Czechoslovak Mathematical Journal

Ouahiba Bessouf; Abdelkader Khelladi; Thomas Zaslavsky Transitive closure and transitive reduction in bidirected graphs

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 2, 295-315

Persistent URL: http://dml.cz/dmlcz/147724

Terms of use:

© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

TRANSITIVE CLOSURE AND TRANSITIVE REDUCTION IN BIDIRECTED GRAPHS

OUAHIBA BESSOUF, ABDELKADER KHELLADI, Algiers,
THOMAS ZASLAVSKY, Binghamton

Received December 22, 2016. Published online April 25, 2019.

Abstract. In a bidirected graph, an edge has a direction at each end, so bidirected graphs generalize directed graphs. We generalize the definitions of transitive closure and transitive reduction from directed graphs to bidirected graphs by introducing new notions of bipath and bicircuit that generalize directed paths and cycles. We show how transitive reduction is related to transitive closure and to the matroids of the signed graph corresponding to the bidirected graph.

Keywords: bidirected graph; signed graph; matroid; transitive closure; transitive reduction

MSC 2010: 05C22, 05C20, 05C38

1. Introduction

Bidirected graphs are a generalization of undirected and directed graphs. Harary defined in 1954 the notion of signed graph. For any bidirected graph, we can associate a signed graph of which the bidirected graph is an orientation. Reciprocally, any signed graph can be associated to a bidirected graph in multiple ways, just as a graph can be associated to a directed graph. Transitive closure is well known. Transitive reduction in directed graphs was introduced by Aho, Garey, and Ullman, see [1].

The aim of this paper is to extend the concepts of transitive closure, which is denoted by $\mathrm{Tr}(G_{\tau})$, and transitive reduction, which is denoted by $\mathrm{R}(G_{\tau})$, to bidirected graphs. We seek to find definitions of transitive closure and transitive reduction for bidirected graphs through which the classical concepts would be a special case. We establish for bidirected graphs some properties of these concepts and a duality relationship between transitive closure and transitive reduction.

DOI: 10.21136/CMJ.2019.0644-16 295

2. Bidirected graphs

We allow graphs to have loops and multiple edges. Given an undirected graph G = (V, E), the set of half-edges of G is the set $\Phi(G)$ defined as follows:

$$\Phi(G) = \{(e, x) \in E \times V : e \text{ is incident with } x\}.$$

Thus, each edge e with ends x and y is represented by its two half-edges (e, x) and (e, y). For a loop, the notation does not distinguish between its two half-edges. There is no very good notation for the two half-edges of a loop, but we believe the reader will be able to interpret our formulas for loops.

A chain (or walk) is a sequence of vertices and edges, $x_0, e_1, x_1, \ldots, e_k, x_k$, such that $k \ge 0$ and x_{i-1} and x_i are the ends of e_i for all $i = 1, \ldots, k$. It is elementary (or a path) if it does not repeat any vertices or edges. It is closed if $x_0 = x_k$ and k > 0. A partial graph of a graph is also known as a spanning subgraph, i.e., it is a subgraph that contains all vertices. The terminology is due to Berge in [2].

2.1. Basic properties of bidirected graphs.

Definition 2.1. A biorientation of G is a signature of its half-edges:

$$\tau : \Phi(G) \to \{-1, +1\}.$$

It is agreed that $\tau(e, x) = 0$ if (e, x) is not a half-edge of G; that makes it possible to extend τ to all of $E \times V$, which we will do henceforth.

A bidirected graph is a graph provided with a biorientation; it is written $G_{\tau} = (V, E; \tau)$.

Definition 2.2. An edge $e = \{x, y\}$ in a bidirected graph is notated $e = \{x^{\alpha}, y^{\beta}\}$ if $\tau(e, x) = \alpha$ and $\tau(e, y) = \beta$. Two edges e, f, both notated $\{x^{\alpha}, y^{\beta}\}$, are called *parallel*.

Each edge (including a loop) has four possible biorientations (Figure 1); therefore the number of biorientations of G is $4^{|E|}$.

Figure 1. The four possible biorientations of an edge $\{x,y\}$ of G_{τ} .

Definition 2.3. We define two subsets of V:

$$V_{+1} = \{x \in G_{\tau} : \ \tau(e,x) = +1 \ \forall (e,x) \in \Phi_x\}$$
 is the set of *source* vertices, $V_{-1} = \{x \in G_{\tau} : \ \tau(e,x) = -1 \ \forall (e,x) \in \Phi_x\}$ is the set of *sink* vertices,

where Φ_x is the set of all half-edges incident with x. (Note that this is the opposite convention for arrows to that in [10].)

We observe that $V_{+1} \cap V_{-1}$ is the set of vertices that are not an end of any edge (isolated vertices).

Definition 2.4 ([3]). Let $G_{\tau} = (V, E; \tau)$ be a bidirected graph. Then W (or \overline{W}) is a function defined on V (or E) as follows:

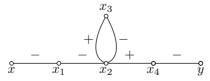
$$W \colon V \to \mathbb{Z}, \qquad x \mapsto W(x) = \sum_{e \in E} \tau(e, x),$$
$$\overline{W} \colon E \to \{-2, 0, 2\}, \quad e \mapsto \overline{W}(e) = \sum_{x \in V} \tau(e, x).$$

Thus, by Definitions 2.1 and 2.4, W(x) is the number of positive half-edges incident with x minus the number of negative half-edges incident with x.

