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FIRST PASSAGE RISK PROBABILITY OPTIMALITY FOR
CONTINUOUS TIME MARKOV DECISION PROCESSES

Haifeng Huo and Xian Wen

In this paper, we study continuous time Markov decision processes (CTMDPs) with a denu-
merable state space, a Borel action space, unbounded transition rates and nonnegative reward
function. The optimality criterion to be considered is the first passage risk probability crite-
rion. To ensure the non-explosion of the state processes, we first introduce a so-called drift
condition, which is weaker than the well known regular condition for semi-Markov decision
processes (SMDPs). Furthermore, under some suitable conditions, by value iteration recursive
approximation technique, we establish the optimality equation, obtain the uniqueness of the
value function and the existence of optimal policies. Finally, two examples are used to illustrate
our results.

Keywords: continuous time Markov decision processes, first passage time, risk probability
criterion, optimal policy

Classification: 90C40, 60E20

1. INTRODUCTION

This paper consider the risk probability optimality in first passage for continuous time
Markov decision processes with a denumerable state space, a Borel action space, un-
bounded transition rates and nonnegative reward function.

As is well known, there are a large number of works on the Markov decision processes
(MDPs), see [4, 2, 10, 8, 9, 22, 5, 11, 19, 20, 27, 24, 17], the horizon of MDPs with either
finite or infinite. However, many practical situations such as ruin problems[24, 17],
reliability[17], maintenance[17] are involved in a random horizon. Inspired by these
situations, the first passage performance criteria are introduced into the MDPs. The
literature on the first passage optimality problems for MDPs can be classified into two
groups: (i) One focuses on the first passage expected criterion (see, for instance [5, 11,
19, 26, 12, 6, 15]), which means that the expected total rewards during a rand time that
the state process first enters a given target set. This criterion can usually be regarded as
a generalization of the standard criterion [3, 4, 8, 9, 22]. (ii) The other is first passage
risk probability criterion, which usually refers to the probability of the total rewards does
not exceed a reward level (profit goal) during a first passage time that the state process
first enters a target set. This paper belongs to the second group for MDPs, which have
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been discussed in [10, 14, 18, 21, 20, 27]. More precisely, [21] consider risk minimizing
problems in discrete time Markov decisions processes (DTMDPs) with a target set.
They show that the value function is the unique solution to an optimality equation,
and that there exists an optimal stationary policy. Huang and Guo [10] consider the
first passage risk probability problem for semi-Markov decisions processes (SMDPs),
and obtain the optimality equation and the existence of optimal policies by using a
successive approximation technique. Furthermore, Huang, Zou and Guo [14] investigate
the minimum risk probability with loss rates for SMDPs. They establish the optimality
equation, give suitable conditions to prove the existence of optimal policies, and develop
an algorithm for computing ε-optimal policies. To the best of our knowledge, all of
these existing literatures on the first passage risk probability problem only focus on the
SMDPs or the DTMDPs. However, CTMDPs with the first passage risk probability
criterion is considered in the less known article [18], where the authors discussions are
restricted to the stationary policies and bounded transition rates. This paper is an
attempt to investigate this criterion for CTMDPs with unbounded transition rates and
history-dependent policies, and point out the gap between CTMDPs and SMDPs.

A common feature to the risk probability criterion (see, [10, 14, 20, 27, 25, 16]) is that
the decision maker considers the reward levels as well as the system states when making
decisions, which is different from the classical expected criterion (see [3, 4, 6, 22, 23])
and average criterion (see [4, 22, 28]) for CTMDPs. Therefore, we can not directly
use the results of the classical standard criterions for CTMDPs. Actually we need to
introduce a class of history-dependent policies, which depends not only on the usual
states but also on reward levels, and establish a new probability space (see Section
2). Secondly, motivated by many practical problems, such as queueing control and
population processes, where the transition rates are unbounded. We will consider in
this paper the case when the transition rates are unbounded. To deal with this case, we
first use the drift condition (see Theorem 3.3) to ensure the non-explosion of the state
processes {xt, t ≥ 0}, which is weaker than the well known regular condition for SMDPs
in [10, 12, 13, 14], see Remark 3.4. Furthermore, under some suitable conditions, we
not only establish the first passage risk probability optimality equation and show the
existence of optimal policies, but also use a value iteration technique to calculate the
value function (see Theorem 3.10). Finally, we illustrate our results with two examples.
The first one is used to verify our conditions for CTMDPs with unbounded transition
rates, the second one for the numerical calculations of the value function and an optimal
policy by value iteration techniques.

The rest of this paper is organized as follows. In Section 2 we introduce the control
model for CTMDPs and the first passage risk probability optimality problem. We are
concerned with the existence and the computation aspects of a risk probability optimal
policy for CTMDPs, which are stated in Section 3. Finally, we illustrated our results
with two examples in Section 4.

2. THE CONTROL MODEL

The model of continuous-time MDP consists of five components

{E, (A(i) ⊆ A, i ∈ E), q(j | i, a), B, r(i, a), } (1)
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with the following meaning: (1) The state space E is a nonempty denumerable set. (2)
The action space A is a Borel space, endowed with a Borel σ-algebra B(A). A(i) ∈ B(A)
is the set of admissible actions in state i ∈ E, which is assumed to be finite. Let
K := {(i, a)|i ∈ E, a ∈ A(i)} be the set of feasible pairs of states and actions. (3) The
transition rate q(j|i, a) satisfies q(j|i, a) ≥ 0 for all (i, a) ∈ K and j 6= i, which is assumed
to be conservative (i. e.

∑
j∈S q(j|i, a) = 0) and stable (i. e., q∗(i) := supa∈A(i) qi(a) <

∞), where qi(a) := −q(i|i, a) ≥ 0 for all (i, a) ∈ K. (4) The target set B is a measurable
subset of E. (5) The nonnegative measurable reward function r(i, a) satisfies r(i, a) > 0
for each i ∈ Bc, a ∈ A(i), where Bc denotes the complement of B.

The evolution of CTMDPs with the first passage risk probability criterion may be
described as follows. When the system state is i0 at the initial decision epoch t0 = 0,
there is a common reward level (profit goal) λ0 ∈ R+ := [0,+∞) in the mind of a
decision maker, that is, the decision maker tries to control the reward no more than
λ0 before the system state first passage time falls into the target set B. Then, the
decision marker chooses an action a0 ∈ A(i0). Consequently, the system stays at i0
until time t1, the sojourn time θ1 := t1 − t0 following exponential distribution with
parameter qi0(a0)(qi0(a0) 6= 0), and then the next decision epoch comes. At time t1, the
following happen: (1) the system goes into a new state i1 with the transition probability
q(i1|i0,a0)
qi(a0) . (2) The decision marker gets a reward r(i0, a0)t1. There is a remaining profit

goal λ̂1 = [λ0− r(i0, a0)t1]+ for the decision marker, where [x]+ = max(x, 0). Thus, the
decision marker chooses an action a1 ∈ A(i1) based on the current state i1, reward level

λ̂1 and the previous state i0, reward level λ0. The system is developed in this way until
the system state falls into the target set B.

As described above, we know that tk (k ≥ 0) is the kth decision epoch, ik is the state
of the process on [tk, tk+), ak is the action of the process at time tk, θk+1 := tk+1 − tk
is the sojourn time at state ik and λ̂k is the reward level at time tk,

λ̂k+1 := [λ̂k − r(ik, ak)θk+1]+ := L(ik, λ̂k, ak, θk+1), where λ̂0 := λ0. (2)

Due to the decision maker choosing actions to be considered not only on the usual sys-
tem states but also on the reward levels, we need to reconstruct a probability space. The
sample space Ω is given by Ω := Ω0

⋃
{(i0, λ0, t1, i1, λ1, . . . , tk, ik, λk,∞,∆, ∞, . . .)| i0 ∈

E, λ0 ∈ [0,+∞), il ∈ E, λl ∈ [0,+∞), tl ∈ (0,∞), for each 1 ≤ l ≤ k, k ≥ 1}, where
E∆ := E

⋃
{∆} (with some ∆ 6∈ E), Ω0 := E × [0,+∞) × ((0,+∞] × E × [0,+∞))∞.

