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A NONMONOTONE LINE SEARCH FOR THE LBFGS
METHOD IN PARABOLIC OPTIMAL CONTROL
PROBLEMS

Omid Solaymani Fard, Farhad Sarani, Akbar Hashemi Borzabadi and
Hadi Nosratipour

In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for ap-
proximately solving optimal control problems (OCPs) governed by one-dimensional parabolic
partial differential equations. A discretized optimal control problem is obtained by using piece-
wise linear finite element and well-known backward Euler methods. Afterwards, regarding the
implicit function theorem, the optimal control problem is transformed into an unconstrained
nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the
NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a
significant improvement especially for nonlinear and ill-posed control problems.

Keywords: optimal control, parabolic partial differential equations, backward Euler
method, nonmonotone LBFGS method

Classification: 65K10, 90C30, 90C53

1. INTRODUCTION

In recent years, optimal control problems governed by partial differential equations
(PDEs) are widely applied in finance [1, 9], biology [3, 7] and industrial [14, 16, 22].
Thus for such optimization problems, the development of efficient optimization tech-
niques is required. In the past years, some monographs have been edited by researchers
to various aspects of the optimal control of PDEs [19, 33].

The purpose of this paper is to apply an optimization method for approximately
solving one-dimensional parabolic optimal control problems. Consider the infinite di-
mensional optimization problem given by

min
y,u

J(y, u), (1)

subject to

E(y, u) = 0, (2)
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where J(y, u) is a nonnegative quadratic cost functional and E(y, u) = 0 is a one-
dimensional parabolic PDE that represents the equality constraint. Also, the variables
u and y are respectively called the control and the state variables and (2) is called the
state equation.

Numerical methods for solving optimal control problems fall into two main classes:
direct methods and indirect methods . In direct methods, the control problem is first
discretized and then a nonlinear programming (NLP) technique is applied to the resulted
optimization problem. In indirect methods, one can try to approximate the solution to
the necessary optimality conditions. In this work, a direct method is used for parabolic
control problems. In order to discretize such problems in space, the piecewise linear finite
element method is used to construct ordinary differential equations (ODEs) system.
Then, the backward Euler method is applied for discretizing the problem in time to
attain the fully discretized problem. The obtained finite dimensional problem is given
as follows

min
ŷ,û

J(ŷ, û), (3)

subject to

E(ŷ, û) = 0, (4)

where

J(ŷ, û) : R(ny+nu) −→ R, E(ŷ, û) : R(ny+nu) −→ Rny .

Here, ny and nu denote the number of state and control variables, respectively. Regard-
ing the equality-constrained problem of the form (3) – (4), the implicit function theorem
allows us to consider the state variable ŷ as a function depending on û, that is, ŷ = ŷ(û)
in a neighborhood of the solution such that E(ŷ, û) = 0 [5, 14]. That means it can be
formulated as the reduced problem

min Ĵ(û), subject to û ∈ Rnu , (5)

where Ĵ(û) := J(ŷ(û), û) is the so-called reduced objective.
There are many iterative methods for solving the problem (5). We refer to the general

literatures on numerical optimization such as [4, 25] for more details. In this paper, the
NLBFGS method developed by Amini et al. [2] is used to find the approximate solutions
of the reduced control problem (5). In nonmonotone line search methods, some growth
in the function value is permitted. As pointed out by many researchers [2, 17, 35, 37],
nonmonotone schemes can improve the likelihood of finding a global optimum, as well
as the convergence rate in cases where a monotone scheme is forced to creep along the
bottom of a narrow curved valley. Encouraging numerical results have been reported for
highly nonlinear and ill-conditioned problems by using nonmonotone schemes. Also, a
nonmonotone scheme can be very effective when combined with a Newton-type direction.

The standard limited memory BFGS (LBFGS) method is applied to the optimal
control of the viscous Burgers equation by Heinkenschloss [13], and it is shown that
the LBFGS method does not work well for this type problems due to the failure of
the Armijo line search rule used for computing an appropriate step size. Many PDE
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constrained optimization problems have nonlinear and ill-posed structures. Because of
these properties, using the nonmonotone schemes is more reliable for these problems.

The above discussion motivates us to apply a nonmonotone version of the LBFGS
method (NLBFGS) in the line search framework to find the approximate solutions of
the parabolic optimal control problems.

The paper is organized as follows. The existence of an optimal solution and opti-
mality conditions are presented in Section 2. Section 3 is devoted to the discretization
techniques for the parabolic control problems. In Section 4, the LBFGS method to gen-
erate the search direction and an adaptive nonmonotone line search to compute the step
size are described, and then Algorithm 1 is presented. Numerical results are given in
Section 5. The conclusions are discussed in the final section.

2. EXISTENCE OF AN OPTIMAL SOLUTION AND OPTIMALITY CONDITIONS

Consider the problem (3) – (4) and make the following assumption.

Assumption 2.1.