Definition 2.5 ([4]). A signed graph is a triple $(V, E; \sigma)$, where G = (V, E) is an undirected graph and σ is a signature of the edge set E:

$$\sigma \colon E \to \{-1, +1\}.$$

A signed graph is denoted $G_{\sigma} = (V, E; \sigma)$.


Definition 2.6 ([3]). Let $G_{\sigma} = (V, E; \sigma)$ be a signed graph and P a chain (not necessarily elementary) connecting x and y in G_{σ} :

$$P: x, e_1, x_1, e_2, x_2, \ldots, y,$$

where x, x_1, \ldots, y are vertices and e_1, e_2, \ldots are edges of G. We put

$$\sigma(P) = \prod_{e_i \in P} \sigma(e_i).$$

We write P^{α} instead of P if $\alpha = \sigma(P)$. P^{α} is called a *signed chain* of sign α connecting x and y. A signed chain is *minimal* if it contains no signed chain with the same ends and the same sign. See Figure 2.

 P^+ : $x, x_1, x_2, x_3, x_2, x_4, y$ is a positive signed chain. P^- : x, x_1, x_2, x_4, y is a negative signed chain.

Figure 2. P^+ contains P^- as a subchain, but both P^+ and P^- are minimal signed chains from x to y because their signs differ.

Especially, a cycle in a signed graph is *positive* if the number of its negative edges is even. In the opposite case, it is *negative*.

Definition 2.7. A signed graph is *balanced* if all its cycles are positive, see [4]. A signed graph is *antibalanced* if, by negating the signs of all edges, it becomes balanced, see [5].

It follows from the definitions that a cycle is balanced if and only if it is positive.

Lemma 2.8. A signed graph is antibalanced if and only if every positive cycle has even length and every negative cycle has odd length.

Proof. Let G_{σ} be a signed graph. It is antibalanced if and only if $G_{-\sigma}$ has only positive cycles. The sign of a cycle is the same in G_{σ} and $G_{-\sigma}$ if the cycle has even length and is the opposite if the cycle has odd length. Thus, $G_{-\sigma}$ is balanced if and only if every even cycle in G_{σ} is positive and every odd cycle in G_{σ} is negative. \square

Definition 2.9 ([10]). For a biorientation τ of a graph $G_{\tau} = (V, E; \tau)$ we define a signature σ of E for an edge e with ends x and y by

$$\sigma(e) = -\tau(e, x)\tau(e, y).$$

Definition 2.10. A signed or bidirected graph is all positive (or all negative) if all its edges are positive (or negative); i.e., in a bidirected graph, for every edge e, $\overline{W}(e) = 0$ (or $\neq 0$).

We observe that a bidirected graph that is all positive is a usual directed graph. Each bidirected graph determines a unique signature. However, the number of biorientations of a signed graph is $2^{|E|}$ because each edge has two possible biorientations.

Definition 2.11 ([6], [10]). Let $G_{\tau} = (V, E; \tau)$ be a bidirected graph and let X be a set of vertices of G. A new biorientation τ_X of G is defined as

$$\tau_x(e, x) = -\tau(e, x) \quad \forall x \in X,$$

$$\tau_x(e, y) = \tau(e, y) \quad \forall y \in V - X$$

for any edge $e \in E$, where x and y are the ends of the edge e. We say that the biorientation τ_X and the bidirected graph G_{τ_X} are obtained, respectively, from τ and G_{τ} by switching X. If $X = \{x\}$, where $x \in V$, we write τ_x for simplicity. The definition of switching a signed graph is similar. Let G_{σ} be a signed graph and $X \subseteq V$. The sign function σ switched by X is σ_X defined as

$$\sigma_X(e) = \begin{cases} \sigma(e) & \text{if } x, y \in X \text{ or } x, y \in V - X, \\ -\sigma(e) & \text{otherwise.} \end{cases}$$

We note that switching X is a self-inverse operation. It also follows from the definitions that the following result holds:

Proposition 2.12. Let G_{τ} be a bidirected graph and σ the signature determined by τ . Let $X \subseteq V$. Then τ_X determines the signature σ_X .

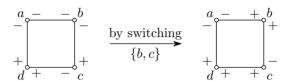


Figure 3. Example of switching a bidirected graph.

Proposition 2.13.

- (i) The result of switching a balanced signed graph is balanced, see [9].
- (ii) A signed graph is balanced if and only if there is a subset X of vertices such that switching X produces a signed graph in which all edges are positive, see [4], [9].
- (iii) A signed graph is antibalanced if and only if there is a subset X of vertices such that switching X produces a signed graph in which all edges are negative, see [5], [9].

Proof. (i) Switching does not change the sign of any cycle.

(ii) Harary in [4] has shown that the set of negative edges of a balanced signed graph, if it is not empty, constitutes a cocycle of G_{σ} . The cocycle divides V into two sets, X and V-X, such that F consists of all edges with one end in each set. Thus, by switching X, we obtain $\sigma(e) = +1$ for all $e \in F$ in the new graph G_{σ_X} and the other edge signs remain positive. Thus G_{σ_X} is all positive.

Conversely, if there exists $X \subseteq V$ such that G_{σ_X} is all positive, then G_{σ_X} is balanced, so G_{σ} is balanced by part (i).

(iii) G_{σ} is antibalanced $\Leftrightarrow G_{-\sigma}$ is balanced $\Leftrightarrow \exists X \subseteq V$ such that $G_{(-\sigma)_X} = G_{-\sigma_X}$ is all positive $\Leftrightarrow \exists X \subseteq V$ such that G_{σ_X} is all negative.