Let F be the corresponding Borel σ-algebra on Ω. Then, we obtain a measurable space
(Ω,F ).

For each k ≥ 0, e := (i0, λ0, t1, i1, λ1, . . . , tk, ik, λk, . . .) ∈ Ω, let h0(e) := (i0, λ0),hk(e)
:= (i0, λ0, t1, i1, λ1, . . . , tk, ik, λk) denote the k-component internal history, and define
the measurable mappings Xk,Λk, Tk on Ω as follows:

Xk(e) := ik, Λk(e) := λk, T0(e) := t0 = 0, Tk(e) := tk, T∞ := lim
k→∞

Tk(e).

For simplicity, we often omit the argument e. Moreover, define the state process {xt, t ≥
0} by

xt :=
∑
k≥0

I{Tk≤t<Tk+1}ik + ∆I{t≥T∞}, (3)
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where IE denotes the indicator function on any set E. The controlled process after
moment T∞ is considered to be absorbed in the isolated state x∞ := ∆ 6∈ E. Then, let
q(·|∆, a∆) :≡ 0, r(∆, a∆) :≡ 0, A(∆) := {a∆}, A∆ := A∪ {a∆}, where a∆ is an isolated
point.

Definition 2.1. A deterministic history-dependent policy π(e, t) is defined by a se-
quence (fk, k ≥ 0) such that fk(hk(e)) is a Borel measurable function from Ω onto
A∆, for each e = (i0, λ0, t1, i1, λ1, . . . , tk, ik, λk, . . .) ∈ Ω,

π(e, t) = I{t=0}f0(i0, λ0) +
∑
k≥0

I{Tk<t≤Tk+1}fk(hk(e)) + I{t≥T∞}δa∆
(da), (4)

where δa∆
(da) is the Dirac measure on A∆ at the point a∆. Such a policy is denoted by

π = {f0, f1, . . .} for simplicity.
A policy π = {f0, f1, . . .} ∈ Π is called Markov if there are some measurable functions

fMk on A∞ given E∆ × [0,∞) such that

π(e, t) = I{t=0}f
M
0 (i0, λ0) +

∑
k≥0

I{Tk<t≤Tk+1}f
M
k (ik, λk) + I{t≥T∞}δa∆

(da). (5)

If there is a deterministic Markov policy π = {f0, f1, . . .} ∈ Πm such that fk(k ≥ 0)
is independent of k, then this policy is called stationary. Such a stationary policy is
denoted as f for simplicity.

We denote by Π,Πm,Πs the set of all deterministic history-dependent, deterministic
Markov and deterministic stationary policies respectively. It is clear that Πs ⊂ Πm ⊂ Π.

For any policy π ∈ Π, employing [7, 16], the jumps intensity function of the process
{xt, t ≥ 0} is defined as follows:

mπ(j|e, t) = I{t=0}m
π
0 (j|i0, λ0) +

∑
k≥0

I{Tk<t≤Tk+1}m
π
k (j|hk(e)), (6)

where mπ
0 (j|i0, λ0) := q(j|i0, f0(i0, λ0))I{j 6=i0}, m

π
k (j|hk(e)) := q(j|ik, f(hk(e)))I{j 6=ik}.

For any initial distribution ν on E × R and policy π = {f0, f1, . . .} ∈ Π, due to the
changes of the reward levels, we construct the measure Pπν on the measurable space
(Ω,F ) as follows. Let H0 = E × R+ and Hk = (E × R+) × ((0,∞] × E∆ × R+)k, k =
1, 2, . . .. The measure Pπν on Hk(k ≥ 0) is given by Pπν,0(i, dλ) = ν(i, dλ) for (i, dλ) ∈
E × B(R+),

Pπν,1(ν × (dt1, dλ1, j)) :=

∫
Γ

Pπν,0(i0, λ0)mπ
0 (j|i0, λ0)

× exp{−mπ
0 (E|i0, λ0)t1}

×δL(i0,λ0,f0(i0,λ0),t1)(dλ1) dt1, (7)

Pπν,k+1(ν × (dtk+1, dλk+1, j)) :=

∫
Γ

Pπν,k(dhk)I{θk<∞}m
π
k (j|hk(e))

× exp{−mπ
k (E|hk(e))(tk+1 − tk)} (8)

×δL(ik,λk,fk(hk(w)),tk+1−tk)(dλk+1) dtk+1,
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Pπν (ν × (∞,∞,∆)) :=

∫
Γ

Pπν (dhk)I{θk=∞} + I{θk<∞}

× exp{−
∫ ∞

0

mπ
k (E|hk(w)) dv},

where Γ ∈ B(Hk),mπ
k (E|hk(e)) := −q(ik|ik, f(hk(e))), B(X) is the σ-algebra on X.

For any initial distribution ν on E×R+ and policy π ∈ Π, according to the extension
of the well-known Ionescu Tulcea theorem (e. g., Proposition 7.45 in [1]), there exists a
unique probability space (Ω,F , Pπν ) such that the probability measure Pπν has a pro-
jection onto Hk satisfying (7). Let Eπν be its corresponding expectation operator. In
particular, Eπν and Pπν will be respectively written as Eπ(i,λ) and Pπ(i,λ) when the initial

distribution ν is concentrated on state (i, λ).
Let the random variable τB be the first passage time into the target set B of the state

process {xt, t ≥ 0}.

τB =

{
inf{t ≥ 0 : xt ∈ B}, if {t ≥ 0 : xt ∈ B} 6= ∅;
+∞, otherwise.

For each (i, λ) ∈ E ×R+, π ∈ Π, we define the first passage risk probability criterion
Fπ(i, λ) as follows:

Fπ(i, λ) := Pπ(i,λ)

(∫ τB

0

r(xt, πt) dt ≤ λ
)

(9)

where r(xt, πt)(e) := r(xt(e), π(e, t)) for all e ∈ Ω and t ≥ 0, which measures the risk
of the system that the total rewards incurred during a first passage time that the state
process first enters a target set B and does not exceed the reward level λ when using
policy π.

Definition 2.2. A policy π∗ ∈ Π is said to be risk probability optimal if

Fπ
∗
(i, λ) = inf

π∈Π
Fπ(i, λ) := F ∗(i, λ) (10)

for all (i, λ) ∈ E ×R+. The function F ∗(i, λ) is called the value function.

Remark 2.3. By the definition of τB , we know that τB = 0 for all initial state i ∈ B,
and thus F ∗(i, λ) = Fπ(i, λ) = 1 for each (i, λ) ∈ B × R+ and π ∈ Π. Below, we limit
our arguments to the case (i, λ) ∈ Bc ×R+.

The main objective of this paper is to give some conditions for the existence of an
optimal policy among the deterministic history-dependent policies, and to provide an
algorithm for computing the optimal policy.