1. There exists an open set D ⊆ R(ny+nu) with {(ŷ, û) : (ŷ, û) ∈ Rny×Rnu , E(ŷ, û) =
0} ⊆ D that J and E are twice continuously differentiable on D.

2. The constraint E(ŷ, û) = 0 has for any given û ∈ Rnu a unique solution ŷ ∈ Rny .

3. Eŷ(ŷ, û), the partial Jacobian of the function E with respect to ŷ, is bijective for
all (ŷ, û) ∈ {(ŷ, û) : (ŷ, û) ∈ Rny × Rnu , E(ŷ, û) = 0}.

Definition 2.2. A state-control pair (y∗, u∗) ∈ Rny×Rnu is called optimal for (3) – (4),
if E(y∗, u∗) = 0 and

J(y∗, u∗) ≤ J(ŷ, û) ∀(ŷ, û) ∈ Rny × Rnu , E(ŷ, û) = 0.

Since Eŷ(ŷ, û) is bijective, the implicit function theorem [11] yields the existence of
the implicit function ŷ = ŷ(û) such that E(ŷ, û) = 0. This implicit function is well-
defined in a neighborhood of the solution (y∗, u∗). Now, we introduce a theorem for
existence of an optimal control u∗.

Theorem 2.3. Let Assumption 2.1 hold. If Ĵ : Rnu −→ R is bounded from below and
the level set Lθ := {û ∈ Rnu |Ĵ(û) ≤ θ} is a nonempty and bounded set for some θ <∞,
then problem (5) has an optimal solution u∗.

P r o o f . Since Ĵ is bounded from below, the infimum of Ĵ(û), û ∈ Rnu exists. Let

J∗ := inf
û∈Rnu

Ĵ(û),

hence a minimizing sequence {ûk} ⊆ Rnu can be found with

lim
k→∞

Ĵ(ûk) = J∗.
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For all k greater than some number K < ∞, all ûk have to lie in Lθ with θ ≥ J∗. Lθ
is closed because of the continuity of Ĵ (which is implied by Assumption 2.1). Since Lθ
is closed and bounded, then it is compact. Thus, there exists a convergent subsequence
{ûkp} ⊆ Rnu with ûkp −→ u∗ as p −→ ∞. Since Ĵ is continuous, u∗ is a minimum,
because

J∗ = lim
p−→∞

Ĵ(ûkp) = Ĵ(u∗).

�

2.1. Lagrangian approach and optimality conditions

Consider the problem (3)-(4). The Lagrangian function is given by

L(ŷ, û, p) = J(ŷ, û) + pTE(ŷ, û), (6)

where p ∈ Rny is called a Lagrange multiplier for the constraint E(ŷ, û) = 0.

Theorem 2.4. (Fermat) Let u∗ ∈ Rnu be a local minimizer of Ĵ : Rnu −→ R and y(u∗)
its associated state. If Assumption 2.1 hold, then there exists a Lagrange multiplier
p ∈ Rny such that the following system of equations is satisfied

∇yL(y(u∗), u∗, p) = 0 =⇒ ∇yJ(y(u∗), u∗) + ETy (y(u∗), u∗)p = 0, (7a)

∇uL(y(u∗), u∗, p) = 0 =⇒ ∇Ĵ(u∗) = ∇uJ(y(u∗), u∗) + ETu (y(u∗), u∗)p = 0, (7b)

∇pL(y(u∗), u∗, p) = 0 =⇒ E(y(u∗), u∗) = 0. (7c)

P r o o f . See [10]. �

System (7) is called the optimality system for u∗.

3. PARABOLIC OPTIMAL CONTROL PROBLEMS AND THEIR
DISCRETIZATION PROCEDURE

Consider the following one-dimensional Burgers equation

yt(x, t)− νyxx(x, t) + yyx(x, t) = u(x, t) (x, t) ∈ (0, 1)× (0, tf ), (8)

with the initial condition

y(x, 0) = f(x) x ∈ (0, 1), (9)

and the boundary conditions

y(0, t) = y(1, t) = 0 t ∈ (0, tf ), (10)

and furthermore the cost functional given by

J(y, u) =
1

2

∫ tf

0

∫ 1

0

((y(x, t)− z(x, t))2 + βu2(x, t)) dxdt. (11)
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Here z(x, t), f(x) are given functions and β, ν > 0 are given parameters. Also, tf de-
notes the final time. The control problem (8) – (11) is a nonlinear parabolic optimal
control problem and is widely applied in flow control [23]. Recently, many efforts have
been devoted to the development of the optimal control techniques for the Burgers
equation [18, 26, 31, 36]. For a given initial condition f ∈ L2(0, 1) and for the control
u ∈ L2((0, 1) × (0, tf )), the verification that the control problem (8) – (11) satisfies the
Assumption 2.1, especially the first and second one, is discussed in [34].
To discretize the control problem (8) – (11) in space, the finite element method is used.
The finite element method and its extensions are among the most powerful computa-
tional tools for solving complex ordinary and partial differential equations. The refer-
ences [6], [12] and [32] provide an excellent introduction and examples where the finite
element method has been applied to a variety of areas in science and engineering. For
the control problem (8) – (11), the finite element discretization in space is discussed by
[13]. Consider a partition of [0, 1] into n subinterval [xi−1, xi], i = 1, . . . , n, with xi = ih
and h = 1