Proposition 2.13 applies to bidirected graphs (cf. [3]) because of Definition 2.9 and Proposition 2.12. Similarly, all propositions about signed graphs G_{σ} apply to bidirected graphs G_{τ} through the signature σ determined by τ .

2.2. Bipaths in bidirected graphs.

Definition 2.14 ([3]). Let G_{τ} be a bidirected graph and let P be a chain connecting x and y in G_{τ} :

$$P: xe_1x_1 \dots e_ix_ie_{i+1} \dots x_{k-1}e_ky$$
.

We define

$$W_P(x_i) = \tau(e_i, x_i) + \tau(e_{i+1}, x_i) \quad \forall x_i \in V(P), \ i = 1, \dots, k-1.$$

(We note that $W_P(x_i)$ and $W_P(x_j)$ may differ when $i \neq j$ even if $x_i = x_j$.) Let $\tau(e_1, x) = \alpha$ and $\tau(e_k, y) = \beta$; then we write

$$P = P_{(\alpha,\beta)}(x,y) \colon x^{\alpha} e_1 x_1 \dots e_i x_{i+1} e_{i+1} \dots x_{k-1} e_k y^{\beta}.$$

We call $P_{(\alpha,\beta)}(x,y)$ an (α,β) bipath from x to y, or more simply a bipath from x^{α} to y^{β} if:

- (i) $k \geqslant 1$.
- (ii) $\tau(e_1, x) = \alpha$, and $\tau(e_k, y) = \beta$.
- (iii) $W_P(x_i) = 0 \ \forall i = 1, ..., k-1 \ (\text{if } k > 1).$
- (iv) $P_{(\alpha,\beta)}(x,y)$ is minimal for the properties (i)–(iii), given x^{α} and y^{β} .

If $P_{(\alpha,\beta)}(x,y)$ satisfies (i)–(iii), we call it a *bichain* from x^{α} to y^{β} . Thus, a bipath is a minimal bichain (in the sense of (iv)); however, it need not be a path (an elementary chain).

In the notation for a bipath P, we define $x_0 = x$ and $x_k = y$. Then edge e_i has vertices x_{i-1} and x_i for all i = 1, 2, ..., k.

Definition 2.15. If $P_{(\alpha,\beta)}(x,y)$ is a bipath from x^{α} to y^{β} , then

$$P_{(\beta,\alpha)}(y,x): y^{\beta}e_kx_{k-1}\dots e_{i+1}x_ie_i\dots x_1e_1x^{\alpha}$$

is also a bipath, from y^{β} to x^{α} . It is called the *reverse* of $P_{(\alpha,\beta)}(x,y)$.

Remark 2.16. In a bipath, no two consecutive edges e_i , e_{i+1} can be equal, because then by cutting out $e_i x_i e_{i+1}$ we would obtain a shorter bipath, which is absurd.

Proposition 2.17. The sign of a bichain $P_{(\alpha,\beta)}(x,y)$ is $\sigma(P) = -\alpha\beta$.

Proof. Let $P_{(\alpha,\beta)}(x,y)$: $x^{\alpha}e_1x_1 \dots x_{k-1}e_ky^{\beta}$ be a bichain from x^{α} to y^{β} . The sign of this bichain is given by

$$\begin{split} \sigma(P_{(\alpha,\beta)}(x,y)) &= \prod_{e \in P_{(\alpha,\beta)}(x,y)} \sigma(e) \\ &= [-\tau(e_1,x)\tau(e_1,x_1)][-\tau(e_2,x_1)\tau(e_2,x_2)] \dots [-\tau(e_{k-2},x_{k-2})\tau(e_{k-1},x_{k-1})] \\ &\quad \times [-\tau(e_k,x_{k-1})\tau(e_k,y)] \\ &= -\tau(e_1,x)[-\tau(e_1,x_1)\tau(e_2,x_1)] \dots [-\tau(e_{k-1},x_{k-1})\tau(e_k,x_{k-1})]\tau(e_k,y). \end{split}$$

According to the definition of bichains we have

$$W_P(x_i) = \tau(e_i, x_i) + \tau(e_{i+1}, x_i) = 0,$$

therefore $\tau(e_i, x_i)\tau(e_{i+1}, x_i) = -1$ for all $i = 1, \dots, k-1$. Thus,

$$\sigma(P_{(\alpha,\beta)}) = -\tau(e_1, x)\tau(e_k, y) = -\alpha\beta,$$

which proves the result.

Proposition 2.18. Let G_{τ} be a bidirected graph and let

$$P: x_0e_1x_1 \dots e_ix_ie_{i+1} \dots x_{k-1}e_kx_k,$$

where $k \ge 1$ and $e_i = \{x_{i-1}^{\alpha_{i-1}}, x_i^{\beta_i}\}$ for i = 1, ..., k, be a chain in G_{τ} . Then P is a bipath if and only if

- (a) $\alpha_i = -\beta_i$ for i = 1, ..., k-1 and
- (b) $x_i^{\alpha_i} \neq x_j^{\alpha_j}$ when i < j and $(i, j) \neq (0, k)$; and then it is an (α_0, β_k) bipath from $x_0^{\alpha_0}$ to $x_k^{\beta_k}$.

Proof. Let $x = x_0$, $y = x_k$, $\alpha = \alpha_0$, $\beta = \alpha_k$. Since $W_P(x_i) = \beta_i + \alpha_i$ for i = 1, ..., k-1, condition (iii) is equivalent to condition (a).

