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Abstract. We present a short and self-contained proof of the extension property
for partial isometries of the class of all finite metric spaces.
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1. Introduction

A class of metric spaces C has the extension property for partial isometries if
for every A ∈ C there exists B ∈ C containing A as a subspace with the property
that every isometry of two subspaces of A extends to an isometry of B. (By
isometry we mean a bijective distance-preserving function.) In this note we give
a self-contained combinatorial proof of the following theorem:

Theorem 1.1 (S. Solecki [23], A.M. Vershik [25]). The class of all finite metric
spaces has the extension property for partial isometries.

This result is important from the point of view of combinatorics, model theory
as well as topological dynamics. It has several proofs, see [23], [18], [19], [21,
Theorem 8.3], which are based on deep group-theoretic results (the Hall theorem
in [4], the Herwig–Lascar theorem in [5], [17], [22], the Ribes–Zalesskĭı theorem
in [20] or Mackey’s construction in [14]). A.M. Vershik announced an elementary
proof in [25] which remains unpublished and differs from the approach presented
here (this information is gained from personal communication on July 28, 2018).

Our construction is elementary. We follow a general strategy analogous to the
corresponding results about the existence of Ramsey expansions of the class of
finite metric spaces developed in series of papers [16], [15], [11]. We proceed in
two steps.

First, given a metric space A, we find an edge-labelled graph B0 which extends
all partial isometries of A, but does not define all distances between vertices and
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may not have a completion to metric space (for example, it may contain nonmetric
triangles). This step is analogous to the easy combinatorial proof of Hrushovski’s
theorem by B. Herwig and D. Lascar, see [5].

In the second step we further expand and “sparsify” B0 in order to remove all
obstacles which prevent us from being able to define the missing distances and get
a metric space. Once all such obstacles are eliminated, we can complete the edge-
labelled graph to a metric space B by assigning every pair of vertices a distance
corresponding to the shortest path connecting them. This part is inspired by
a clique-faithful EPPA construction of I. Hodkinson and M. Otto in [7] (see also
Hodkinson’s exposition in [6]).

Similarly to the Ramsey constructions which were developed to work under
rather general structural conditions in [11], our technique generalises further to
classes described by forbidden homomorphisms as well as to the classes with
algebraic closures (in the sense of [3]) and antipodal metric spaces (as shown
in [2]). These strengthenings are going to appear elsewhere, see [10].

2. Notation and preliminaries

Given a set of labels L, an L-edge-labelled graph is an (undirected) graph where
every edge has a unique label l ∈ L. In our proof we use “partial” metric spaces
(where some distances are not known) and thus we will consider metric spaces as
a special case of R>0-edge-labelled graphs where R

>0 is the set of positive reals:
an R

>0-edge-labelled graph is then a metric space if it is complete (that is, every
pair of vertices is connected by an edge) and for every triple of distinct vertices
x, y, z the labels of edges {x, y}, {y, z} and {x, y} satisfy the triangle inequality.

While we need to work with edge-labelled graphs to represent intermediate
objects in our construction, we find it useful to adopt standard terminology of
metric spaces. If vertices x and y of an edge-labelled graph A form an edge with
label l, we will also say that the edge {x, y} has length l, or write dA(x, y) =
dA(y, x) = l and say that l is the distance between x and y.

We will use bold letters such as A,B,C, . . . to denote edge-labelled graphs and
the corresponding normal letters (A,B,C, . . .) to denote the corresponding vertex
sets.

Given two L-edge-labelled graphs A and B, a function ϕ : A → B is a homo-

morphism if for every pair of vertices x, y ∈ A which forms an edge with label l
in A it holds that ϕ(x), ϕ(y) is an edge with label l in B. If ϕ is injective, it is
a monomorphism. A monomorphism where for every x, y ∈ A it holds that x, y
form an edge with label l if and only if ϕ(x), ϕ(y) form an edge with the same
label l is called embedding. If A ⊆ B and the inclusion map is a monomorphism,
we say that A is a subgraph of B. A subgraph is induced if the inclusion map
is an embedding. A bijective embedding is an isomorphism and an isomorphism
A → A is an automorphism. A partial automorphism of A is any isomorphism of
two induced subgraphs of A. In the context of metric spaces we sometimes say
isometry instead of isomorphism.
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A walk in an edge-labelled graph A connecting x1 ∈ A and xn ∈ A is any
sequence of vertices x1, x2, . . . , xn such that for every 1 ≤ i < n there is an edge
connecting xi and xi+1. The length of this walk is

∑
1≤i<n dA(xi, xi+1). A path

is a walk which contains no repeated vertices. If there is a path x1, . . . , xn with
n ≥ 3 and there is an edge connecting x1 and xn then x1, x2, . . . , xn is a cycle.
A cycle is nonmetric if it contains a (unique) edge with label l which is greater
than the sum of the labels of all the remaining edges. We will call this edge the
long edge of the nonmetric cycle. An R

>0-edge-labelled graph A is connected if
for every x, y ∈ A there exists a path connecting x and y.