n . Using the finite element discretization in space with n uniform subdivisions
with the step size h = 1

n for state and control variables, the control problem (8) – (11)
is transcribed into the following ordinary optimal control problem

min
~u

∫ tf

0

(
1

2
(~y(t)T − ~z(t)T )Ah(~y(t)− ~z(t)) +

β

2
~u(t)TBh~u(t)) dt, (12)

where ~y(t) = (y1(t), . . . , yn−1(t))T is the solution of

Ah
d

dt
~y(t) + Ch~y(t) +Nh(~y(t)) +Dh~u(t) = 0, t ∈ (0, tf ), (13)

~y(0) = ~y0 = ~f,

where ~u(t) = (u0(t), . . . , un(t))T , ~y0 = (y0(x1), . . . , y0(xn−1)) and ~f = (f(x1), . . . , f(xn−1)).
Also Bh ∈ R(n+1)×(n+1), Ah, Ch ∈ R(n−1)×(n−1), Dh ∈ R(n−1)×(n+1) are matrices and
Nh(~y(t)), ~z(t) ∈ R(n−1) are vectors.

The backward Euler method is applied for time discretization. The backward Euler
method is an implicit method which contrary to explicit methods ensures both uncondi-
tional stability and unconditional positivity. Because of these properties, the backward
Euler method is used for discretizing the problem (12) – (13) in time. Let

0 = t0 < t1 < · · · < tN+1 = tf

and define
∆ti = ti+1 − ti, i = 0, . . . , N.

The fully discretized problem is given as follows

min
~u0,...,~uN+1

J(~y, ~u) =

N+1∑
i=0

∆ti−1 + ∆ti
2

(
1

2
(~yTi − ~zTi )Ah(~yi − ~zi) +

β

2
~uTi Bh~ui

)
, (14)

where ∆t−1 := ∆tN+1 := 0 and ~y1, . . . , ~yN+1 is the solution of

(Ah + ∆tiCh)~yi+1 + ∆tiNh(~yi+1) + ∆tiDh~ui+1 −Ah~yi = 0, i = 0, . . . , N, (15)

where ~y0 = ~f = (f(x1), . . . , f(xn−1)). Also, we set ~u = ( ~u0
T , . . . , ~uTN+1)T .
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Remark 3.1. Discretization procedure to the one-dimensional linear parabolic control
problems is similar to the previous case. For instance, consider the following diffusion
equation

yt(x, t) = yxx(x, t) + u(x, t), (16)

with the initial condition

y(x, 0) = g(x), 0 ≤ x ≤ xf , (17)

and the boundary conditions

yx(0, t) = yx(xf , t) = 0, 0 ≤ t ≤ tf , (18)

and furthermore the cost functional given by

J(y, u) =
1

2

∫ tf

0

∫ xf

0

((y(x, t)− z(x, t))2 + βu2(x, t)) dxdt. (19)

Here z(x, t), g(x) are given functions and β > 0 is a regularization parameter. As before,
tf denotes the final time. For the control problem (16) – (19), the fully discretized
problem is given as follows

min
~u0,...,~uN+1

J(~y, ~u) =

N+1∑
i=0

∆ti−1 + ∆ti
2

(
1

2
(~yTi − ~zTi )Bh(~yi − ~zi) +

β

2
~uTi Bh~ui), (20)

where ∆t−1 := ∆tN+1 := 0 and ~y1, . . . , ~yN+1 is the solution of

(Bh + ∆tiFh)~yi+1 + ∆tiGh~ui+1 −Bh~yi = 0, i = 0, . . . , N, (21)

where ~y0 = ~g = (g(x0), . . . , g(xn)). Also ~u = ( ~u0
T , . . . , ~uTN+1)T , Bh ∈ R(n+1)×(n+1) is

defined as before, Fh, Gh ∈ R(n+1)×(n+1) are matrices and ~z(t) ∈ R(n+1) is a vector.

