices, i.e., (CP3) is satisfied. Consequently (4.1)

is a core problem of the class F1.

Now we take two particular choices of the parameters al, bl in the example above,

such that the composition of (4.1) with a single right-hand side degenerated compo-

nent results in a core problem in S and F1, respectively.

E x am p l e 4.2. Consider the core problem (4.1) with l = α, aα = 3 and bα = 2.

Consider the core problem (4.1) with l = β, aβ = 5, bβ = 1. Compositions of

these problems with the same degenerated component [B
(γ)
1 , A

(γ)
11 ] = [B

(γ)
1 ] = [4]

(belonging also to F1), gives composed core problems with the following SVDs




3c 0 3s

−2s 0 2c

0 4 0



 =




0 1 0

0 0 1

1 0 0








4 0 0

0 3 0

0 0 2








0 c −s

1 0 0

0 s c




T

,(4.2)




5c 0 5s

−1s 0 1c

0 4 0



 =




1 0 0

0 0 1

0 1 0








5 0 0

0 4 0

0 0 1








c 0 −s

0 1 0

s 0 c




T

,(4.3)

respectively. The partitioning (2.3) of the matrices V is suggested by the lines. Then

(4.2) is of class S, while (4.3) remains in the class F1.

Thus we have two proper incompatible core problems (both with d = 2) which we

now compose together.

E x am p l e 4.3. Consider the core problems (4.2) and (4.3). Their composition

results in a composed core problem with the following extended matrix and its SVD:

[B1, A11] =




B
(α)
1 0 A

(α)
11

0 B
(γ)
1 0

B
(β)
1 0 A

(β)
11

0 B
(γ)
1 0


 =




3c 0 3s

−2s 0 2c

0 4 0

5c 0 5s

−1s 0 1c

0 4 0
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=




0 1 0

0 0 1

1 0 0

1 0 0

0 0 1

0 1 0







5 0 0

0 4 0

4 0 0

0 3 0

0 0 2

0 0 1







0 c −s

1 0 0

c 0 −s

0 1 0

0 s c

s 0 c




T

.

The partitioning (2.3) of V is again suggested by the lines. Clearly, we got a core

problem with d = 4 that is of the class F3.

If we denote problems (4.2) and (4.3) as δ- and ε-component, respectively, the

composition above can be schematically expressed as follows:

((CP, 1,F1)α ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 2,S)δ

⊞ ((CP, 1,F1)β ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 2,F1)ε

= (CP, 4,F3).

Now we look at the whole process the other way. Having in hand a problem of

the class S (i.e., nongeneric one), its composition with a suitable F1 problem may

result in a problem in F3 (i.e., it becomes generic). This can be seen as a form of

correction, or improvement of the δ-component in terms of TLS solvability classes.

Such improvement can be done in general, which will be investigated in the next

section.

R em a r k 4.4. Since the core problems composition is associative and commu-

tative (up to a permutation of components), the problem from Example 4.3 can also

be expressed as follows (classes of the intermediate problems or components can be

seen directly by crossing out suitable rows and columns of the SVD in Example 4.3):

(CP, 4,F3) = ((CP, 1,F1)α ⊞ (CP, 1,F1)β)︸ ︷︷ ︸
(CP, 2,F1)α⊞β

⊞ ((CP, 1,F1)γ ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 2,F1)γ⊞γ

= ((CP, 1,F1)α ⊞ (CP, 1,F1)β ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 3,S)α⊞β⊞γ

⊞(CP, 1,F1)γ

= ((CP, 1,F1)α ⊞ (CP, 1,F1)γ ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 3,F3)α⊞γ⊞γ

⊞(CP, 1,F1)β

= ((CP, 1,F1)β ⊞ (CP, 1,F1)γ ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 3,F1)β⊞γ⊞γ

⊞(CP, 1,F1)α.

The first and the last row show that a composition of two F1 (in the first row one

proper incompatible and one degenerated; in the last row two proper incompatible)
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components may result in an F3 problem. Recall that for two single right-hand side

(i.e., F1) components, such composition is not possible (see Theorem 3.1 and the

comment below), and therefore it was not observed in [2].

4.2. Improvement of nongeneric problems. The following theorem shows

that it is always possible to move a nongeneric (i.e., class S) core problem to the
class of generic problems by composing it with another problem representing a sort

of correction of the measured data, see Example 4.3.