3. MAIN RESULTS

Notation: Let us denote by

Gm := {F : B
c

×R+ → [0, 1]| F (·, ·) is Borel measurable function}.
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For (i, λ) ∈ Bc ×R+, f ∈ Πs and a ∈ A(i), the operators Hf , H on Gm are given by

HfF (i, λ) :=
∑
j∈B

q(j|i, f)

qi(f)

(
1− e−qi(f) λ

r(i,f)

)

+
∑

j 6=i,j∈Bc

∫ λ
r(i,f)

0

F
(
j, λ− r(i, f)u

)
e−qi(f)uq(j|i, f) du, (11)

HaF (i, λ) :=
∑
j∈B

q(j|i, a)

qi(a)

(
1− e−qi(a) λ

r(i,a)

)

+
∑

j 6=i,j∈Bc

∫ λ
r(i,a)

0

F
(
j, λ− r(i, a)u

)
e−qi(a)uq(j|i, a) du, (12)

HF (i, λ) := min
a∈A(i)

HaF (i, λ). (13)

with qi(f) := −q(i|i, f(i, λ)), q(j|i, f) := q(j|i, f(i, λ)).

Hence, the operators (Hf )n, Hn are defined by

(Hf )1F = HfF, (Hf )n+1F = Hf ((Hf )nF ), H1F = HF,Hn+1F = H(HnF ), n ≥ 1.

The operators have the following important properties.

Lemma 3.1. The following results hold.

(a) If F,G ∈ Gm, and F ≥ G, then HaF (i, λ) ≥ HaG(i, λ), HF (i, λ) ≥ HG(i, λ), for
any a ∈ A(i), (i, λ) ∈ Bc ×R+.

(b) If F ∈ Gm, then HF ∈ Gm, and there exists an f ∈ Πs such that HF (i, λ) =
HfF (i, λ) for any (i, λ) ∈ Bc ×R+.

P r o o f . (a) Part (a) follows directly from the definition of operator H.
(b) The finiteness of A(i) for every i ∈ Bc and the measurable selection theorem

(proposition D.5 in [9]) imply that there exists an f ∈ Πs attaining the minimum in
(13). �

To avoid the possibility of an infinite number of decision epochs during any finite
horizon, we need the following basic assumption.

Assumption 3.2. For any π ∈ Π, (i, λ) ∈ Bc ×R+, Pπ(i,λ)(S∞ =∞) = 1.

This assumption means that the states processes {xt, t ≥ 0} is non-explosive. It follows
from [4, 6, 7], we also give the following “drift condition” to verify Assumption 3.2.

Theorem 3.3. If there exist a measurable function W ≥ 1 on E and some constants
c0 > 0, b0 ≥ 0, and L0 ≥ 0 such that

(a)
∑
j∈EW (j)q(j | i, a) ≤ c0W (i) + b0, for all (i, a) ∈ K; and
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(b) q∗(i) ≤ L0W (i) for all i ∈ E, with q∗(i) = supa∈A(i) qi(a).

Then Assumption 3.2 holds.

P r o o f . It follows from Theorem 1 in [16]. �

Remark 3.4. (1) Theorem 3.3 is an extension of Condition 3.1 in [23] and Assumption
2.2 in [4] for CTMDPs with the classical expected criterion. When the transition rates
are uniformly bounded (i. e. supi∈E q

∗(i) < ∞), Theorem 3.3 is satisfied by taking
W ≡ 1.

(2) Theorem 3.3 is also called Lyapunov condition, which is weaker than the well
known regular condition for SMDPs in [10, 12, 13, 14]. This is because the regular
condition for SMDPs means that Q(δ, E | i, a) ≤ 1− ε, for all (i, a) ∈ K (for some δ and
ε > 0), where Q(δ, E | i, a) is the semi-Markov kernel. But compared with our model,
the regular condition becomes there exist some constants δ > 0 and ε > 0 such that
1 − e−qi(a)δ < 1 − ε for all (i, a) ∈ K. This implies that e−qi(a)δ > ε for all (i, a) ∈ K
and thus the transition rates q(j | i, a) must be bounded. However, in this paper we
deal with the case when the transition rates are unbounded.

Due to the non-explosion of the state processes {xt, t ≥ 0}, the nonnegativity of the
reward rate and the continuity of probability measures, for each (i, λ) ∈ Bc × R+ and
π ∈ Π, Fπ(i, λ) is rewritten as follows:

Fπ(i, λ) = Pπ(i,λ)

(∫ τB

0

r(xt, πt) dt ≤ λ
)

= Pπ(i,λ)

( ∞∑
m=0

∫ Tm+1

Tm

I{τB>t}r(xt, πt) dt ≤ λ
)

= Pπ(i,λ)

( ∞∑
m=0

∫ Tm+1

Tm

I{
⋂m
k=0{xTk∈Bc)}}r(xt, πt) dt ≤ λ

)
= lim

n→∞
Pπ(i,λ)

( n∑
m=0

∫ Tm+1

Tm

I{
⋂m
k=0{xTk∈Bc)}}r(xt, πt) dt ≤ λ

)
.

Thus, a sequence {Fπn (i, λ), n = −1, 0, 1, . . .} is given by

Fπn (i, λ) := Pπ(i,λ)

( n∑
m=0

∫ Tm+1

Tm

I{
⋂m
k=0{xTk∈Bc)}}r(xt, πt)) dt ≤ λ

)
, with Fπ−1(i, λ) := 1,

for all (i, λ) ∈ Bc ×R+.
Obviously, Fπn (i, λ) ≥ Fπn+1(i, λ), n ≥ −1 and limn→∞ Fπn (i, λ) = Fπ(i, λ).
The following Lemma is the foundation of our main results, we will use it to establish

the optimal equation.

Lemma 3.5. Suppose that Assumption 3.2 is satisfied, the following statements hold
for any (i, λ) ∈ Bc ×R+, n ≥ −1, π ∈ Π.
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(a) Fπn (i, λ) ∈ Gm and Fπ(i, λ) ∈ Gm.

(b) Fπn+1(i, λ) = Hf0F
1π
n (i, λ) and Fπ(i, λ) = Hf0F

1π(i, λ), where 1π := (f̂0, f̂1, ...) be-

ing the 1-shift policy of π, and f̂k(t1, i1, λ1, . . . , tk+1, ik+1, λk+1) := fk+1(i, λ, t1, i1,
λ1, . . . , tk+1, ik+1, λk+1), k = 0, 1, . . ..

In particular, for f ∈ Πs, F
f (i, λ) = HfF f (i, λ).

P r o o f . (a) For any (i, λ) ∈ B
c × R+, π ∈ Π, Fπ−1(i, λ) = 1 ∈ Gm. Suppose the

statement is true for n = k ≥ −1, then

Fπk+1(i, λ) = Pπ(i,λ)

( k+1∑
m=0

∫ Tm+1

Tm

I{
⋂m
k=0{xTk∈Bc}}r(xt, πt) dt ≤ λ

)
= Eπ(i,λ)[I{

∑k+1
m=0

∫ Tm+1
Tm

I{
⋂m
k=0
{xTk

∈Bc}}r(xt,πt) dt≤λ}
]

= Eπ(i,λ)[E
π
(i,λ)[I{

∫ T1
0 r(xt,πt) dt+

∑k+1
m=1

∫ Tm+1
Tm

I{
⋂m
k=1
{xTk

∈Bc}}r(xt,πt) dt≤λ}

|xT1
, T1,Λ1]]

=
∑
j 6=i

∫ +∞

0

Pπ(i,λ)

(∫ u

0

r(xt, πt) dt+

k+1∑
m=1

∫ Tm+1

Tm

I{
⋂m
k=1{xTk∈Bc}}

r(xt, πt)dt ≤ λ|xT1 = j, T1 = u,Λ1 = [λ− r(i, f0)u]+
)

×e−qi(f0)uq(j|i, f0) du

=
∑
j 6=i

∫ +∞

0

Pπ(i,λ)