4. A NONMONOTONE LBFGS METHOD FOR THE OBTAINED DISCRETIZED
CONTROL PROBLEMS

For solving the fully discretized problems (14) – (15) and (20) – (21) that can be converted
to the unconstrained optimization problem (5), each iteration of a line search method
computes a search direction dk and then decides how far to move along that direction.
Most line search algorithms require dk to be a descent direction because this property
guarantees that the function Ĵ can be reduced along this direction. Moreover, the search
direction often has a Newton-type form

dk = −Hk∇Ĵ(ûk), (22)

where Hk is a quasi-Newton approximation of the inverse matrix ∇2Ĵ(ûk). The most
popular quasi-Newton algorithm is the BFGS method, named for its discoverers Broyden,
Fletcher, Goldfarb and Shanno [25]. The BFGS method computes Hk by

Hk+1 = (I − ρkskωTk )Hk(I − ρkωksTk ) + ρksks
T
k , (23)
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where sk = ûk+1 − ûk, ωk = ∇Ĵ(ûk+1)−∇Ĵ(ûk) and ρk = 1/ωTk sk.
The BFGS method is not useful for solving large problems because Hessian matrices

can not be computed at a reasonable cost or are not sparse. For this reason, the limited
memory BFGS (LBFGS) method can be an appropriate choice. This method (see [20,
24]) is an adaptation of the BFGS method for large-scale problems. The implementation
is almost identical to that of the standard BFGS method, the only difference is that the
inverse Hessian approximation is not formed explicitly, but defined by a small number of
BFGS updates. It often provides a fast rate of linear convergence, and requires minimal
storage. Hence, it is in principal suitable for large-scale optimization problems. The
main idea of the LBFGS method which is based on the BFGS updating formula is to
use the curvature information from only the most recent iterations to construct the
Hessian approximation. The curvature information from earlier iterations, which is less
likely to be relevant to the actual behavior of the Hessian at the current iteration, is
discarded in the interest of saving storage.

Let H0 be a symmetric and positive definite starting matrix and m = min{k, 5}.
Then the limited memory version of Hk is defined by

Hk+1 = (V Tk · · ·V Tk−m)H0(Vk−m · · ·Vk)

+ ρk−m(V Tk · · ·V Tk−m+1)sk−ms
T
k−m(Vk−m+1 · · ·Vk)

+ ρk−m+1(V Tk · · ·V Tk−m+2)sk−m+1s
T
k−m+1(Vk−m+2 · · ·Vk)

...

+ ρksks
T
k ,

(24)

where Vk = I − ρkyksTk . The L-BFGS code is available from the web page:
http://users.eecs.northwestern.edu/~nocedal/software.html#lbfgs.
We re-write this code in MATLAB and exploit it to generate the search direction dk.

After computing the direction dk, a nonmonotone Armijo line search procedure is
used to compute the step size αk. The nonmonotone globalization technique is useful
in difficult nonlinear problems, because of the fact that it may help escaping from steep
sided valleys and may improve both the possibility of finding the global optimum and
the rate of convergence [2, 27, 28]. Amini et al. [2] introduced the nonmonotone term
as follows

Nk = ηkĴl(k) + (1− ηk)Ĵk, (25)

where ηk ∈ [0, 1) and

Ĵl(k) = max
0≤j≤r(k)

{Ĵk−j}, k = 0, 1, 2, · · · , (26)

where r(0) = 0 and 0 ≤ r(k) ≤ min{r(k − 1) + 1,M} with M ≥ 0 and in the following,
a new nonmonotone Armijo-type line search proposed as follows

Ĵ(ûk + αkdk) ≤ Nk + δαk∇ĴT (ûk)dk. (27)

It is obvious that when ηk is close to 1, one can obtain a strong nonmonotone strategy
and get a weaker nonmonotone strategy when ηk is close to 0. Hence, by choosing ηk

http://users.eecs.northwestern.edu/~nocedal/software.html#lbfgs
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adaptively, one can increase the affect of Ĵl(k) far from the solution and decrease it
near to the solution. Considering the morphology of the function, the best criterion to
measure the closeness of the current point ûk to the solution û∗ is to assess the first-
order optimality condition, so ‖∇Ĵ(ûk)‖ can be used as a criteria for the closeness to
the solution. Therefore, the parameter ηk can be updated adaptively by

ηk = 1− e−||∇Ĵ(ûk)|| . (28)

It is clear that when ||∇Ĵ(ûk)|| is major, then ηk will also be major, therefore the
nonmonotone strategy will be stronger. On the other hand, when ||∇Ĵ(ûk)|| tends
toward zero, then ηk tends to zero, so, nonmonotone strategy will be weaker and tend
to be a monotone stategy.

Now, we can outline Algorithm 1 as the LBFGS method equipped with the nonmono-
tone Armijo line search rule for the discretized parabolic optimal control problems.

Algorithm 1: The LBFGS method with nonmonotone Armijo line search
(NLBFGS)

Input: Given û0 ∈ Rnu , σ, δ ∈ (0, 1),m,M, ε1 > 0 and a symmetric positive definite
matrix H0.
Begin
k ← 0;
Compute ∇Ĵ(ûk);
While (‖∇Ĵ(ûk)‖ ≥ ε1 ) {Start of outer loop}

{Determination of search direction}
Generate a descent direction dk using (22) and (24);
Set αk = 1 and evaluate Ĵ(ûk + αkdk);
While Ĵ(ûk + αkdk) > Nk + δαkd

T
k∇Ĵ(ûk) {Start of backtraking loop}

αk ← σαk and evaluate Ĵ(ûk + αkdk).
End While {End of inner loop}
ûk+1 ← ûk + αkdk;
k ← k + 1;
Compute ∇Ĵ(ûk);
Compute Ĵl(k), ηk and Nk by (26), (28) and (25), respectively;

End While {End of outer loop}
End

Now, by applying Theorem 2.3 for the discretized problem (14) – (15), we obtain an
algorithm for computing ∇Ĵ(û) in Algorithm 1.