Assume P is an (α, β) bipath from x to y. Therefore, P is a chain

$$x^{\alpha_0}e_1x_1\dots e_ix_ie_{i+1}\dots x_{k-1}e_ky^{\beta_k}$$

from $x_0^{\alpha_0}$ to $x_k^{\beta_k}$ that satisfies (i)–(iii) in Definition 2.14. If $x_i^{\alpha_i} = x_j^{\alpha_j}$ for some i < j, then by cutting out $e_{i+1} \dots e_j$ we get a shorter chain with the same properties (i)–(iii), unless (i,j) = (0,k). We conclude that if $x_i = x_j$ $(i < j \text{ and } (i,j) \neq (0,k))$, then $\alpha_i \neq \alpha_j$. It follows that P satisfies (b).

Assume P satisfies (a) and (b). Then it satisfies (i)–(iii). Suppose P were not minimal with those properties. Then there is an (α, β) bipath Q from x to y whose edges are some of the edges of P in the same order as in P. If Q begins with edge e_{i+1} , then it begins at $x_i^{\alpha_i}$ and $x_i^{\alpha_i} = x^{\alpha} = x_0^{\alpha_0}$, therefore i = 0 by (b). Similarly, Q ends at edge e_k and vertex $x_k^{\beta_k}$. If Q includes edges e_i and e_{j+1} with i < j but not edges e_{i+1}, \ldots, e_j , then $x_i^{\alpha_i} = x_i^{-\beta_i} = x_j^{\alpha_j}$, contrary to (b). Therefore, Q cannot omit any edges of P. It follows that P is minimal satisfying (i)–(iii), so P is an (α, β) bipath from x to y.

Corollary 2.19. If P is a bipath that contains a positive cycle C, then P = C.

Examples of bipaths can be seen in Figure 4.

We now give the different types of bipaths which have a unique cycle that is negative.

Definition 2.20. A purely cyclic bipath at a vertex x in a bidirected graph is a bipath C from x to x whose chain is a cycle. We say C is on the vertex x. The sign of C is the sign of its chain.

We note that in a purely cyclic negative bipath C on x, x is the unique vertex in V(C) such that $W_C(x) = \pm 2$.

Definition 2.21. A cyclic bipath P connecting two vertices x and y (not necessarily distinct) in a bidirected graph G_{τ} , is a bipath from x to y which contains a unique purely cyclic bipath, which is negative. Figure 4 shows the three possible cases. We note that $\alpha, \beta, \gamma, \lambda \in \{-1, +1\}$. If x = y in type (a), the cyclic bipath is purely cyclic.

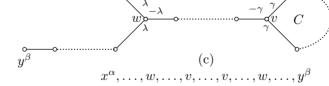


Figure 4. The three types of cyclic bipath. In (a), x = y is possible. In (c), x or y or both may equal w, but $w \neq v$.

Lemma 2.22. A cyclic bipath must have one of the forms in Figure 4.

Proof. Let P be a cyclic bipath from x to y, C the purely cyclic bipath in P, and v the vertex at which $W_C(v) = \pm 2$. The graph of P must consist of C and

trees attached to C at a vertex, and it can have at most two vertices with degree 1 because P has only two ends. We may assume $P \neq C$ and $y \neq v$. Since $W_C(v) \neq 0$, P must enter C at v (unless x = v) and leave it at v to get to y. Therefore, there must be a tree attached to v. There cannot be a tree attached to any vertex z of C other than v, because P would have to enter the tree from C at z^{γ} and retrace its path back to z^{γ} in C, which would oblige P to contradict Remark 2.16. Therefore x and y are both in the tree T attached to v, possibly with x = v. If $x \neq v$, then x must be a vertex of degree 1 in T, or P would contradict Remark 2.16. Similarly, y must be a vertex of degree 1 in T. As T must be the union of the paths in T from x and y to v, P can only be one of the types in Figure 4.

Definition 2.23 ([3]). Let G_{τ} be a bidirected graph, let $\alpha, \beta \in \{-1, +1\}$, and let C be a bipath $C: x^{\alpha}e_1x_1 \dots x_{k-1}e_kx^{\beta}$. If $\alpha = -\beta$, we say that C is a bicircuit of G_{τ} .

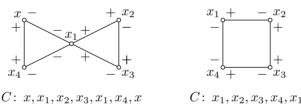


Figure 5. Two kinds of bicircuit.

3. Transitive closure in bidirected graphs

Definition 3.1. Let G_{τ} be a bidirected graph. G_{τ} is *transitive* if for any vertices x and y (not necessarily distinct) such that there is an (α, β) bipath from x^{α} to y^{β} in G_{τ} , there is an edge $\{x^{\alpha}, y^{\beta}\}$ in G_{τ} .

Definition 3.2. Let G_{τ} be a bidirected graph. The transitive closure of G_{τ} is the graph, notated $\text{Tr}(G_{\tau}) = (V, \text{Tr}(E), \tau)$, such that $\{x^{\alpha}, y^{\beta}\} \in \text{Tr}(E)$ if there is a bipath $P_{(\alpha,\beta)}(x,y)$ from x^{α} to y^{β} in G_{τ} (x and y are not necessarily distinct).

Remark 3.3. We see that $E \subseteq \text{Tr}(E)$. If $\{x^{\alpha}, y^{\beta}\} \in E$, then $\{x^{\alpha}, y^{\beta}\}$ is the edge of a bipath of length 1, so $\{x^{\alpha}, y^{\beta}\} \in \text{Tr}(E)$.