( k+1∑
m=1

∫ Tm+1

Tm

I{
⋂m
k=1{xTk∈Bc}}r(xt, πt)dt

≤ λ− r(i, f0)u|xT1
= j, T1 = u,Λ1 = [λ− r(i, f0)u]+

)
×e−qi(f0)uq(j|i, f0) du

=
∑
j 6=i

∫ +∞

0

I{λ−r(i,f0)u≥0}P
1π
(j,λ−r(i,f0)u)

( k∑
m=0

∫ Tm+1

Tm

I{
⋂m
k=0{xTk∈Bc}}

r(xt, πt)dt ≤ λ− r(i, f0)u
)
e−qi(f0)uq(j|i, f0) du

=
∑

j 6=i,j∈B

∫ +∞

0

I{λ−r(i,f0)u≥0}e
−qi(f0)uq(j|i, f0) du

+
∑

j 6=i,j∈Bc

∫ +∞

0

I{λ−r(i,f0)u≥0}P
1π
(j,λ−r(i,f0)u)

( k∑
m=0

∫ Tm+1

Tm

×I{⋂mk=0{xTk∈Bc}}r(xt, πt)dt ≤ λ− r(i, f0)u
)
e−qi(f0)uq(j|i, f0) du

=
∑
j∈B

∫ λ
r(i,f0)

0

e−qi(f0)uq(j|i, f0) du
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+
∑

j 6=i,j∈Bc

∫ λ
r(i,f0)

0

P
1π
(j,λ−r(i,f0)u)

( k∑
m=0

∫ Tm+1

Tm

I{
⋂m
k=0{xTk∈Bc}}r(xt, πt) dt

≤ λ− r(i, f0)u
)
e−qi(f0)uq(j|i, f0)du

=
∑
j∈B

q(j|i, f0)

qi(f0)

(
1− e−qi(f0) λ

r(i,f0)

)

+
∑

j 6=i,j∈Bc

∫ λ
r(i,f0)

0

F
1π
k

(
j, λ− r(i, f0)u

)
e−qi(f0)uq(j|i, f0) du

:= Hf0F
1π
k (i, λ) ∈ Gm,

where the third equality is due to the property of conditional expectation, the fourth
equality follows from (7). Thus, using induction, we have Fπn (i, ·) ∈ Gm. Hence, the limit
of a sequence of measurable functions is still measurable implying that limn→∞ Fπn (i, λ) =
Fπ(i, λ) ∈ Gm.

(b) By part (a), for any (i, λ) ∈ Bc ×R+, n ≥ −1, we know that

Fπn+1(i, λ) = Hf0F
1π
n (i, λ),

which together with the dominated convergence theorem gives Fπ(i, λ) = Hf0F
1π(i, λ).

Moreover, for π = f ∈ Πs, F
f (i, λ) = HfF f (i, λ). �

To show the existence and uniqueness of the solution to the equation F ∗ = HF ∗, we
need the following assumption.

Assumption 3.6. For any (i, λ) ∈ Bc ×R+, f ∈ Πs, P
f
(i,λ)(τB < +∞) = 1.

To explain the meaning of Assumption 3.6, we need to introduce the following nota-
tion. For any given f ∈ Πs, set X̃n := xTn , n = 0, 1, . . ., where Tn and {xt, t ≥ 0} are

the same as in Section 2. Thus, we obtain a discrete-time embedded chain {X̃n, n ≥ 0}.

Remark 3.7. (1) Assumption 3.6 indicates that, no matter what the initial state is,
what the reward level is, and what the policy is, the system states {xt, t ≥ 0} will
eventually arrive at B within finite time.

(2) Assumption 3.6 is equivalent to the following assertion. For every (i, λ) ∈ Bc×R,

P f(i,λ)(

∞⋃
n=1

{X̃n ∈ B}) = 1 or P f(i,λ)(

∞⋂
n=1

{X̃n ∈ Bc}) = 0.

The proof of this assertion is shown as follows. For (i, λ) ∈ Bc ×R, f ∈ Πs,

P f(i,λ)(τB < +∞) =

∞∑
n=1

P f(i,λ)(X̃k ∈ Bc, 1 ≤ k ≤ n− 1, X̃n ∈ B)

= P f(i,λ)

( ∞⋃
n=1

{X̃n ∈ B}
)

= 1. (14)
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To verify Assumption 3.6, it is desired to give a sufficient condition imposed on the
data of our control model.

Proposition 3.8. If inf(i,a)∈Bc×A(i)

∑
j∈B

q(j|i,a)
qi(a) > 0, Then, Assumption 3.6 is satis-

fied.

P r o o f . By Proposition 1 in [16], we obtain that this Proposition is true. �

Lemma 3.9. Suppose that Assumptions 3.2 and 3.6 hold.

(a) For any (i, λ) ∈ Bc × R+, F, F
′ ∈ Gm, f ∈ Πs, if F (i, λ) − F

′
(i, λ) ≤ Hf (F −

F
′
)(i, λ), then F (i, λ) ≤ F ′(i, λ).

(b) For any (i, λ) ∈ Bc × R+, f ∈ Πs, F
f (i, λ) is the unique solution in Gm to the

equation F (i, λ) = HfF (i, λ).

P r o o f . (a) For any (i, λ) ∈ Bc ×R+, we first establish by induction that

(Hf )n(F − F
′
)(i, λ) ≤ P f(i,λ)(

n⋂
k=1

{X̃k ∈ Bc}), n ≥ 1. (15)

Since F (i, λ)− F ′(i, λ) ≤ 1, then,

Hf (F − F
′
)(i, λ) = HfF (i, λ)−HfF

′
(i, λ)

=
∑

j 6=i,j∈Bc

∫ λ
r(i,f)

0

(F − F
′
)(j, λ− r(i, f)u)

×e−qi(f)uq(j|i, f) du

≤
∑

j 6=i,j∈Bc

∫ +∞

0

e−qi(f)uq(j|i, f) du

= P f(i,λ)(X̃1 ∈ Bc).

So the fact holds for n = 1. Assume the fact (15) is valid for n = k. Then,

(Hf )k+1(F − F
′
)(i, λ) = Hf (Hf )k(F − F

′
)(i, λ)

=
∑

j 6=i,j∈Bc

∫ λ
r(i,f)

0

(Hf )k(F − F
′
)(j, λ− r(i, f)u)

×eqi(f)uq(j|i, f) du

≤
∑

j 6=i,j∈Bc

∫ λ
r(i,f)

0

P f(j,λ−r(i,f)u)(

k⋂
l=1

{Xl ∈ Bc})

×e−qi(f)uq(j|i, f) du. (16)
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The inequality in (16) follows from the induction hypothesis. On the other hand,

P f(i,λ)(

k+1⋂
l=1

{X̃l ∈ Bc})

= Ef(i,λ)[I{
⋂k+1
l=1 {X̃l∈Bc}}

]

= Ef(i,λ)[E
f
(i,λ)[I

⋂k+1
l=1 {X̃l∈Bc}

|X̃1, T1,Λ1]]

=
∑
j 6=i

∫ +∞

0

P f(i,λ)

( k+1⋂
l=1

{X̃l ∈ Bc}|X̃1 = j, T1 = u,

Λ1 = [λ− r(i, f)u]+
)
e−qi(f)uq(j|i, f) du

=
∑
j 6=i

∫ λ
r(i,f)

0

P f(i,λ)

( k+1⋂
l=2

{X̃l ∈ Bc}, j ∈ Bc|X̃1 = j, T1 = u,

Λ1 = λ− r(i, f)u
)
× e−qi(f)uq(j|i, f) du

=
∑

j 6=i,j∈Bc

∫ λ
r(i,f)

0

P f(j,λ−r(i,f)u)

( k⋂
l=1

{X̃l ∈ Bc}
)

×e−qi(f)uq(j|i, f) du,

which together with (16) gives that (Hf )k+1(F − F ′)(i, λ) ≤ P f(i,λ)(
⋂k+1
l=1 {X̃l ∈ Bc}).