Algorithm 2: Computation of ∇Ĵ(u) for the discretized problem (14) – (15)

1- Given ~u0, . . . , ~uN+1 and ~y0, compute ~y1, . . . , ~yN+1 by solving

(Ah + ∆tiCh)~yi+1 + ∆tiNh(~yi+1) = −∆tiDh~ui+1 +Ah~yi, i = 0, . . . , N.
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2- Compute ~p1, . . . , ~pN+1 by solving

(Ah + ∆tNCh + ∆tNN
′
h(~yN+1))T ~pN+1 = −∆tN

2
Ah(~yN+1 − ~zN+1),

(Ah + ∆ti−1Ch + ∆ti−1N
′
h(~yi))

T ~pi = ATh ~pi+1 −
∆ti−1 + ∆ti

2
Ah(~yi − ~zi), i = N, . . . , 1,

where N ′h(~yi) denotes the Jacobian of Nh(~yi).

3- Compute ∇Ĵ(u) from below

∇Ĵ(u) =



β∆t0
2 Bh~u0

β∆t0+∆t1
2 Bh~u1 +Dh

T (∆t0~p1)
.
.
.

β∆ti−1+∆ti
2 Bh~ui +Dh

T (∆ti−1~pi)
.
.
.

β∆tN−1+∆tN
2 Bh~uN +Dh

T (∆tN−1~pN )

β∆tN
2 Bh~uN+1 +Dh

T (∆tN~pN+1)


.

Remark 4.1. In step 2 of Algorithm 2, the determinant of the matrix of coefficients
is nonzero and thus this step satisfies the third part of Assumption 2.1. Also, the
computation of ∇Ĵ(û) for the discretized problem (20) – (21) is similar to Algorithm 2
and so is omitted.

5. COMPUTATIONAL RESULTS

This section reports numerical results obtained by testing the proposed algorithm,
NLBFGS, compared with different approximate methods. Numerical experiments are
performed in double precision arithmetic format in MATLAB 8.2 programming environ-
ment. Since the proposed algorithm equipped an nonmonotone Armijo line search does
not guarantee that yTk sk > 0. Hence, to generate this condition, we will skip the new
update if yTk sk > 0 is not satisfied. We set M = 10 to calculate the nonmonotone term
(26). If (4) is nonlinear in ŷ, then (4) must be solved using an iterative method such
that ‖E(ŷ, û)‖2 < ξ. Because of this reason, the system (15)is solved by applying an
inexact Newton’s method with a stopping tolerance of ξ = 10−2 min{hi2,∆tj2} where
i = 1, . . . , n, and j = 0, . . . , N . We also use primary functions in MATLAB program-
ming environment for solving the linear systems that occur during the comparison of the
performances of LBFGS and NLBFGS methods. The parameters used in the algorithm
NLBFGS are specified as follows:

û0 = 0, H0 = I, σ = 1
2 , δ = 10−4.
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Example 1. Consider the control problem (16) – (19) with

xf = 4, tf = 1, β = 1, g(x) = 1 + x, z(x, t) = 0.

In Tables 1 and 2, the numerical results obtained by NLBFGS method are compared
with LBFGS method. These results are obtained with m = 5, 25 and stopping criterion
ε1 = 10−6. In Table 2, the bold (LF) means that the line search fails because no sufficient
decrease could be detected for computing an appropriate step size and stopping criterion
ε1 = 10−6 is not satisfied. From Table 2, it is also evident that both methods become
weaker, especially for smaller values of 0 < β < 1. The results show that as the value
of the β parameter decreases, then the effectiveness of both methods is reduced. Also,
for more clarity, ‖∇Ĵ(ûk)‖ for all iterations with β = 10−3 and m = 25 is given in
Figure 1. The residuals values of optimal state y∗(2, t) and optimal control u∗(2, t),
for β = 1, obtained by the present method with n = 32 and N = 1024, compared
with different approximate methods by surnames radial basis functions (RBF method)
[29], shift Chebyshev polynomial (SCP method) [15], shift Legendre polynomial (SLP
method) [8] and Taylor series (TS method) [30] are shown in Tables 3 and 4. The
resulting graphs of optimal state y∗(x, t) and optimal control u∗(x, t) for β = 1 and
β = 0.001 are shown in Figures 2 and 3, respectively. Furthermore, Table 5 shows
the values of the residual error for the discretized form of (16), ‖R(x, t)‖2, for various
meshes.