Theorem 4.5. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 , A

(α)
11 ∈ R

mα×nα , B
(α)
1 ∈ R

mα×dα be a core

problem (that will serve as a component) and let it be in the class S. Then there
exists a component A

(β)
11 X

(β)
11 ≈ B

(β)
1 , A

(β)
11 ∈ R

mβ×nβ , B
(β)
1 ∈ R

mβ×dβ such that the

composed core problem

A11X11 ≡
(
PT

[
A

(α)
11 0

0 A
(β)
11

]
Q

)
X11 ≈

(
PT

[
B

(α)
1 0

0 B
(β)
1

]
R

)
≡ B11,

is in the class F = F1 ∪ F2 ∪ F3.

Schematically: ∀(CP, dα,S)α, ∃(CP, dβ , C)β so that

(CP, dα,S)α ⊞ (CP, dβ , C)β = (CP, dα + dβ ,F),

where C ∈ {F1,F2,F3,S} and F = F1 ∪ F2 ∪ F3.

P r o o f. Let [B
(α)
1 , A

(α)
11 ] = U (α)Σ(α)(V (α))T be the SVD with the partition-

ing (2.3) of V (α). Further, let

σ
(α)
1 > σ

(α)
2 > . . . > σ

(α)
nα−qα

,

be the singular values of V
(α)
11 . Let k be the number of distinct singular values

of V
(α)
11 with the multiplicities ̺j , j = 1, . . . , k; i.e.,

k∑
j=1

̺j = nα − qα. Consider also

a partitioning of V
(α)
11 with respect to these multiplicities,

V
(α)
11 = [V

(α)
11,1, V

(α)
11,2, . . . , V

(α)
11,k ] ∈ R

dα×(nα−qα), with V
(α)
11,j ∈ R

dα×̺j

being of full column ranks. Since the α-component is nongeneric, i.e., of class S,
[V

(α)
12 , V

(α)
13 ] has linearly dependent rows. Let t be defined so that

(4.4) rank ([V
(α)
11,t , V

(α)
11,t+1, . . . , V

(α)
11,k, V

(α)
12 , V

(α)
13 ]) = dα, and

rank ([V
(α)
11,t+1, . . . , V

(α)
11,k, V

(α)
12 , V

(α)
13 ]) < dα.
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Now we construct a suitable β-component. Consider an arbitrary β-component

such that it belongs to F1 (thus [V
(β)
12 , V

(β)
13 ] ∈ R

dβ×dβ is square invertible and

qβ = 0) and

σ
(β)
nβ+1 ≡ σ

(α)
̺1+...+̺t−1+1 = . . . = σ

(α)
̺1+...+̺t−1+̺t

,

i.e., the eβ-tuple singular value of the β-component corresponding to V
(β)
12 is equal

to the ̺t-tuple singular value of the α-component corresponding to V
(α)
11,t . Then the

block V1 ∈ R
d×(n+d) with d = dα + dβ , n = nα +nβ , from the SVD of the composed

problem takes the form

V1 = [V11, V12, V13] =

[
[V

(α)
11,1, . . . , V

(α)
11,t−1] 0

0 V
(β)
11

V
(α)
11,t 0

0 V
(β)
12︸ ︷︷ ︸

̺t + eβ

[V
(α)
11,t+1, . . . , V

(α)
11,k], V

(α)
12 , V

(α)
13 0

0 V
(β)
13

]

︸ ︷︷ ︸
(̺t+1 + . . .+ ̺k) + (dα + qα) + (dβ − eβ)




Ψ11

I

Ψ13



 .

To align the blocks suggested by the vertical lines with the partitioning [V11, V12, V13],

the (n+1)st (i.e., the dth last) column of V1 has to be in

[
V

(α)
11,t 0

0 V
(β)
12

]
. Equivalently

d = dα + dβ > (̺t+1 + . . .+ ̺k) + (dα + qα) + (dβ − eβ), i.e.,

eβ > (̺t+1 + . . .+ ̺k) + qα.

Recall that also eβ 6 dβ , see (2.2)–(2.3). Thus, put

eβ ≡ (̺t+1 + . . .+ ̺k) + qα + 1, and

dβ ≡ (̺t+1 + . . .+ ̺k) + qα + 1 +∆, ∆ > 0.