Given a connected R
>0-edge-labelled graph G, its shortest path completion is

the complete R
>0-edge-labelled graph G on the same vertex set as G such that

the label of x, y in G is the minimal length of a path connecting x and y in G.
We will need the following fact about the shortest path completion.

Observation 2.1. For every connected R
>0-edge-labelled graph G, its shortest

path completion G is a metric space. The graph G is a (not necessarily induced)
subgraph of G if and only if it contains no induced nonmetric cycles (that is, no
induced subgraphs isomorphic to a nonmetric cycle). Moreover, every automor-
phism of G is also an automorphism of G.

Proof: For any triple of vertices x, y, z ∈ G there are, by definition, paths x =
x1, x2, . . . , xn = y and y = xn, xn+1, . . . , xm = z in G witnessing the distances
d
G
(x, y) and d

G
(y, z), respectively. It follows that x1, x2, . . . , xm is a walk in

G containing a path connecting x and z of length no greater than d
G
(x, y) +

d
G
(y, z). We thus conclude that d

G
(x, z) ≤ d

G
(x, y) + d

G
(y, z), that is, the

triangle inequality holds, and thus G indeed is a metric space.
If G contains a nonmetric cycle with the longest edge between x and y, it is

easy to see that distance of x, y in G is strictly smaller than the distance of x
and y in G. Therefore G is not a subgraph of G.

Next we show that if G contains no induced nonmetric cycles then it is a sub-
graph of G. Assume, to the contrary, that there is a pair of vertices x, y connected
by an edge in G where the labels differ. Because x, y is also a path connecting
x and y in G, we know that the label of x, y in G is greater than the length of
shortest path connecting x, y, hence they together form a nonmetric cycle. This
cycle is not necessarily induced but adding an edge to a nonmetric cycle splits it
to two cycles where at least one is necessarily also nonmetric.

Finally, to verify that the shortest path completion preserves all automorphisms
observe that every distance in G corresponds to a path in G (and to a lack of
any shorter path) and paths are preserved by every automorphism of G. �
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3. Extending partial automorphisms of R>0-edge-labelled graphs

Proposition 3.1. For every finite R>0-edge-labelled graph A there exists a finite
R

>0-edge-labelled graph B containing A as an induced subgraph such that every
partial automorphism of A extends to an automorphism of B.

What follows is a variant of the easy proof of the extension property for partial
automorphisms for graphs in [5].

Proof: Fix A and let S = {s1, s2, . . . , sn} ⊆ R
>0 be the finite subset of R>0

consisting of all distances in A (the spectrum of A). First we assign every vertex
x ∈ A the set ψ(x) such that for some fixed k the following is satisfied:

(1) For every x 6= y ∈ A such that dA(x, y) = sj and integer i it holds that
({x, y}, i) ∈ ψ(x) if and only if 1 ≤ i ≤ j.

(2) For every x ∈ A it holds that |ψ(x)| = k.
(3) For every x 6= y ∈ A it holds that ψ(x) ∩ ψ(y) = {({x, y}, i) : 1 ≤ i ≤ j},

where dA(x, y) = sj .

Such a function ψ is easy to build. Assign elements to sets to satisfy (1) and
then extend the sets by arbitrary new elements (for example, natural numbers)
to satisfy (2) where every new element belongs to precisely one set so that (3)
holds.

Put
U =

⋃

x∈A

ψ(x)

to be the universe of our representation. We construct B as follows.

◦ The vertex set B of B consists of all subsets of U of size k (we will denote
them by upper case letters X and Y ).

◦ A pair of vertices X,Y ∈ B is connected by an edge of length si if and
only if X 6= Y and |X ∩ Y | = i. Otherwise X,Y is a non-edge.