Mesh Item Method with m = 5 Method with m = 25

NLBFGS LBFGS NLBFGS LBFGS

8× 64

Iteration 5 5 5 5

Ĵ 1.499437e+01 1.499437e+01 1.499437e+01 1.499437e+01

‖∇Ĵ‖2 2.248813e-07 2.248813e-07 2.248813e-07 2.248813e-07
Time 0.488308 0.490453 0.845513 0.849548

16× 256

Iteration 5 5 5 5

Ĵ 1.499860e+01 1.499860e+01 1.499860e+01 1.499860e+01

‖∇Ĵ‖2 8.199877e-08 8.199877e-08 8.199877e-08 8.199877e-08
Time 0.868159 0.888479 1.237915 1.300276

32× 1024

Iteration 4 4 4 4

Ĵ 1.499987e+01 1.499987e+01 1.499987e+01 1.499987e+01

‖∇Ĵ‖2 5.342866e-07 5.342866e-07 5.342866e-07 5.342866e-07
Time 2.179626 2.197954 2.484486 2.714798

64× 4096

Iteration 4 4 4 4

Ĵ 1.500020e+01 1.500020e+01 1.500020e+01 1.500020e+01

‖∇Ĵ‖2 1.898753e-07 1.898753e-07 1.898753e-07 1.898753e-07
Time 8.096211 8.099363 8.320182 8.541796

Tab. 1. Numerical results for Example 1 (β = 1).
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β Item Method with m = 5 Method with m = 25

NLBFGS LBFGS NLBFGS LBFGS

10−2

Iteration 13 51 11 16

Ĵ 2.049153e+00 1.485024e+01 2.049153e+00 2.049153e+00

‖∇Ĵ‖2 7.115463e-07 6.008818e-03(LF) 5.831008e-07 1.401287e-07
Time 29.137373 114.382628 22.757801 30.709843

10−3

Iteration 38 51 19 51

Ĵ 6.516870e-01 1.489867e+01 6.516872e-01 8.888296e+00

‖∇Ĵ‖2 9.991684e-07 6.351331e-03(LF) 6.873622e-07 2.122447e-03(LF)
Time 109.809225 292.347146 65.452776 219.645003

10−4

Iteration 51 51 47 51

Ĵ 2.090319e-01 1.804914e+01 2.065172e-01 1.722022e+01

‖∇Ĵ‖2 2.727256e-05(LF) 1.117405e-02(LF) 9.330302e-07 3.948579e-03(LF)
Time 195.196179 439.364967 149.270008 311.607472

10−5

Iteration 51 51 51 51

Ĵ 9.430789e-02 1.820208e+01 8.287246e-02 1.785269e+01

‖∇Ĵ‖2 6.560806e-05(LF) 8.024630e-03(LF) 9.423505e-05(LF) 1.465229e-03(LF)
Time 243.865859 582.593476 215.915091 462.616446

10−6

Iteration 51 51 51 51

Ĵ 8.858351e-02 5.934376e+00 6.828165e-02 1.689529e+01

‖∇Ĵ‖2 1.016241e-04(LF) 3.468926e-03(LF) 1.184144e-04(LF) 3.831390e-03(LF)
Time 284.845243 746.318423 253.121125 636.513783

Tab. 2. Numerical results for Example 1 with the mesh 64× 4096.

‖y∗NLBFGS − y∗RBF‖2 ‖y∗NLBFGS − y∗SCP‖2 ‖y∗NLBFGS − y∗SLP‖2 ‖y∗NLBFGS − y∗TS‖2
1.61e-02 2.8895e-04 2.7531e-04 3.3410e-04

Tab. 3. Residuals values of y∗(2, t) with n = 32 and N = 1024.

‖u∗
NLBFGS − u∗

RBF‖2 ‖u∗
NLBFGS − u∗

SCP‖2 ‖u∗
NLBFGS − u∗

SLP‖2 ‖u∗
NLBFGS − u∗

TS‖2
2.3e-03 1.3e-03 1.2e-03 3.6e-03

Tab. 4. Residuals values of u∗(2, t) with n = 32 and N = 1024.

β Mesh 8× 64 16× 256 32× 1024 64× 4096 128× 16384

1 ‖R(x, t)‖2 3.2392e-16 2.4827e-16 1.7829e-16 1.2884e-16 9.2308e-17

0.001 ‖R(x, t)‖2 3.7200e-17 3.8083e-17 2.8253e-17 2.1376e-17 1.7129e-17

Tab. 5. ‖R(x, t)‖2 for Example 1 (m = 25).
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Fig. 1. ‖∇Ĵ(ûk)‖ for Example 1 with the mesh 64× 4096.
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Fig. 2. Numerical solutions for the optimal state (left) and optimal

control (right) via the NLBFGS method for Example 1 with n = 8

and N = 64 (β = 1).
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Fig. 3. Numerical solutions for the optimal state (left) and optimal

control (right) via the NLBFGS method for Example 1 with n = 8

and N = 64 (β = 0.001).
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Example 2. Consider the control problem (8) – (11) with

tf = 1, β = 0.05, ν = 0.01 and

z(x, t) = f(x) =

{
1 x ∈ (0, 1

2 ],
0 else.