Remark 3.4. If there is a bipath $P_{(\alpha,\beta)}(x,x)$ from x^{α} to x^{β} in G_{τ} , then there is a loop $\{x^{\alpha}, x^{\beta}\}$ with sign $-\alpha\beta$ in $Tr(G_{\tau})$.

Remark 3.5. If G_{τ} contains a bicircuit C, then $\text{Tr}(G_{\tau})$ contains all the edges $\{x^{-\alpha}, y^{-\beta}\}$ such that $\{x^{\alpha}, y^{\beta}\} \in E(C)$. In other words, the transitive closure contains the opposite orientation of every edge that lies in a bicircuit in G_{τ} . For an example see Figure 9.

Proposition 3.6. Tr is an abstract closure operator, that is:

- (i) G_{τ} is a partial graph of $Tr(G_{\tau})$.
- (ii) If H_{τ} is a partial graph of G_{τ} , then $Tr(H_{\tau})$ is a partial graph of $Tr(G_{\tau})$.
- (iii) $\operatorname{Tr}(\operatorname{Tr}(G_{\tau})) = \operatorname{Tr}(G_{\tau}).$

Proof. (i) and (ii) are obvious from the definition.

(iii) We prove that $\operatorname{Tr}(G_{\tau})$ is transitive. Let $P\colon xe_1x_1\dots e_ix_ie_{i+1}\dots x_{k-1}e_ky$ be a bipath in $\operatorname{Tr}(G_{\tau})$ with $e_i=\{x_{i-1}^{\alpha_{i-1}},x_i^{\beta_i}\}$ for $i=1,\dots,k$. By Proposition 2.18, $\alpha_i=-\beta_i$ for $i=1,\dots,k-1$ and P is an (α_0,β_k) bipath. For each edge e_i there is an (α_{i-1},β_i) bipath $Q_i(x_{i-1},x_i)$ in G_{τ} (which may be e_i itself). Let $R=x_0Q_1x_1Q_2\dots Q_kx_k$, the concatenation of Q_1,\dots,Q_k . At each intermediate vertex z of any Q_i we have $W_R(z)=W_{Q_i}(z)=0$ by property (iii) of Definition 2.14. At each $x_i,\ i=1,\dots,k-1$ we have $W_R(x_i)=\beta_i+\alpha_i=0$ by Proposition 2.18. Therefore, R is an (α_0,β_k) bipath from x to y in G_{τ} . We deduce that the edge $\{x^{\alpha_0},y^{\beta_k}\}$ is in the transitive closure of G_{τ} . Thus, $\operatorname{Tr}(G_{\tau})$ is transitive and its transitive closure is itself.

Define

$$\overline{W}(P_{(\alpha,\beta)}(x,y)) = \sum_{e \in P_{(\alpha,\beta)}(x,y)} \overline{W}(e).$$

Theorem 3.7. Given a bidirected graph G_{τ} and its transitive closure $\text{Tr}(G_{\tau}) = (V, \text{Tr}(E); \tau)$. If $e = \{x^{\alpha}, y^{\beta}\}$ is the edge in $\text{Tr}(G_{\tau})$ implied by transitive closure of the bipath $P_{(\alpha,\beta)}(x,y)$ from x^{α} to y^{β} in G_{τ} , then

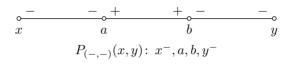
$$\overline{W}(P_{(\alpha,\beta)}(x,y)) = \overline{W}(e).$$

Proof. Let $P_{(\alpha,\beta)}(x,y)$: $x^{\alpha}e_1x_1 \dots x_{k-1}e_ky^{\beta}$ be a bipath from x^{α} to y^{β} in G_{τ} . According to Definition 2.4 we have

$$\overline{W}(P_{(\alpha,\beta)}(x,y)) = \tau(e_1,x) + W(x_1) + W(x_2) + \dots + W(x_{k-1}) + \tau(e_k,y),$$

and by Definition 2.14 we obtain

$$\overline{W}(P_{(\alpha,\beta)}(x,y)) = \tau(e_1,x) + \tau(e_k,y) = \alpha + \beta.$$


According to Definition 2.4, $\overline{W}(e) = \alpha + \beta = \overline{W}(P_{(\alpha,\beta)}).$

We recall that $\sigma(P)$ designates the sign of a chain P (see Definition 2.6).

Corollary 3.8. Given a bidirected graph G_{τ} and its transitive closure $\text{Tr}(G_{\tau}) = (V, \text{Tr}(E); \tau)$, if $e = \{x^{\alpha}, y^{\beta}\}$ is the edge implied by transitive closure of the bipath $P_{(\alpha,\beta)}(x,y)$ from x^{α} to y^{β} , then

$$\sigma(P_{(\alpha,\beta)}(x,y)) = \sigma(e).$$

Proof. The sign of the bipath is $\sigma(P_{(\alpha,\beta)}(x,y)) = -\alpha\beta$ by Proposition 2.17. We have $\sigma(e) = -\tau(e,x)\tau(e,y) = -\alpha\beta$, from which the result follows.

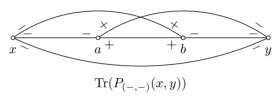
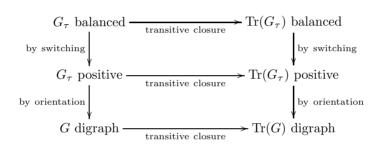


Figure 6. An example of transitive closure of a bidirected graph.

Lemma 3.9. Let G_{τ} be a bidirected graph and $X \subseteq V$. Then $\text{Tr}(G_{\tau_X})$ is the result of switching $\text{Tr}(G_{\tau})$ by X.