It is easy to verify that the structure A′ induced by B on {ψ(x) : x ∈ A} is
isomorphic to A, that is, ψ is an embedding of A into B. We claim that every
partial automorphism of A′ extends to an automorphism of B. Fix such a partial
automorphism ϕ′ of A′. By ϕ we denote the partial automorphism induced by ϕ′

on A, i.e. ϕ = ψ−1 ◦ ϕ′ ◦ ψ. Note that every permutation of U gives rise to an
automorphism of B. We are going to construct an automorphism ϕ̂ of B which
extends ϕ′ by finding the right permutation π by the following procedure:

(1) Start with the partial permutation π that maps ({x, y}, i) 7→ ({ϕ(x),
ϕ(y)}, i) for every x 6= y ∈ Dom(ϕ) and 1 ≤ i ≤ j where dA(x, y) = sj .

(2) Consider every choice of x ∈ Dom(ϕ). Let e be element of ψ(x) such
that π(e) is not defined and put π(e) to be any element of ψ(ϕ(x)) which
is not in the image of π yet. This is always possible because all the sets
have the same size and are disjoint except for elements which were dealt
with in the previous point.

(3) The partial permutation π can then be extended to a full permutation in
an arbitrary way.
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l

Figure 1. Expansion of a nonmetric cycle with longest edge l
to a “Möbius strip”.

It is easy to see that π induces an automorphism ϕ̂ of B and that this automor-
phism extends ϕ′. �

4. Proof of the main result

Now we are ready to prove Theorem 1.1. Similarly as in the proof of Hodkinson–
Otto, see [7], we use Proposition 3.1 to obtain an R

>0-edge-labelled graph B. We
then consider all “bad” substructures of B (namely the nonmetric cycles) and
eliminate each one independently while preserving all necessary symmetries and
a projection (in fact, a homomorphism) to the original structure. The resulting
structure is then a product of all these constructions (however, we will define it ex-
plicitly). The extension property for partial automorphisms then follows from the
fact that automorphisms of B are mapping bad substructures to their isomorphic
copies and we repaired both of them in the same way.

To simplify the construction, we proceed by induction on the size of the non-
metric cycles (we start by fixing triangles, then four-cycles and so on). This will
make all nonmetric cycles considered in each step of the construction induced.
Because A is a metric space and thus a complete graph, we will only need to
consider partial automorphisms of the nonmetric cycles which move at most two
vertices. This makes it easy to fix every nonmetric cycle by unwinding it to
a “Möbius strip” as depicted at Figure 1.

Proof of Theorem 1.1: Given a metric space A, let N be an integer greater
than the ratio of the largest distance in A and the smallest distance in A.

Let C2 be the R
>0-edge-labelled graph given by Proposition 3.1 applied on A

and let A2 be the copy ofA in C2. We then build a sequence of R>0-edge-labelled
graphs C3,C4, . . . ,CN such that for every 2 ≤ i ≤ N the following conditions
are satisfied:

(I) the graph Ci contains an isomorphic copy Ai of A as a subgraph,
(II) every partial automorphism of Ai extends to an automorphism of Ci,

and,
(III) the graph Ci contains no nonmetric cycles with at most i vertices.

First we show that from the existence of CN the theorem follows. Observe that
by the choice of N every nonmetric cycle using only distances used ind A has
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fewer than N vertices and thus CN contains no nonmetric cycles. Without loss of
generality we can assume that CN is connected (otherwise we simply take the con-
nected component of CN containing AN ) and thus we can apply Observation 2.1.
Let C be the shortest path completion of CN . Because every automorphism of
CN is also automorphism of C and AN is a subgraph of C we get that C extends
all partial isometries of AN (which is isomorphic to A).

It remains to give the construction of Ci+1 from Ci satisfying conditions
(I)–(III). A subsetM of Ci is called bad if |M | = i+1 andCi induces a nonmetric
cycle onM . For x ∈ Ci denote by U(x) the family of all bad setsM containing x.

We construct Ci+1 as follows:

◦ Vertices of Ci+1 are pairs (x, χx) where x ∈ Ci and χx is a function from
U(x) to {0, 1}. We call such χx valuation function.

◦ Pairs (x, χx) and (y, χy) are connected by an edge of length l if and only
if dCi

(x, y) = l and for everyM ∈ U(x)∩U(y) one of the following holds:
(a) the edge {x, y} is the longest edge of the nonmetric cycle induced on

M and χx(M) 6= χy(M), or
(b) the edge {x, y} is not the longest edge of the nonmetric cycle induced

on M and χx(M) = χy(M).
(These rules describe the “Möbius strip” of every bad set.)

There are no other edges in Ci+1. This finishes the construction of Ci+1. We
now verify that Ci+1 satisfies conditions (I)–(III).
(I): We give an explicit description of an embedding ψ of Ai to Ci+1 and put
Ai+1 to be the structure induced by Ci+1 on {ψ(x) : x ∈ Ai}.