In Table 6, the numerical results obtained by NLBFGS method are compared with
LBFGS method. These results are obtained with stopping criterion ε1 = 10−5. The re-
sulting graphs of optimal state y∗(x, t) and optimal control u∗(x, t) are shown in Figure 4.

Mesh Item Method with m = 5 Method with m = 25

NLBFGS LBFGS NLBFGS LBFGS

8× 64

Iteration 9 51 8 12

Ĵ 3.648315e-02 3.651749e-02 3.648311e-02 3.648323e-02

‖∇Ĵ‖2 6.194044e-06 2.393841e-04(LF) 4.884531e-06 9.112672e-06
Time 0.932989 3.008503 0.864858 0.891160

16× 256

Iteration 9 38 8 12

Ĵ 4.797972e-02 4.797965e-02 4.798137e-02 4.797974e-02

‖∇Ĵ‖2 2.667570e-06 2.635461e-06 9.950448e-06 2.959558e-06
Time 3.944498 8.837802 3.389260 3.955541

32× 1024

Iteration 7 51 8 12

Ĵ 5.598883e-02 9.289697e-02 5.598737e-02 5.598938e-02

‖∇Ĵ‖2 7.756053e-06 9.671602e-04(LF) 4.788751e-06 6.262238e-06
Time 11.558364 54.334143 12.156612 13.622016

64× 4096

Iteration 6 43 6 12

Ĵ 6.087640e-02 6.086642e-02 6.087640e-02 6.085215e-02

‖∇Ĵ‖2 6.842519e-06 4.796432e-06 6.842519e-06 1.473778e-06
Time 41.397493 174.344337 39.994682 55.644107

Tab. 6. Numerical results for Example 2.
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Example 3. Consider the control problem (8) – (11) with

tf = 1, β = 0.001, ν = 0.05, f(x) = sin(4πx), z(x, t) = 0.

In Table 7, the numerical results obtained by NLBFGS method are compared with
LBFGS method. These results are obtained with m = 5, 25 and stopping criterion
ε1 = 10−5. Figure 5 shows the graphs of optimal state y∗(x, t) and optimal control
u∗(x, t).

Mesh Item Method with m = 5 Method with m = 25

NLBFGS LBFGS NLBFGS LBFGS

8× 64

Iteration 5 51 5 51

Ĵ 4.133468e-03 7.829341e-03 4.133468e-03 6.984157e-03

‖∇Ĵ‖2 6.328187e-06 1.004423e-03(LF) 6.328187e-06 3.010519e-04(LF)
Time 0.511251 11.523740 0.510006 6.370753

16× 256

Iteration 5 51 5 51

Ĵ 5.542397e-03 1.043922e-02 5.542397e-03 1.122081e-02

‖∇Ĵ‖2 9.253305e-06 4.995947e-04(LF) 9.253305e-06 2.092796e-04 (LF)
Time 2.152638 46.344747 2.451300 28.532890

32× 1024

Iteration 4 51 4 51

Ĵ 6.154599e-03 8.958653e-03 6.154599e-03 8.314431e-03

‖∇Ĵ‖2 8.199020e-06 1.457551e-04(LF) 8.199020e-06 3.935704e-05(LF)
Time 6.545823 184.164083 6.187243 96.019940

64× 4096

Iteration 2 6 2 6

Ĵ 7.276688e-03 8.439227e-03 7.276688e-03 8.439227e-03

‖∇Ĵ‖2 7.266556e-06 9.238552e-06 7.266556e-06 9.238552e-06
Time 15.227677 44.394250 14.062550 41.377309

Tab. 7. Numerical results for Example 3.
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Fig. 5. Numerical solutions for the optimal state (left) and optimal

control (right) via the NLBFGS method for Example 3 with n = 8

and N = 64.
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Example 4. Consider the control problem (8) – (11) with

tf = 1, β = 0.01, ν = 0.01, f(x) = sin(4πx), z(x, t) = 0.

In Table 8, the numerical results obtained by NLBFGS method are compared with
LBFGS method. These results are obtained with stopping criterion ε1 = 10−5. Figure 6

shows the graphs of optimal state y∗(x, t) and optimal control u∗(x, t).

Mesh Item Method with m = 5 Method with m = 25

NLBFGS LBFGS NLBFGS LBFGS

8× 64

Iteration 5 51 5 7

Ĵ 1.385427e-02 4.106236e-02 1.385322e-02 1.385427e-02

‖∇Ĵ‖2 9.216487e-06 2.613823e-03(LF) 9.216487e-06 4.567480e-06
Time 0.431840 5.037703 0.556830 0.575118

16× 256

Iteration 7 51 7 8

Ĵ 1.866906e-02 2.556663e-02 1.866742e-02 1.866876e-02

‖∇Ĵ‖2 4.577507e-06 5.207466e-04(LF) 4.616202e-06 2.046263e-06
Time 2.254163 23.797662 2.222336 2.595283