Hence, by F (i, λ) − F ′(i, λ) ≤ Hf (F (i, λ) − F ′(i, λ)), the fact (15) and induction , we
obtain for all n ≥ 1,

F (i, λ)− F
′
(i, λ) ≤ (Hf )n(F (i, λ)−G(i, λ)) ≤ P f(i,λ)

(
n⋂
k=1

{X̃k ∈ Bc}

)
. (17)

Letting n→∞ in (17), from Assumption 3.6 and (14), we have

F (i, λ)− F
′
(i, λ) ≤ lim

n→∞
P f(i,λ)

(
n⋂
k=1

{X̃k ∈ Bc}

)
= 1− P f(i,λ)(

∞⋃
n=1

{X̃k ∈ B}) = 0,

which implies F (i, λ) ≤ F ′(i, λ).

(b) For any (i, λ) ∈ Bc×R+, by Lemma 3.1 (b), we know that F f (i, λ)(F f (i, λ) ∈ Gm)
satisfies the equation F (i, λ) = HfF (i, λ). On the other hand, let F

′
(i, λ) be another

solution in Gm to the equation F (i, λ) = HfF (i, λ) on Bc × R+, and thus F
′
(i, λ) −

F f (i, λ) = Hf (F
′
(i, λ) − F f (i, λ)). Employing part (a), we have F

′
(i, λ) = F f (i, λ).

Then, the uniqueness of this problem is proved. �

Theorem 3.10. Under Assumptions 3.2 and 3.6, for any (i, λ) ∈ Bc ×R+,

(a) set F ∗−1(i, λ) := 1, F ∗n+1(i, λ) := HF ∗n(i, λ), n ≥ −1. Then, limn→∞ F ∗n(i, λ) =
F ∗(i, λ).



First passage risk probability for Markov decision processes 125

(b) F ∗(i, λ) is the unique solution to the equation F (i, λ) = HF (i, λ).

(c) There exists an f∗ ∈ Πs such that F ∗(i, λ) = Hf∗F ∗(i, λ) and F ∗(i, λ) = F f
∗
(i, λ).

(d) Set f̃0(i, λ) : = f∗(i, λ), and for (i, λ, t1, i1, λ1, . . . , tk, ik, λk) ∈ Hk, k ≥ 1,

f̃∗k (i, λ, t1, i1, λ1, . . . , tk, ik, λk) := f∗(ik, λ̂k),

with λ̂k = L(ik−1, λ̂k−1, f
∗(ik−1, λ̂k−1), θk), i0 = i, λ̂0 = λ, θk = sk − sk−1 and L

is given in (2). Then, the policy π∗ := (f̃∗0 , f̃
∗
1 , . . . , f̃

∗
k ) is optimal.

P r o o f . (a) It follows from Lemma 3.1(a) that F ∗n(i, λ) ≥ F ∗n+1(i, λ), n ≥ −1 for any

(i, λ) ∈ Bc ×R+. Hence, by 0 ≤ F ∗n(i, λ) ≤ 1, we get limn→∞ F ∗n(i, λ) := F̃ (i, λ) exists.
To prove F̃ (i, λ) ≤ F ∗(i, λ), we need to prove by induction that F ∗n(i, λ) ≤ Fπn (i, λ),

for all π ∈ Π and n ≥ −1. Since F ∗−1(i, λ) = Fπ−1(i, λ) := 1, it is obviously true for
n = −1. Suppose that F ∗k (i, λ) ≤ Fπk (i, λ) for all π ∈ Π holds. Then,

F ∗k+1(i, λ) = HF ∗k (i, λ) ≤ HF
1π
k (i, λ) ≤ Hf0

F
1π
k (i, λ) = Fπk+1(i, λ),

where the first inequality is due to the induction hypothesis, and the last equality follows
from Lemma 3.5(b). Employing the induction, we have

F ∗n(i, λ) ≤ Fπn (i, λ) (18)

for all π ∈ Π and n ≥ −1. Letting n→∞ in (18), we get F̃ (i, λ) = limn→∞ F ∗n(i, λ) ≤
Fπ(i, λ), for all π ∈ Π. The arbitrariness of π yields F̃ (i, λ) ≤ F ∗(i, λ).

Then, to show the converse i. e. F̃ (i, λ) ≥ F ∗(i, λ), it is suffices to show that there
exists a policy θ ∈ Πm such that F ∗k (i, λ) = F θk (i, λ) for any (i, λ) ∈ Bc × R+. It is
clear that F ∗−1(i, λ) = 1 = Fπ−1(i, λ) for any π ∈ Πm. Suppose that the fact is true
for n = k ≥ −1. By Lemma 3.1(b), we know that there exists an f ∈ Πs such that
HF ∗k (i, λ) = HfF ∗k (i, λ). Letting η = {f, θ} ∈ Πm, the induction hypothesis and Lemma
3.5(b) give that F ∗k+1(i, λ) = HF ∗k (i, λ) = HfF ∗k (i, λ) = HfF θk (i, λ) = F ηk+1(i, λ).

Then, there exists a policy θ ∈ Πm such that F ∗n(i, λ) = F θn(i, λ). This implies that
F ∗n(i, λ) = F θn(i, λ) ≥ F θ(i, λ) ≥ F ∗(i, λ), thus limn→∞ F ∗n(i, λ) = F̃ (i, λ) ≥ F ∗(i, λ).
This completes the proof.

(b) For any (i, λ) ∈ Bc ×R+, by Lemma 3.5(b), we know that

Fπ(i, λ) = Hf0F
1π(i, λ) ≥ Hf0F ∗(i, λ) ≥ HF ∗(i, λ),∀π ∈ Π.

Taking the infimum over all policies π yields F ∗(i, λ) ≥ HF ∗(i, λ).
On the other hand, for any a ∈ A(i), employing part (a), we obtain

F ∗n+1(i, λ) = HF ∗n(i, λ) ≤ HaF ∗n(i, λ),

which together with the dominated convergence theorem gives F ∗(i, λ) ≤ HaF ∗(i, λ).
The arbitrariness of a ∈ A(i) gives that F ∗(i, λ) ≤ HF ∗(i, λ). Thus, F ∗ = HF ∗.
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For any (i, λ) ∈ Bc ×R+, since F ∗(i, λ) satisfies the equation F (i, λ) = HF (i, λ), by
Lemma 3.1(b), we know that there is an f ∈ Πs such that

F ∗(i, λ) = HfF ∗(i, λ). (19)

On the other hand, let F
′
(i, λ) ∈ Gm be another solution to the equation F (i, λ) =

HF (i, λ). Similarly, by Lemma 3.1(b), we know that there exists an f
′ ∈ Πs satisfying

F
′
(i, λ) = Hf

′

F
′
(i, λ). (20)

Comparing (19) with (20), we have

F ∗(i, λ) = HfF ∗(i, λ) ≤ Hf
′

F ∗(i, λ)

and

F
′
(i, λ) = Hf

′

F
′
(i, λ) ≤ HfF

′
(i, λ),

which imply F ∗(i, λ)−F ′(i, λ) ≤ Hf
′

(F
′−F ∗)(i, λ). Then, by Lemma 3.9(a), we obtain

F ∗(i, λ) ≤ F ′(i, λ). Hence, reversing the role of F
′

and F ∗ gives F
′
(i, λ) = F ∗(i, λ).