Proof. We observe that a bipath in G_{τ} remains a bipath after switching G_{τ} . For a set $X \subseteq V$, define $\iota(v) = +1$ if $v \notin X$ and -1 if $v \in X$.

Assume that $e = \{x^{\alpha}, y^{\beta}\}$ is an edge of $\operatorname{Tr}(G_{\tau})$ not in $E(G_{\tau})$ that is implied by a bipath $P_{(\alpha,\beta)}(x,y)$ in G_{τ} . Switch G_{τ} and $\operatorname{Tr}(G_{\tau})$ by X. Then e becomes $\{x^{\alpha\iota(x)}, y^{\beta\iota(y)}\}$ and $P_{(\alpha,\beta)}(x,y)$ becomes $P_{(\alpha\iota(x),\beta\iota(y))}(x,y)$. Therefore e is implied by the bipath $P_{(\alpha\iota(x),\beta\iota(y))}(x,y)$ in G_{τ_X} , so e is an edge in $\operatorname{Tr}(G_{\tau_X})$. This proves that $\operatorname{Tr}(G_{\tau})$ switched by X is a partial graph of $\operatorname{Tr}(G_{\tau_X})$.


By similar reasoning, if $e = \{x^{\alpha}, y^{\beta}\}$ is an edge of $\text{Tr}(G_{\tau_X})$ not in $E(G_{\tau_X})$, it is implied by a bipath $P_{(\alpha,\beta)}(x,y)$ in G_{τ_X} . Switching by X, the edge $\{x^{\alpha\iota(x)}, y^{\beta\iota(y)}\}$ is implied by $P_{(\alpha\iota(x),\beta\iota(y))}(x,y)$, which is a bipath in G_{τ_X} , so $\{x^{\alpha\iota(x)}, y^{\beta\iota(y)}\}$ is an edge of G_{τ_X} switched by X, which is G_{τ} . Therefore $\text{Tr}(G_{\tau_X})$ switched by X is a partial graph of $\text{Tr}(G_{\tau})$. The result follows.

Proposition 3.10. The transitive closure of an all positive bidirected graph is all positive. The transitive closure of a balanced bidirected graph is balanced.

Proof. Assume G_{τ} is all positive. Let $P_{(\alpha,\beta)}(x,y)$: $x^{\alpha}e_1x_1 \dots x_{k-1}e_ky^{\beta}$ be a bipath from x^{α} to y^{β} , we close this bipath by the positive edge $e = \{x^{\alpha}, y^{\beta}\}$. Since $\overline{W}(e_i) = 0$ for a positive edge e_i , $\overline{W}(P_{(\alpha,\beta)}(x,y)) = 0$. By Theorem 3.7, $\overline{W}(e) = 0$, which means that $\beta = -\alpha$. Thus, e is positive.

Assume G_{τ} is balanced. By Proposition 2.12 there is a vertex set $X \subseteq V$ such that G_{τ_X} is all positive. By the first part, $\operatorname{Tr}(G_{\tau_X})$ is all positive, therefore balanced, and by Lemma 3.9 it equals $\operatorname{Tr}(G_{\tau})$ switched by X. Therefore $\operatorname{Tr}(G_{\tau})$ equals $\operatorname{Tr}(G_{\tau_X})$ switched by X, which is balanced by Proposition 2.13.

The diagram below, obtained from the results above, shows that the classical notion of transitive closure for directed graphs is a particular case of that found for bidirected graphs.

4. Transitive reduction in bidirected graphs

4.1. Definition and basic results.

Definition 4.1. Let $G_{\tau} = (V, E; \tau)$ be a bidirected graph. Define $\operatorname{tr}(G_{\tau}; H_{\tau}) = \operatorname{tr}(H_{\tau}) = \operatorname{the transitive closure of } H_{\tau} \operatorname{in } G_{\tau}$, where H_{τ} is a partial graph of G_{τ} . (We can write only H_{τ} when the larger graph, here G_{τ} , is obvious.)

Proposition 4.2. Let H_{τ} be a partial graph of G_{τ} . Then

$$\operatorname{tr}(G_{\tau}; H_{\tau}) = \operatorname{Tr}(H_{\tau}) \cap G_{\tau}.$$

Proof. The definition implies that $Tr(H_{\tau}) \cap G_{\tau} \subseteq tr(G_{\tau}; H_{\tau})$.

Let e be an edge of $\operatorname{tr}(G_{\tau}; H_{\tau})$ not in H_{τ} . The edge e is induced by a bipath P in H_{τ} . Thus, $e \in \operatorname{Tr}(E(H_{\tau}))$. It follows that e is an edge of $\operatorname{Tr}(H_{\tau})$. Since also $e \in E(G_{\tau})$, we conclude that $\operatorname{tr}(G_{\tau}; H_{\tau}) \subseteq \operatorname{Tr}(H_{\tau}) \cap G_{\tau}$.

Definition 4.3. Let $G_{\tau} = (V, E; \tau)$ be a bidirected graph. A transitive reduction of G_{τ} is a minimal generating set under tr. Thus, we define $R(G_{\tau}) = (V, R(E); \tau)$ to be a minimal graph of G_{τ} with the property that $tr(G_{\tau}; R(G_{\tau})) = G_{\tau}$. We note that $R(G_{\tau})$ may not be unique; see Remark 4.12.