32× 1024

Iteration 6 10 6 8

Ĵ 2.025195e-02 2.024898e-02 2.023379e-02 2.025195e-02

‖∇Ĵ‖2 6.059584e-06 7.632950e-06 6.059584e-06 3.085386e-06
Time 7.431759 10.538716 7.424505 8.395777

64× 4096

Iteration 5 6 5 6

Ĵ 2.070344e-02 2.079572e-02 2.070344e-02 2.079572e-02

‖∇Ĵ‖2 4.909728e-06 5.708431e-06 4.909728e-06 5.708431e-06
Time 27.106260 30.321599 25.292322 28.031794

Tab. 8. Numerical results for Example 4.
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Example 5. Consider the problem (8) – (11) with the following cost functional

J(y, u) =
1

2

∫ tf

0

∫ 1

0

((y(x, t)−z(x, t))2+βu2(x, t)) dxdt+
1

2

∫ 1

0

(y(x, tf )−f(x))2dx (29)

and with

tf = 1, β = 0.01, ν = 0.01, z(x, t) = f(x) = sin(π tan(1.3(2x−1))
tan(1.3) ).

Here, the function f(x) is the same as in (9). This example is an optimal flow control
problem and corresponds to a target optimal control problem. ([23], section 7.2). Two
targets z(x, t) and f(x) are generally determined based on physical arguments such as
laminar flow and solutions of minimum drag. In Table 9, the numerical results obtained
by NLBFGS method are compared with LBFGS method. These results are obtained
with m = 5, 25 and stopping criterion ε1 = 10−5. Figure 7 shows the graphs of optimal
state y∗(x, t) and optimal control u∗(x, t). Also, Table 10 shows the values of the residual
error for the discretized form of (8), ‖R(x, t)‖2, for various meshes.

Mesh Item Method with m = 5 Method with m = 25

NLBFGS LBFGS NLBFGS LBFGS

8× 64

Iteration 20 51 14 51

Ĵ 4.792175e-03 1.014637e-01 4.792634e-03 7.789185e-02

‖∇Ĵ‖2 5.763069e-06 8.246042e-03(LF) 6.644234e-06 7.055744e-03(LF)
Time 2.047803 9.087033 1.438303 5.966637

16× 256

Iteration 14 51 12 51

Ĵ 6.685872e-03 7.802178e-02 6.684669e-03 7.349081e-02

‖∇Ĵ‖2 7.965832e-06 2.032267e-03(LF) 7.793169e-06 1.628931e-03(LF)
Time 5.989127 35.234971 5.172790 25.602314

32× 1024

Iteration 11 51 11 51

Ĵ 6.723092e-03 6.147657e-02 6.710989e-03 6.748334e-02

‖∇Ĵ‖2 9.730515e-06 4.330754e-04(LF) 8.728665e-06 5.809067e-04(LF)
Time 18.697483 127.543102 18.519027 94.483924

64× 4096

Iteration 9 51 10 51

Ĵ 6.967697e-03 1.264703e-01 6.862438e-03 1.034227e-01

‖∇Ĵ‖2 8.253798e-06 3.019590e-04(LF) 8.003223e-06 2.605691e-04(LF)
Time 66.359313 507.085028 71.685829 378.163260

Tab. 9. Numerical results for Example 5.

m Mesh 8× 64 16× 256 32× 1024 64× 4096

5 ‖R(x, t)‖2 5.1871e-08 4.6291e-09 9.3675e-11 1.4799e-12

25 ‖R(x, t)‖2 5.1954e-08 4.6118e-09 8.7941e-11 1.4199e-12

Tab. 10. ‖R(x, t)‖2 for Example 5
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Fig. 7. Numerical solutions for the optimal state (left) and optimal

control (right) via the NLBFGS method for Example 5 with n = 8

and N = 64 (m = 25).

As can be seen in Tables 1,2 and 6-9, the proposed algorithm, NLBFGS algorithm,
with m = 25 is the most robust, i. e., it can solve the most problems. On the whole,
the figures and tables show that the proposed algorithm has efficient performances and
promising behavior for solving parabolic optimal control problems.

6. CONCLUSION

In this paper, a nonlinear optimization scheme has been used to find the optimal control
to parabolic distributed parameter systems. It is well-known that the nonmonotone
globalization technique is a useful tool in difficult nonlinear problems, because of the fact
that it may help escaping from steep sided valleys and may improve both the possibility
of finding the global optimum and the rate of convergence. So, due to the efficiency and
low memory requirements of LBFGS method, in this paper, an efficient nonmonotone
version of the LBFGS method, NLBFGS, has been applied to solve the unconstrained
optimization problem arisen from discretization of the optimal control problems. To
validate the algorithm NLBFGS from a computational point of view, we compared it
with different approximate methods. This strategy is especially suited for problems
which are ill-posed. Preliminary numerical results indicated that the proposed algorithm
has efficient performances and promising behavior for solving parabolic optimal control
problems.

(Received September 10, 2017)
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