Then V
(β)
13 ∈ R

dβ×∆ and V13 ∈ R
(dα+dβ)×((̺t+1+...+̺k)+(dα+qα)+(dβ−eβ)) ≡ R

d×(d−1).

We see that blocks are aligned and the (n + 1)st (dth last) column of V1 is exactly

the last column of V12. Since (4.4) is of full row rank dα and [V
(β)
12 , V

(β)
13 ] is square

invertible of rank dβ ,

[V12, V13] =

[
V

(α)
11,t 0 [V

(α)
11,t+1, . . . , V

(α)
11,k], V

(α)
12 , V

(α)
13 0

0 V
(β)
12 0 V

(β)
13

] [
I

Ψ13

]

is also of full row rank d = dα + dβ , and thus the composed problem is of class F .
It remains to show that there always exists a β-component satisfying all the re-

quested properties. We take the simplest one,

(4.5) [B
(β)
1 , A

(β)
11 ] = [B

(β)
1 ] ≡ σ

(α)
̺1+...+̺t−1+1I̺t+1+...+̺k+qα+1,
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i.e., nβ = 0 (it is a degenerated component),mβ = dβ = eβ = (̺t+1+. . .+̺k)+qα+1,

∆ = 0, and σ
(β)
nβ+1 ≡ σ

(β)
1 = σ

(α)
̺1+...+̺t−1+1 with the multiplicity eβ . The matrix V

(β)

from the SVD of [B
(β)
1 , A

(β)
11 ] contains only the block V

(β)
12 (the other blocks have no

rows or columns, see (2.3) and the classification below). Moreover, V (β) = V
(β)
12 =

I̺t+1+...+̺k+qα+1 is obviously square invertible. �

Note that we proved slightly stronger variant of Theorem 4.5. Instead of looking

for a general β-component, we restricted ourselves first only to the class F1, and

then only to the degenerated (class F1) components. However, such restriction was

used only for simplicity and it is not necessary (see in particular Example 4.3).

Recall further the definition of t in (4.4). Instead of t, we may use any ̺τ and

V
(α)
11,τ , 1 6 τ 6 t, in the roles of ̺t and V

(α)
11,t for the construction of a β-component

in the proof. In particular, we may simply use a degenerated β-component in the

form1 [B
(β)
1 , A

(β)
11 ] = [B

(β)
1 ] ≡ σ

(α)
1 Inα+1 instead of (4.5). Our choice in (4.5) is in

some sense the minimal one (since t is maximal among all τ ’s, ∆ = 0 is minimal

among all ∆’s, and both minimize the dimensions of the β-component).

Moreover, the resulting composed problem has in its SVD the block V13 that

contains

[
V

(α)
12 V

(α)
13

0 0

]
as a submatrix. Since [V

(α)
12 , V

(α)
13 ] ∈ R

dα×(dα+qα), qα > 0, has

linearly dependent rows and the number of its columns is larger than or equal to the

number of columns, it has also linearly dependent columns. Thus also

[
V

(α)
12 V

(α)
13

0 0

]

and in particular V13 have linearly dependent columns. Consequently, the problem

composed in the proof above does not belong to the classes F1 and F2. We actually

proved that, schematically:

∀(CP, dα,S)α, ∃ (CP, dβ ,F1)β so that

(CP, dα,S)α ⊞ (CP, dβ ,F1)β = (CP, dα + dβ ,F3),

where the β-component is degenerated. This motivates a general result as follows.

Let us return back to the original, less restricted case: If we compose the α-

component of the class S with an arbitrary β-component so that the resulting com-
posed problem is in F , then (see in particular (4.4))

[
V

(α)
11,t

0

]
and

[
V

(α)
12 V

(α)
13

0 0

]
have

to be submatrices of [V12, V13]. Since the singular value corresponding to V
(α)
11,t is

strictly larger than the singular value corresponding to V
(α)
12 ,

[
V

(α)
12 V

(α)
13

0 0

]
is a sub-

matrix of V13. Consequently (as discussed above), if the composition results in an

1Note that the so-called TLS algorithm when applied to the composed problem with this
choice of a β-component returns a zero output.
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F problem, it always belongs to F3. The classes F1 and F2 are not available. We

formulate this observation as a corollary.

Corollary 4.6. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 be a core problem in the class S, and let

A
(β)
11 X

(β)
11 ≈ B

(β)
1 be an arbitrary core problem. Their composition cannot result in

a problem in the class F1 or F2.