The definitions and Proposition 3.6 immediately imply that

$$\operatorname{tr}(\operatorname{Tr}(G_{\tau}); \operatorname{R}(G_{\tau})) = \operatorname{tr}(\operatorname{Tr}(G_{\tau}); G_{\tau}) = \operatorname{Tr}(G_{\tau}).$$

Proposition 4.4. Let G_{τ} be a bidirected graph and $R(G_{\tau})$ a transitive reduction. Then $Tr(R(G_{\tau})) = Tr(G_{\tau})$.

$$\operatorname{Proof.} \operatorname{Tr}(\operatorname{R}(G_{\tau})) = \operatorname{tr}(\operatorname{Tr}(G_{\tau}); \operatorname{R}(G_{\tau})) = \operatorname{Tr}(G_{\tau}).$$

Proposition 4.5. Let G_{τ} be a bidirected graph. A partial graph H_{τ} of G_{τ} is a transitive reduction $R(G_{\tau})$ if and only if it is minimal such that $G_{\tau} \subseteq Tr(H_{\tau})$.

Proof. It follows from Proposition 4.2 that for H_{τ} to be a transitive reduction of G_{τ} it is necessary that $G_{\tau} \subseteq \text{Tr}(H_{\tau})$. It follows that H_{τ} is a transitive reduction of $G_{\tau} \Leftrightarrow H_{\tau}$ is minimal such that $G_{\tau} \subseteq \text{Tr}(H_{\tau})$.

Proposition 4.6. If G_{τ} is a connected bidirected graph, then $R(G_{\tau})$ is also connected.

Proof. The operator Tr does not change the connected components of a graph. \Box

Corollary 4.7. Let G_{τ} be a bidirected graph without positive loops. If it has no bipath of length greater than 1, then $R(G_{\tau}) = G_{\tau}$ and every vertex is a source or a sink.

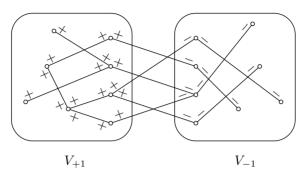
Proof. Since $R(G_{\tau})$ is a partial graph of G_{τ} , it is enough to prove that each edge e in G_{τ} is in $R(G_{\tau})$. Assume that there exists an edge $e = \{x^{\alpha}, y^{\beta}\} \in G_{\tau} - E(R(G_{\tau}))$. According to the definitions of transitive reduction and transitive closure, there exists a bipath from x^{α} to y^{β} in $G_{\tau} - \{e\}$ with length $k \geq 2$, which is absurd.

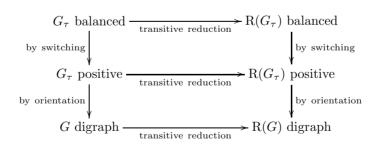
If a vertex x is neither a source nor a sink, it has incident half-edges (e, x) and (f, x) with $\tau(e, x) = +1$ and $\tau(f, x) = -1$. Then ef is a bipath of length 2, which is absurd, or e = f, which implies that e is a positive loop, which is also absurd.

We can characterize the graphs in Corollary 4.7 as follows (see Figure 7):

 $\triangleright G_{\tau} = (V_{+1} \cup V_{-1}, E; \tau)$. $(V_{+1} \text{ and } V_{-1} \text{ are the sets of sources and sinks, see}$ Definition 2.3.)

 $\triangleright G_{\tau}$ is antibalanced, see Definition 2.7. (Thus, if G_{τ} is balanced, then it is bipartite.) The edges connecting a vertex of V_{+1} to a vertex of V_{-1} are positive. The edges connecting two vertices of the same set are negative.




Figure 7. The form of a graph that satisfies the hypotheses of Corollary 4.7.

Theorem 4.8.

- (i) The transitive reduction $R(G_{\tau})$ is balanced if and only if G_{τ} is balanced.
- (ii) $R(G_{\tau})$ is all positive if and only if G_{τ} is all positive.

Proof. We conclude from Proposition 3.10 that $R(G_{\tau})$ is all positive (or balanced) $\Leftrightarrow \operatorname{Tr}(R(G_{\tau}))$ is all positive (or balanced) and that G_{τ} is all positive (or balanced) $\Leftrightarrow \operatorname{Tr}(G_{\tau})$ is all positive (or balanced). By Proposition 4.4, $\operatorname{Tr}(R(G_{\tau})) = \operatorname{Tr}(G_{\tau})$. The result follows.

Theorem 4.8 (ii) is important because all positive bidirected graphs are the usual directed graphs. Thus, it says that the transitive reduction of a directed graph, in our definition of transitive reduction, is a directed graph. The diagram below, obtained from the results above, shows the stronger statement that the classical notion of transitive reduction for directed graphs is a particular case of our notion for bidirected graphs.

Definition 4.9. Let $RE(G_{\tau})$ be the set of edges e such that e is in the transitive closure of $G_{\tau} - \{e\}$. We can say that these edges are redundant edges in G_{τ} .

Lemma 4.10. If H_{τ} is a partial graph of G_{τ} , then $RE(H_{\tau}) \subseteq RE(G_{\tau})$.

Proof. If $e \in RE(H_{\tau})$, then $e \in RE(G_{\tau})$ by the definition of RE.

Note that two parallel edges (see Definition 2.2) are both redundant. Thus, it is necessary to exclude parallel edges in the following proposition.

Proposition 4.11. For a bidirected graph without bicircuits and without parallel edges, the graph $R(G_{\tau})$ is unique. It is obtained from G_{τ} by removing every redundant edge.