For every bad set M ⊆ Ci such that M ∩ Ai 6= ∅ we define a function χM :
M ∩ Ai → {0, 1}. By definition, M is bad because Ci induces a nonmetric cycle
on M . Since A is complete and it is a metric space (hence contains no nonmetric
triangles), it follows that M ∩ A consists either of one vertex or two vertices
connected by an edge of the cycle. Consider now two cases:

(1) The set M ∩ A = {x, y} where {x, y} is the long edge of the nonmetric
cycle induced on M . In this case we put χM (x) = 0 and χM (y) = 1.
(Notice that this step is not uniquely defined because the choice of x and
y can be exchanged and it is indeed the purpose of the function χM to
fix this choice.)

(2) The set M does not intersect with A by a long edge. In this case put
χM (x) = 0 for all x ∈M ∩ A.

Now we define a mapping ψ from Ai to Ci+1 by putting ψ(x) = (x, χx) where
χx(M) = χM (x) and put Ai+1 = ψ(Ai). It is easy check that ψ is an embedding
Ai → Ci+1 because we chose functions χM in a way so that all edges are preserved.
This verifies condition (I).
(II): We show that Ci+1 extends all partial automorphisms of Ai+1.

Consider any partial automorphism ϕ of Ai+1. Define p : Ci+1 → Ci to be the
projection which maps every (x, χx) ∈ Ci+1 to x ∈ Ci. By p we project the partial
automorphism ϕ of Ai+1 to a partial automorphism p ◦ϕ ◦ p−1 of Ai. Denote by
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ϕ̂ an extension of the partial automorphism p◦ϕ◦p−1 of Ai to an automorphism
of Ci (which always exist by the induction hypothesis).

Let F consist of all bad sets M ⊆ Ci with the property that M ∩ Ai 6= ∅ and
there exists x ∈M , such that (x, χx) = ψ(x) ∈ Dom(ϕ) and χx(M) 6= χy(ϕ̂(M))
where (y, χy) is such that ϕ((x, χx)) = (y, χy) (these are bad sets whose valuations
are flipped by ϕ).

We build an automorphism θ of Ci+1 by putting θ((x, χx)) = (ϕ̂(x), χ′) where
χ′(ϕ̂(M)) = χx(M) if M /∈ F and 1 − χx(M) if M ∈ F . To verify that θ is
indeed an automorphism first check that θ is one-to-one because it is possible to
construct its inverse. Because the action of θ on the valuation functions does not
affect the outcome of conditions for edges in the construction of Ci+1, we get that
θ is an isomorphism.

It remains to verify that θ extends ϕ. This follows from the fact that for every
bad set M it holds that |M ∩Dom(ϕ)| ≤ 2. Moreover, whenever M ∩Dom(ϕ) =
{x, y}, x 6= y, ϕ(x) = (x′, χx′), ϕ(y) = (y′, χy′) then χx(M) = χx′(ϕ̂(M)) if and
only if χy(M) = χy′(ϕ̂(M)). This finishes the proof of condition (II).
(III): Consider any setM ⊆ Ci+1 such that |M | ≤ i+1 and the subgraph induced
by Ci+1 on M contains a nonmetric cycle as a subgraph. It follows that its
projection p(M) contains a nonmetric cycle in Ci. By the induction hypothesis
we thus know that |M | = i + 1 and p(M) is a bad set (that is, Ci induces
a nonmetric cycle on p(M)). Because of the projection of Ci+1 to C it follows
that Ci+1 induces a nonmetric cycle on M . Let (x, χx), (y, χy) be longest edge
of this nonmetric cycle. From the definition of the edges of Ci+1 we know that
χx(M) 6= χy(M). Following the short edges of the cycle, we however get χx(M) =
χy(M) a contradiction. �

Remark 4.1. We in fact prove that the class of all finite metric spaces has the
coherent extension property for partial isometries as defined by S. Solecki and
D. Siniora, see [24], [22]: In Proposition 3.1 it is enough to fix a linear order on U
and extend the permutation in an order-preserving way. The coherency then goes
through the proof of Theorem 1.1, it is enough to realise that “flips compose”.

Remark 4.2. This proof generalises to many known binary and general classes
which are known to have the extension property for partial automorphisms (see [9],
[13], [1] for examples of classes of structures having a variant of shortest path
completion). This is going to appear in [2], [10].

There are classes for which it is unknown whether they have EPPA or not.
Prominent among them are the class of all finite tournaments (see [8] for partial
results) and the class of all finite partial Steiner triple systems, see [12].
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