Schematically: ∀(CP, dα,S)α, ∀(CP, dβ , C)β,

(CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα + dβ ,F1), (CP, dα + dβ ,F2),

where C ∈ {F1,F2,F3,S}.
In other words, we are able to move a class S (nongeneric) problem to the class F3

(generic, but without a TLS solution), but no better result is achievable by employing

the approach above. The TLS solvability of a nongeneric core problem cannot be

improved by its composition with another core problem.

4.3. Available and unavailable classes. Table 2 summarizes all the known

available compositions of two core problems in terms of classes, see (2.7), Theo-

rems 3.3, 3.2, Example 4.3, and Remark 4.4.

⊞ F1 F2 F3 S
F1 F1, F2, F3, or S ⋆ sym. sym. sym.

F2 F2 F2 sym. sym.

F3 F3 F3 sym.

S F3 or S ⋆ S ⋆

Table 2. List of known available compositions of two core problems (components) in terms
of classes. Stars (⋆) denote cases where all four possible results have been analyzed
(cf. Table 3). The table is symmetric.

On the contrary, at the end of the previous section we have found for the first

time a combination (of classes of components and a class of the resulting composed

problem) that is not achievable. Consequently, it is clear that all 40 combinations

are not available for core problem compositions. The following theorems discuss two

more such cases. First we prove the assertion of Corollary 4.6 also for F3 problems.

Then we show that a combination of two S class core problems results in a composed
problem belonging again to S.

Theorem 4.7. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 be a core problem in the class F3, and let

A
(β)
11 X

(β)
11 ≈ B

(β)
1 be an arbitrary core problem. Their composition cannot result in

a problem in the class F1 or F2.
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Schematically: ∀(CP, dα,F3)α, ∀(CP, dβ , C)β ,

(CP, dα,F3)α ⊞ (CP, dβ , C)β 6= (CP, dα + dβ ,F1), (CP, dα + dβ ,F2),

where C ∈ {F1,F2,F3,S}.
P r o o f. First of all note that the assertion is trivially true for F3 problems which

are composed, and contain an S component (use Corollary 4.6 and the associativity
of core problem composing). Now consider a general F3 problem as the α-component

with partitioning of the matrix of right singular vectors as usual. Then the blocks

of V
(α)
1 =

[
V

(α)
11 , V

(α)
12 , V

(α)
13

]
∈ R

dα×(nα+dα) satisfy:

[V
(α)
12 , V

(α)
13 ] ∈ R

dα×(dα+qα) is of full row rank dα, and

V
(α)
13 ∈ R

dα×(dα−eα) has linearly dependent columns (and rows, eα > 1).

Recall that V
(α)
12 corresponds to the singular value σ

(α)
nα+1 with multiplicity qα + eα.

Consider also the SVDs of the β-component and of the composed core problem, in

particular the matrices V
(β)
1 ∈ R

dβ×(nβ+dβ) and V1 = [V11, V12, V13] ∈ R
d×(n+d).

Clearly,

V1 =

[
V

(α)
1 0

0 V
(β)
1

]
Ψ =

[
V

(α)
11 V

(α)
12 V

(α)
13 0

0 0 0 V
(β)
1

]
Ψ,

where the permutation matrix Ψ sorts the singular values originated in both com-

ponents into nonincreasing order. Thus Ψ does not change the ordering of columns

of V1 originated in one particular component, it only interlaces them with the columns

originated in the other component.

Assume that the composed problem is in the class F . Then [V12, V13] is of full

row rank. Since the α-component is of F3 and V
(α)
13 has linearly dependent rows,[

V
(α)
12 V

(α)
13

0 0

]
is a submatrix of [V12, V13]. Thus σn+1 (the singular value correspond-

ing to the V12 block of the composed problem) satisfies σn+1 > σnα+1. Since V
(α)
13

corresponds to singular values strictly smaller than σn+1,

[
V

(α)
13

0

]
is a submatrix of

V13. Since V
(α)
13 has linearly dependent columns, V13 has linearly dependent columns

as well. Consequently, the composed problem cannot belong to F1 or F2. �

Theorem 4.5, Corollary 4.6, and Theorem 4.7 together are of particular impor-

tance. They show that while class S problems can be moved to F3 (but no better

improvement is possible), F3 problems cannot be improved further. Consequently,

the set of F3 and S core problems is in some sense closed with respect to compositions
with core problems from other classes. This indicates that the distinction between

F3 and S problems is rather artificial, as it originated in the generic—nongeneric
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classification introduced in [10]. Recall that in both F3 and S, the TLS solution
does not exist. Now we show that the class S is closed in a slightly weaker sense.