(c) For any (i, λ) ∈ Bc×R+, since F ∗(i, λ) satisfies the equation F (i, λ) = HF (i, λ),
by Lemma 3.1(b), we know that there is an f∗ ∈ Πs such that F ∗(i, λ) = HF ∗(i, λ) =
Hf∗F ∗(i, λ). Moreover, from Lemma 3.5 and Lemma 3.9 (b), we know that F f

∗
(i, λ) is

the unique solution to the equation F (i, λ) = Hf∗F (i, λ), which together with part (b)
gives F ∗(i, λ) = F f

∗
(i, λ).

(d) Since f̃k(i, λ, t1, i1, λ1, . . . , tk, ik, λk) := f∗(ik, λ̃k), π∗ := (f̃0, f̃1, . . . , f̃k) for k ≥ 0,

which together with (2),(4) and (7) give P f
∗

ν,k = Pπ
∗

ν,k for all k ≥ 0. This implies that

P f
∗

ν = Pπ
∗

ν , P f
∗

ν (
∫ τB

0
r(xs, π

∗
s ) ds 6=

∫ τB
0

r(xs, f
∗
s ) ds) = 0 and Fπ

∗
(i, λ) = F f

∗
(i, λ) =

F ∗(i, λ). Thus, π∗ is optimal. �

Theorem 3.10 provides an value iteration algorithm for finding the value function and
optimal policies. The algorithm procedure includes the following three steps.

The value iteration algorithm:

Step 1: Set F ∗−1(i, λ) := 1, for n = −1, (i, λ) ∈ E ×R+.

Step 2: For all n ≥ 0, a ∈ A(i), (i, λ) ∈ E × R+, by Theorem 3.10(a), HaF ∗n(i, λ)
and F ∗n+1(i, λ) are calculated as follows:

HaF ∗n(i, λ) =
∑
j∈B

q(j|i, a)

qi(a)

(
1− e−qi(a) λ

r(i,a)

)

+
∑

j 6=i,j∈Bc

∫ λ
r(i,a)

0

F ∗n

(
j, λ− r(i, a)u

)
e−qi(a)uq(j|i, a) du (21)

≈
∑
j∈B

q(j|i, a)

qi(a)

(
1− e−qi(a) λ

r(i,a)

)
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+
∑

j 6=i,j∈Bc

m−1∑
k=1

1

2

[
F ∗n

(
j, λ− r(i, a)kh

)
e−qi(a)kh

+F ∗n

(
j, λ− r(i, a)(k + 1)h

)
e−qi(a)(k+1)h

]
q(j|i, a)h. (22)

F ∗n+1(i, λ) ≈ min
a∈A(i)

{HaF ∗n(i, λ)}, (23)

where h is the step length, k ≤ m, k,m ∈ N such that mh = λ
r(i,a) , N denotes the set

of natural numbers.

Step 3: If |F ∗n+1(i, λ, t)−F ∗n(i, λ, t)| < 10−12, the iteration stops, and the value F ∗n+1

is usually approximated as F ∗. Hence, by Lemma 3.1, we know that there exists a policy
f∗ such that HF ∗ = Hf∗F ∗, which together with theorem 3.10 implies that π∗ is an
optimal policy. Otherwise, increase n by 1 and go to step 2.

Remark 3.11. Using the trapezoidal integration method in [17], the formula (22)
can be written as follows:∫ b

a

g(x) dx ≈
m−1∑
k=0

g(a+ kh) + g(a+ (k + 1)h)

2
h, (24)

where the step length h satisfies a+mh = b,m ∈ N , [a,b] is the integration interval.

4. EXAMPLE

In this section, two examples are given to illustrate our results. We illustrate the verifi-
cation of our conditions with the first example, which is a controlled queueing system.
The second example for the numerical calculations of the value function and an optimal
policy by value iteration techniques.

Example 4.1. (Optimal control of a queueing system) Consider a queueing system in
which the state variable denotes the total number of waiting in the queue at time t ≥ 0.
There are natural arrival and service rates denoted by nonnegative constants α and β,
respectively. There are two additional parameters h1 and h2, which are assumed to be
controlled by the decision maker. When the system state is i ∈ Bc := {1, 2, . . .} ⊆
E = {0, 1, 2, . . .}, the decision maker takes an action a from a finite set A(i) of available
actions, which may admit (hk(i, a) ≥ 0, k = 0, 1.) or reject (hk(i, a) ≤ 0, k = 0, 1.)
arriving jobs, and increase (h2(i, a) ≥ 0) or decrease (h2(i, a) ≤ 0) the service rate. This
action results in a reward rate r(i, a) ≥ 0. Moreover, we assume that some emergency
situations reduce the number of waiting in the queue directly to 0 with a rate being
α0 > 0.

To formulate this control problem as a CTMDP, we introduce the transition rates
q(j|i, a) as follows:

For i = 0 and a ∈ A(0),

r(0, a) = 0, q(0|0, a) = q(j|0, a) = 0 for j ≥ 1. (25)
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For i = 1 and a ∈ A(1),

q(j|1, a) =


α0 + h0(1, a), if j = 0,

−(α0 + β)− h0(1, a)− h2(1, a), if j = 1,

β + h2(1, a), if j = 2,

0, otherwise.

(26)

For i ≥ 2 and a ∈ A(i)

q(j|i, a) =



α0i+ h0(i, a), if j = 0,

αi+ h1(i, a), if j = i− 1,

−(α0 + α+ β)i− h0(i, a)− h1(i, a)− h2(i, a), if j = i,

βi+ h2(i, a), if j = i+ 1,

0, otherwise.

(27)

The aim in this example is to ensure the existence of a risk probability optimal policy.
To do so, we assume that the following conditions:

B1. α0i+ h0(i, a) ≥ 0, αi+ h1(i, a) ≥ 0 and βi+ h2(i, a) ≥ 0 for all a ∈ A(i) and i ≥ 1;

B2. ‖hk‖ := sup(i,a)∈K |hk(i, a)| <∞ for k = 0, 1, 2.

Under these conditions, we obtain the following fact.

Proposition 4.2. Under B1 and B2, the above queueing system satisfies Assumptions
3.2 and 3.6. Then, by Theorem 3.10, there exists an optimal policy.

P r o o f . First, we will verify Assumption 3.2. Set W (i) := i for all i ∈ E, L0 :=
α0 + α + β + ‖h0‖ + ‖h1‖ + ‖h2‖. For any i ∈ E, by B1, B2, (25), (26) and (27), we
have

q∗(i) = sup
a∈A(i)

qi(a) ≤ L0W (i). (28)

This implies Assumption 3.2(b) holds.
On the other hand, for i = 0, a ∈ A(0), from (25), we obtain∑

j∈E
W (j)q(j|0, a) = 0 ≤ (α0 + α+ β)V (0) + L0. (29)

For i ≥ 1 and a ∈ A(i), employing (27), we have∑
j∈E

W (j)q(j|i, a) ≤ (α0 + α+ β)V (i) + L0, (30)

which together with (29) gives that Assumption 3.2(a) is verified with c0 := (α0 + α +
β), b0 := L0. Thus, Assumption 3.2 holds.
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Hence, by (25), we know that i = 0 is a single absorbing state. Moreover, for
i ≥ 1, a ∈ A(i), using (27) and (28), we have

inf
(i,a)∈Bc×A(i)

∑
j∈B

q(j|i, a)

qi(a)
= inf
a∈A(0)

q(0|i, a)

qi(a)
≥ inf
a∈A(0)

α0i+ h0(i, a)

L0i
> 0,

which shows that Proposition 3.8 is trivially true. Thus, Assumption 3.6 holds. �

Example 4.3. (A management problem in an insurance company) Consider a car in-
surance company classifies its profit situation into three states 0, 1 and 2, which denote
the bankruptcy, the medium and the profit state, respectively. The state 0 means that
the company went bankrupt and had no income, i. e. r(0, a01) = 0, a01 ∈ A(0). In
state 1, the decision maker may take an insurance policy a11 or take another insurance
policy a12, which leading in a reward rate r(1, a11) ≥ 0 or a reward rate r(1, a12) ≥ 0,
respectively. In state 2, the decision maker can also choose an new insurance policy a21

resulting in a reward rate r(2, a21) ≥ 0 or choose another new insurance policy a22 to
result a reward rate r(2, a22) ≥ 0. The evolution of of this system is described as follows.
For each i ∈ {1, 2}, when the action a ∈ A(i) is selected, the system stays at i with
a random time satisfying the exponential distribution with the parameter qi(a), where
a ∈ A(i), qi(a) 6= 0. At this new decision epoch, the system state changes into a new

state j(j 6= i, j = 0, 1, 2.) with the transition probability P (j|i, a) = q(j|i,a)
qi(a) , a ∈ A(i).

We formulate this control system as a CTMDP, some parameters are given as fol-
lows. The state space E = {0, 1, 2}, the target set B = {0}; the action sets A(1) =
{a11, a12}, A(2) = {a21, a22}, A(0) = {a01}. The transition rates are given as follows:

q(0|0, a01) = 0, q(1|0, a01) = 0, q(2|0, a01) = 0,

q(0|1, a11) = 0.138, q(1|1, a11) = −0.46, q(2|1, a11) = 0.322,

q(0|1, a12) = 0.024, q(1|1, a12) = −0.06, q(2|1, a12) = 0.036, (31)

q(0|2, a21) = 0.036, q(1|2, a21) = 0.084, q(2|2, a21) = −0.12,

q(0|2, a22) = 0.005, q(1|2, a22) = 0.045, q(2|2, a22) = −0.05,

and the reward rates are given by

r(0, a01) = 0, r(1, a11) = 0.6, r(1, a12) = 0.5, r(2, a21) = 0.1, r(2, a22) = 0.2.

Employing (31), we have (i) the transition rates are uniformly bounded; (ii) The
state 0 is absorbing, and Proposition 3.8 is trivially true. Then, Assumptions 3.2 and
3.6 hold. This imply the first passage risk probability optimal policy exists. Hence,
using Theorem 3.10, the value function F ∗(1, λ) and F ∗(2, λ) are calculated by the
value iteration algorithm as follows.

Step 1: For λ ∈ [0,+∞) and i = 1, 2, set F ∗−1(i, λ) := 1,

Step 2: For i = 1,

Ha11F ∗n(1, λ) = 0.3× (1− e− 23λ
30 ) + 0.7× 0.46×

∫ λ
0.6

0

F ∗n(2, λ− 0.6u)e−0.46t dt,
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Ha12F ∗n(1, λ) = 0.4× (1− e− 3λ
25 ) + 0.6× 0.06×

∫ λ
0.5

0

F ∗n(2, λ− 0.5u)e−0.06t dt,

F ∗n+1(1, λ) = min{Ha11F ∗n(1, λ), Ha12F ∗n(1, λ)}.

For i = 2,

Ha21F ∗n(2, λ) = 0.3× (1− e−1.2λ) + 0.7× 0.12×
∫ λ

0.1

0

F ∗n(1, λ− 0.1u)e−0.12t dt,

Ha22F ∗n(1, λ) = 0.1× (1− e−λ4 ) + 0.9× 0.05×
∫ λ

0.2

0

F ∗n(1, λ− 0.2u)e−0.05t dt,

F ∗n+1(2, λ) = min{Ha21F ∗n(2, λ), Ha22F ∗n(2, λ)}.

Step 3: if |F ∗n+1(i, λ) − F ∗n(i, λ)| < 10−12, go to step 4, the value F ∗n+1 is usually
approximated as F ∗; otherwise, increase n by 1 and go to step 2.

Step 4: Plot out the graphs of these functions Ha11F ∗n(1, λ), Ha12F ∗n(1, λ), Ha21F ∗n
(2, λ), Ha22F ∗n(2, λ), F ∗(1, λ) and F ∗ (2, λ), see Figure 1 and Figure 2.
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Fig. 1. The function HaF ∗(i, λ).

From Figures 1 – 2 and the computational procedure, we have the following conclu-
sions.

(a) From Figure 1, we see that in state 1, Ha12F ∗(1, λ) is below Ha11F ∗(1, λ) when
λ ∈ (0, 37.5), and Ha11F ∗(1, λ) is below Ha12F ∗(1, λ) when λ ∈ [37.5, 90]. This suggests
that the decision maker should take the action a12 with lower risk rather than the action
a11 when λ ∈ (0, 37.5), or take the action a11 with lower risk rather than the action a12
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Fig. 2. The value function F ∗(i, λ).

when λ ∈ [37.5, 90]. Similarly, in state 2, the action a22 is with lower risk than the action
a21 when λ ∈ (0, 48.3), but the action a21 is with lower risk than the action a22 when
λ ∈ [48.3, 90].

(b) From Figures 1 – 2, we know that the optimal actions depend on the critical points
λ∗(i), and the optimal actions are given as follows:

f∗(1, λ) =

{
a12, 0 ≤ λ < 37.5;

a11, 37.5 ≤ λ ≤ 90.
, f∗(2, λ) =

{
a22, 0 ≤ λ < 48.3;

a21, 48.3 ≤ λ ≤ 90.

with F ∗(i, λ) = Hf∗F ∗(i, λ).
This implies at time t0 = 0, according to the system state i0 and the initial reward

level λ0, the decision marker chooses an action f̃∗0 (i0, λ0) := f∗(i0, λ0) ∈ A(i0). Conse-
quently, the system stays at i0 until time t1. At this point, the system goes into a new
state i1, and the decision marker gets a reward r(i0, f̃

∗
0 (i0, λ0))t1, and have a new profit

goal λ̂1 = L(i0, λ0, f̃
∗
0 (i0, λ0), θ1) for the decision marker. Then the next decision epoch

comes, based on the current state i1 and reward level λ̂1, the decision maker takes an
action f̃∗1 (i0, λ0, t1, i1, λ1) := f∗(i1, λ̂1) ∈ A(i1). The decision maker takes action re-
peatedly in this way until the system state falls into the target set B := {0}. Then, by
Theorem 3.10, we know that the policy π∗ = (f̃∗0 , f̃

∗
1 , . . .) is optimal.

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foundation of China (Grant No. 61773411;
11461008); The Basic Ability Improvement Project of Young and Middle aged Teachers in



132 H. HUO AND X. WEN

Guangxi Institution of Higher Education (Grant No. KY2016YB844,KY2019YB0369). PhD
research startup foundation of Guangxi University of Science and Technology(Grant No.18Z06).
The authors also thank the Associate Editor and the referee for many valuable comments and
suggestions which have improved this paper.

(Received January 15, 2018)

R E F E R E N C E S

[1] D. Bertsekas and S.Shreve: Stochastic Optimal Control: The Discrete-Time Case. Aca-
demic Press Inc 1996.

[2] N. Bauerle and U. Rieder: Markov Decision Processes with Applications to Finance.
Springer, Heidelberg 2011. DOI:10.1007/978-3-642-18324-9

[3] E. Feinberg: Continuous time discounted jump Markov decision processes: a discrete-event
approach. Math. Operat. Res. 29 (2004), 492–524. DOI:10.1287/moor.1040.0089

[4] X. P. Guo and O. Hernández-Lerma: Continuous-Time Markov Decision Process: Theorey
and Applications. Springer-Verlag, Berlin 2009.