Theorem 4.8. Composition of two (or more) class S core problems always results
in a class S problem.

Schematically: ∀(CP, dα,S)α, ∀(CP, dβ ,S)β ,

(CP, dα,S)α ⊞ (CP, dβ ,S)β = (CP, dα + dβ ,S),

or equivalently

(CP, dα,S)α ⊞ (CP, dβ ,S)β 6= (CP, dα + dβ ,F), F = F1 ∪ F2 ∪ F3.

P r o o f. Let A
(l)
11X

(l)
11 ≈ B

(l)
1 , A

(l)
11 ∈ R

ml×nl , B
(l)
1 ∈ R

ml×dl for l = α, β be two

core problems in the class S. Consider their SVDs [B(l)
1 , A

(l)
11 ] = U (l)Σ(l)(V (l))T, with

the partitionings

V (l) =

[
V

(l)
1

V
(l)
2

]
=

[
V

(l)
11 V

(l)
12 V

(l)
13

V
(l)
21 V

(l)
22 V

(l)
23

] } dl
}nl

rank ([V
(l)
12 , V

(l)
13 ]) < dl.

We are interested in the singular values σ
(l)
nl+1, l = α, β. There are two cases: Either

σ
(α)
nα+1 = σ

(β)
nβ+1, or σ

(α)
nα+1 > σ

(β)
nβ+1 (the third case σ

(α)
nα+1 < σ

(β)
nβ+1 is essentially the

same as the second, only with the exchanged roles of α- and β-components).

Case 1. Let σ
(α)
nα+1 = σ

(β)
nβ+1. Then the SVD of

[B1, A11] = PT

[
B

(α)
1 0 A

(α)
11 0

0 B
(β)
1 0 A

(β)
11

] [
R 0

0 Q

]

gives V with the structure

V1 = RT

[
V

(α)
11 0 V

(α)
12 0 V

(α)
13 0

0 V
(β)
11 0 V

(β)
12 0 V

(β)
13

]


Ψ11

I

Ψ13



 ∈ R
d×(n+d),

where n ≡ nα + nβ , d ≡ dα + dβ . It remains to verify whether the vertical lines

correspond to the partitioning of V1 = [V11, V12, V13] with respect to σn+1, i.e.,

whether σn+1 is the singular value σ
(α)
nα+1 = σ

(β)
nβ+1.

Since V
(l)
11 ∈ R

dl×(nl−ql), we have

[
V

(α)
11 0

0 V
(β)
11

]
∈ R

d×(n−qα−qβ). Because ql > 0,

we have n− qα − qβ < n+ 1, i.e., the (n+ 1)th column of V1 does not belong to the
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first block. Similarly, from V
(l)
13 ∈ R

dl×(dl−el) we get

[
V

(α)
13 0

0 V
(β)
13

]
∈ R

d×(d−eα−eβ).

Because el > 1, then d > d − eα − eβ , i.e., the (n + 1)th column (which is actually

also the dth last column of V1) does not belong to this last block.

Consequently, σn+1 = σ
(α)
nα+1 = σ

(β)
nβ+1 and it has multiplicity q + e, where q ≡

qα + qβ is its left-, and e ≡ eα + eβ is its right-multiplicity. Since both [V
(l)
12 , V

(l)
13 ]

for l = α, β, have linearly dependent rows, [V11, V12] has linearly dependent rows as

well, i.e., rank([V11, V12]) < d. Finally, the composed problem is of the class S.
Case 2. Let σ

(α)
nα+1 > σ

(β)
nβ+1. Then the SVD of the extended matrix gives V with

much more complicated structure of V1. Here the relations between σ
(β)
1 , . . . , σ

(β)
nβ

and σ
(α)
nα+1 have to be taken into account. In particular there may be singular values

strictly larger than, equal to, and smaller than σ
(α)
nα+1. To reflect this, we introduce

the formal partitioning

V
(β)
11 = [V

(β)
11A , V

(β)
11B , V

(β)
11C ] ∈ R

dβ×(nβ−qβ)

without specifying the dimensions of the individual blocks. Then

V1 = RT

[
V

(α)
11 0 V

(α)
12 0 V

(α)
13 0 0 0

0 V
(β)
11A 0 V

(β)
11B 0 V

(β)
11C V

(β)
12 V

(β)
13

]


Ψ11

I

Ψ13



 ,

but the partitioning suggested by the vertical lines may not correspond to the parti-

tioning of V1 = [V11, V12, V13] with respect to σn+1. However, the number of columns

of the first suggested block is less than, or equal to n − qα − qβ . Since ql > 0, we

have n− qα − qβ < n+1 and thus the (n+1)st column of V1 is either in the second,

or in the third of the suggested blocks. The matrix [V12, V13] is then in general a

submatrix of the matrix formed by the last two suggested blocks.

Since [V
(α)
12 , V

(α)
13 ] has linearly dependent rows, the matrix formed by the last two

suggested blocks has linearly dependent rows, i.e., it is of the rank strictly smaller

than d. Therefore, any of its submatrices is of rank strictly smaller than d, and in

particular rank([V11, V12]) < d. Thus the composed problem is of class S. �

Table 2 of known available compositions of core problems (in terms of classes)

can now be complemented by a list of known unavailable compositions in Table 3,

see Corrolary 4.6 and Theorem 4.8. Both tables together indicate combinations that

require further investigation.
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⊞ F1 F2 F3 S
F1 — ⋆ sym. sym. sym.

F2 sym. sym.

F3 F1 and F2 F1 and F2 F1 and F2 sym.

S F1 and F2
⋆ F1 and F2 F1 and F2 F1, F2, and F3

⋆

Table 3. List of known unavailable compositions of two core problems (components) in
terms of classes. Stars (⋆) denote cases where all four possible results have been
analyzed (cf. Table 2). The table is symmetric.

5. Existence of irreducible core problems in various classes

All particular examples of core problems discussed in the previous sections (e.g.,

when filling up Table 2) have been composed from single right-hand side components.

However, in [2] it was shown that there exists an irreducible (nondecomposable) core

problem with d = 2 in F2. For completeness, we show by examples that there exist

irreducible core problems with d = 2 also in F1 and S. Recall that an F3 problem

with d = 2 does not exist, see Table 1.

E x am p l e 5.1. Consider three problems A11X1 ≈ B1, A11 ∈ R
4×2, B1 ∈ R

4×2

given in forms of SVDs of their extended matrices:

[B1, A11] = I4




4 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1






1

3




−1 −3
√
3

√
3

3 −1
√
3 −

√
3√

3
√
3 1 3√

3 −
√
3 −3 1







T

,(5.1)

[B1, A11] = I4




3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1






1

3




−1 −3
√
3

√
3

3 −1
√
3 −

√
3√

3
√
3 1 3√

3 −
√
3 −3 1







T

,(5.2)

[B1, A11] = I4




4 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1






1

2




√
2

√
2 0 0

−1 1 −1 1

0 0
√
2

√
2

1 −1 −1 1







T

.(5.3)

The second problem has already been presented in [3] and [2], it is included for com-

pleteness. Note that the matrix of the left singular vectors may be chosen arbitrarily,

we use I4 for simplicity. The partitioning of the right-most matrices of the right sin-

gular vectors corresponds to (2.3). Clearly, the problems above belong to the class

F1, F2, and S, respectively.
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Now we show that they represent core problems. Since all three matrices [B1, A11]

are of full column rank, A11 and B1 are also of full column rank. Thus the problems

satisfy (CP1) and (CP2). Matrices A11 have simple singular values

ς1,2 =
1

2

√
25± 3

√
2, ς1,2 =

√

4± 3
√
5

8
, ς1,2 =

√

5±
√
2
√
59

4
,

respectively. It is easy to find their left and right singular vectors (e.g., by using

MATLAB with Symbolic Math Toolbox)2, and to verify that (CP3) is satisfied as

well. Consequently, all problems represent core problems with the SVD forms

(5.4)




b11 b12 ς1 0

b21 b22 0 ς2

b31 b32 0 0

b41 b42 0 0


 , ς1 > ς2 > 0,

where the only two free parameters (up to sign changes) are hidden in:

⊲ the transformation of the right-hand side B1 = B̃1G
T
R by some orthogonal matrix

GT
R = G−1

R ∈ R
2×2; and

⊲ the choice of the orthonormal basis (let it be stored in the columns of the ma-

trix U ′
3) of the two-dimensional N (AT

11), i.e., U
′
3 = Ũ ′

3G
T
L, G

T
L = G−1

L ∈ R
2×2.