[5] X. P. Guo, A. Hernández-Del-Valle, and O. Hernández-Lerma: First passage problems
for nonstationary discrete-time stochastic control systems. Europ. J. Control 18 (2012),
528–538. DOI:10.3166/ejc.18.528-538

[6] X. P. Guo, X. Y. Song and Y. Zhang: First passage optimality for continuous time Markov
decision processes with varying discount factors and history-dependent policies. IEEE
Trans. Automat. Control 59 (2014), 163–174. DOI:10.1109/tac.2013.2281475

[7] X. P. Guo, X. X. Huang, and Y. H. Huang: Finite-horizon optimality for continuous-time
Markov decision processs with unbounded transition rates. Adv. Appl. Prob. 47 (2015),
1064–1087. DOI:10.1017/s0001867800049016

[8] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Process: Basic
Optimality Criteria. Springer-Verlag, New York 1996. DOI:10.1007/978-1-4612-0729-0

[9] O. Hernández-Lerma and J. B. Lasserre: Further Topics on Discrete-Time Markov Control
Process. Springer-Verlag, New York 1999. DOI:10.1007/978-1-4612-0561-6

[10] Y. H. Huang and X. P. Guo: Optimal risk probability for first passage mod-
els in Semi-Markov processes. J. Math. Anal. Appl. 359 (2009), 404–420.
DOI:10.1016/j.jmaa.2009.05.058

[11] Y. H. Huang and X. P. Guo: First passage models for denumberable Semi-Markov pro-
cesses with nonnegative discounted cost. Acta. Math. Appl. Sinica 27 (2011), 177–190.
DOI:10.1007/s10255-011-0061-2

[12] Y. H. Huang, Q. D. Wei, and X. P. Guo: Constrained Markov decision processes with first
passage criteria. Ann. Oper. Res. 206 (2013), 197–219. DOI:10.1007/s10479-012-1292-1

[13] Y. H. Huang, X. P. Guo, and Z. F. Li: Minimum risk probability for finite hori-
zon semi-Markov decision process. J. Math. Anal. Appl. 402 (2013), 378–391.
DOI:10.1016/j.jmaa.2013.01.021

[14] X. X. Huang, X. L. Zou, and X. P. Guo: A minimization problem of the risk probability in
first passage semi-Markov decision processes with loss rates. Sci. China Math. 58 (2015),
1923–1938. DOI:10.1007/s11425-015-5029-x

[15] X. X. Huang and Y. H. Huang: Mean-variance optimality for semi-Markov decision pro-
cesses under first passage. Kybernetika 53 (2017), 59–81. DOI:10.14736/kyb-2017-1-0059

http://dx.doi.org/10.1007/978-3-642-18324-9
http://dx.doi.org/10.1287/moor.1040.0089
http://dx.doi.org/10.3166/ejc.18.528-538
http://dx.doi.org/10.1109/tac.2013.2281475
http://dx.doi.org/10.1017/s0001867800049016
http://dx.doi.org/10.1007/978-1-4612-0729-0
http://dx.doi.org/10.1007/978-1-4612-0561-6
http://dx.doi.org/10.1016/j.jmaa.2009.05.058
http://dx.doi.org/10.1007/s10255-011-0061-2
http://dx.doi.org/10.1007/s10479-012-1292-1
http://dx.doi.org/10.1016/j.jmaa.2013.01.021
http://dx.doi.org/10.1007/s11425-015-5029-x
http://dx.doi.org/10.14736/kyb-2017-1-0059


First passage risk probability for Markov decision processes 133

[16] H. F. Huo, X. L. Zou, and X. P. Guo: The risk probability criterion for discounted
continuous-time Markov decision processes. Discrete Event Dynamic system: Theory
Appl. 27 (2017), 675–699. DOI:10.1007/s10626-017-0257-6

[17] J. Janssen and R. Manca: Semi-Markov Risk Models For Finance, Insurance, and Relia-
bility. Springer, New York 2006.

[18] Y. L. Lin, R. J. Tomkins, and C. L. Wang: Optimal models for the first arrival time dis-
tribution function in continuous time with a special case. Acta. Math. Appl. Sinica 10
(1994), 194–212. DOI:10.1007/bf02006119

[19] J. Y. Liu and K. Liu: Markov decision programming – the first passage model with
denumerable state space. Systems Sci. Math. Sci. 5 (1992), 340–351.

[20] J. Y. Liu and S. M. Huang: Markov decision processes with distribution function criterion
of first-passage time. Appl. Math. Optim. 43 (2001), 187–201. DOI:10.1007/s00245-001-
0007-9

[21] Y. Ohtsubo: Optimal threshold probability in undiscounted Markov decision processes
with a target set. Appl. Math. Anal. Comp. 149 (2004), 519–532. DOI:10.1016/s0096-
3003(03)00158-9

[22] M. L. Puterman: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley, New York 1994.

[23] A. Piunovskiy and Y. Zhang: Discounted continuous-time Markov decision processes with
unbounded rates: the convex analytic approach. SIAM J. Control Optim. 49 (2011),
2032–2061. DOI:10.1137/10081366x

[24] M. Schäl: Control of ruin probabilities by discrete-time investments. Math. Meth. Oper.
Res. 70 (2005), 141–158. DOI:10.1007/s00186-005-0445-2

[25] C. B. Wu and Y. L. Lin: Minimizing risk models in Markov decision processes
with policies depending on target values. J. Math. Anal. Appl. 231 (1999), 47–57.
DOI:10.1006/jmaa.1998.6203

[26] X. Wu and X. P. Guo: First passage optimality and variance minimization of Markov
decision processes with varying discount factors. J. Appl. Prob. 52 (2015), 441–456.
DOI:10.1017/s0021900200012560

[27] S. X. Yu, Y. L. Lin, and P. F. Yan: Optimization models for the first arrival tar-
get distribution function in discrete time. J. Math. Anal. Appl. 225 (1998), 193–223.
DOI:10.1006/jmaa.1998.6015

[28] X. L. Zou, and X. P. Guo: Another set of verifiable conditions for average Markov decision
processes with Borel spaces. Kybernetika 51 (2015), 276–292. DOI:10.14736/kyb-2015-2-
0276

Haifeng Huo, Corresponding author. School of Science, Guangxi University of Science
and Technology, Liuzhou, 545006. P.R. China.

e-mail: xiaohuo08ok@163.com

Xian Wen, 1. School of Science, Guangxi University of Science and Technology, Li-
uzhou, 545006, P.R. China˙ 2. Lushan College of Guangxi University of Science and
Technology, Liuzhou, 5450616. P.R. China.

e-mail: wenxian879@163.com

http://dx.doi.org/10.1007/s10626-017-0257-6
http://dx.doi.org/10.1007/bf02006119
http://dx.doi.org/10.1007/s00245-001-0007-9
http://dx.doi.org/10.1007/s00245-001-0007-9
http://dx.doi.org/10.1016/s0096-3003(03)00158-9
http://dx.doi.org/10.1016/s0096-3003(03)00158-9
http://dx.doi.org/10.1137/10081366x
http://dx.doi.org/10.1007/s00186-005-0445-2
http://dx.doi.org/10.1006/jmaa.1998.6203
http://dx.doi.org/10.1017/s0021900200012560
http://dx.doi.org/10.1006/jmaa.1998.6015
http://dx.doi.org/10.14736/kyb-2015-2-0276
http://dx.doi.org/10.14736/kyb-2015-2-0276

		webmaster@dml.cz
	2020-02-27T15:40:31+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