Both of them involve the left bottom block of (5.4), in particular

(5.5)

[
b31 b32

b41 b42

]
= (U ′

3)
TB1 = GL((Ũ

′
3)

TB̃1)G
T
R.

It remains to show that the problems are irreducible. In general, if a core problem

is composed, its SVD form must be composable from SVD forms of its individual

components. Recalling that any single right-hand side component in the SVD form

has the right-hand side with all entries being nonzero (see [8]), the right-hand side of

a composed core problem in the SVD form (5.4) must be orthogonally transformable

to a chess-board-like pattern of zero and (strictly) nonzero blocks. Consequently,

if [B1, A11] is composed then there exist orthogonal matrices (elementary Givens

rotations) GL and GR transforming (5.5) to a chess-board structured (Ũ
′
3)

TB̃1. Since

(5.5) is of full row rank (see (CP3)), the only possibility is to (anti)diagonalize it.

But with diagonal (Ũ ′
3)

TB̃1, (5.5) in principle represents an SVD of

[
b31 b32

b41 b42

]

2 See for example the code included as supplementary material to [2]. MATLAB codes for
verification (by numerical and symbolic calculation) for all three problems are on request
freely available by the authors.
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Calculation of this SVD therefore fixes the free parameters represented by GL, GR.

Application of these matrices to the whole (5.4) then either reveals the chess-board

structure, if the problem is composed, or not, if it is irreducible. Now it is easy to

verify that neither of the three problem is composed.

There is no systematic method for the construction of irreducible core problems

with the given number of right-hand sides in the given class. However, the examples

above support the expectation that there exist irreducible core problems in all classes

for any d > 3.

6. Conclusions

In this paper, we have investigated solvability classes of core problems within linear

approximation problems with multiple observations. We have presented the full

solvability classification revealing that, in particular, the core problem with two right-

hand sides cannot be in the class F3. Then we have concentrated on the relations

between solvability classes while core problems composing. It has been shown that

any nongeneric (class S) problem can be moved to generic (class F3) by employing

a particular data correction represented by a composition with a single right-hand

side core problem. However, the TLS solution of the corrected problem still does

not exist. We have shown that the set of core problems without a TLS solution (i.e.,

F3∪S) is closed with respect to composing its elements with components from other
classes. Moreover, the set of core problems in the class S is closed with respect to
composing its elements together. Finally, we have presented examples of irreducible

core problems with two right-hand sides in all available classes.

The main results are summarized in Tables 1, 2, and 3. Results can be divided

into four types of assertions (C ∈ {F1,F2,F3,S}):

Existential (based on examples)

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,F1).

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,F2).

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,F3).

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,S).

Semi-general

∀(CP, dα, C)α, ∃(CP, 1,F1)β : (CP, dα, C)α ⊞ (CP, 1,F1)β = (CP, dα+1, C).
∀(CP, dα,S)α, ∃(CP, dβ ,F1)β : (CP, dα,S)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ ,F3).

General (positive)

∀(CP, dα, C)α: (CP, dα, C)α ⊞ (CP, dα, C)α = (CP, 2dα, C).
∀(CP, dα,S)α, ∀(CP, dβ ,S)β : (CP, dα,S)α ⊞ (CP, dβ ,S)β = (CP, dα+dβ,S).
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General (negative)

∀(CP, 1,F1)α, ∀(CP, 1,F1)β : (CP, 1,F1)α ⊞ (CP, 1,F1)β 6= (CP, 2,F3).

∀(CP, dα,F3)α, ∀(CP, dβ , C)β : (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F1).

∀(CP, dα,F3)α, ∀(CP, dβ , C)β : (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F2).

∀(CP, dα,S)α, ∀(CP, dβ , C)β: (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F1).

∀(CP, dα,S)α, ∀(CP, dβ , C)β: (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F2).

We see that the TLS solvability of a core problem is strongly influenced by compos-

ing, and till now, it is not clear how to detect the possible (ir)reducibility in general.

Therefore, understanding the properties of the composed problems is important for

the analysis and solution of TLS problems in general.
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