Proof. Since there are no parallel edges, $e \in RE(G_{\tau}) \Leftrightarrow e$ is in the transitive closure of a bipath of length at least 2.

We prove first that if $e, f \in RE(G_{\tau})$, then $f \in RE(G_{\tau} - \{e\})$. Suppose $e = \{x^{\alpha}, y^{\beta}\}$ is implied by a bipath $P_0 = P_{(\alpha,\beta)}(x,y)$ and $f = \{z^{\gamma}, w^{\delta}\}$ is implied by a bipath $Q_0 = Q_{(\gamma,\delta)}(z,w)$.

If $e \notin Q_0$, then Q_0 is a bipath in $G_\tau - \{e\}$ that implies f.

If $e \in Q_0$ but $f \notin P_0$, then $Q_0 = Q_1 e Q_2$, where, by choice of notation, e appears as (x^{α}, y^{β}) in that order, so $Q_1 = P_{(\gamma, -\alpha)}(z, x)$ and $Q_2 = P_{(-\beta, \delta)}(y, w)$. Replace Q_0 by $Q_1 P_0 Q_2$. This is a bichain from z^{γ} to w^{δ} so it contains a bipath P from z^{γ} to w^{δ} , in $G_{\tau} - \{e\}$, and P implies f.

If $e \in Q_0$ and $f \in P_0$, then $Q_0 = Q_1 e Q_2$, where e, Q_1 and Q_2 are as in the previous case, and $P_0 = P_1 f P_2$, where f appears in P_0 as either (z^{γ}, w^{δ}) or (w^{δ}, z^{γ}) . Suppose the first possibility. Then $P_1 = P_{(\alpha, -\gamma)}(x, z)$ so $P_1 Q_1$ is a bichain from x^{α} to $x^{-\alpha}$; therefore $P_1 Q_1$ contains a bicircuit, which is impossible. Now suppose the second possibility and let P^* denote the reverse of the bipath P (see Definition 2.15). Then $P_1 Q_1 P_2^* Q_2^*$ is a bichain from x^{α} to $x^{-\alpha}$; therefore it contains a bicircuit, which is impossible. Therefore, this case cannot occur.

We conclude that $f \in RE(G_{\tau} - \{e\})$ for every edge $f \in RE(G_{\tau})$, $f \neq e$. Therefore, $RE(G_{\tau} - \{e\}) \supseteq RE(G_{\tau}) - \{e\}$. Since $G_{\tau} - \{e\}$ is a partial graph of G_{τ} , $RE(G_{\tau} - \{e\}) \subseteq RE(G_{\tau})$ so $RE(G_{\tau} - \{e\}) = RE(G_{\tau}) - \{e\}$. By induction, $RE(G_{\tau} - RE(G_{\tau})) = RE(G_{\tau}) - RE(G_{\tau}) = \emptyset$. We also conclude that $f \in Tr(G_{\tau} - \{e\})$ and by induction that $RE(G_{\tau}) \subseteq Tr(G_{\tau} - RE(G_{\tau}))$. Therefore $R(G_{\tau}) = G_{\tau} - RE(G_{\tau})$. This is unique.

Figure 8 shows that the transitive closure of the bipath $P_{(-,-)}(2,3)$: $2^-,1,3^-$ contains the edge $\{2^-,3^-\}$ which is a redundant edge.

Remark 4.12. We show an example in which the transitive reduction is unique, and an example in which it is not unique. If C_1 and C_2 are two symmetrical bicircuits, that is, $\{x^{\alpha}, y^{\beta}\} \in E(C_1) \Leftrightarrow \{x^{-\alpha}, y^{-\beta}\} \in E(C_2)$, then $Tr(C_1) = Tr(C_2) = Tr(G_{\tau})$.

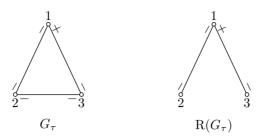


Figure 8. $\{2^-, 3^-\}$ is a redundant edge.

Hence, in Figure 9 G_{τ} has only one transitive reduction C_1 , but $\text{Tr}(G_{\tau})$ has both C_1 and C_2 as transitive reductions.

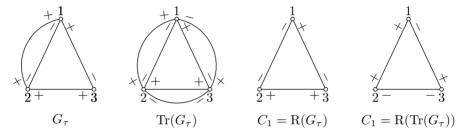


Figure 9. C_1 is an $R(G_{\tau})$ and an $R(Tr(G_{\tau}))$. C_2 is an $R(Tr(G_{\tau}))$, but not an $R(G_{\tau})$ because it is not contained in G_{τ} . For legibility, in $Tr(G_{\tau})$ we do not show the positive loops that exist at every vertex.

Let G_{τ} be a bidirected graph and $E = \{e_1, e_2, \dots, e_n\}$ its set of edges. Assume E is linearly ordered by linear ordering < in index order, i.e., $e_i < e_j \Leftrightarrow i < j$. Let $(G_{\tau})_i$ be a family of graphs constructed from G_{τ} as follows:

$$(G_{\tau})_0 = G_{\tau} \quad \text{and}$$

$$(G_{\tau})_i = \begin{cases} (G_{\tau})_{i-1} - e_i & \text{if } e_i = \{x^{\alpha}, y^{\beta}\} \text{ is implied by transitive closure} \\ & \text{of a bipath } P_{(\alpha,\beta)}(x,y) \text{ in } (G_{\tau})_{i-1} - \{e_i\}, \\ (G_{\tau})_{i-1} & \text{otherwise.} \end{cases}$$

We put

$$S_{\leq}(G_{\tau}) = \{e_i \in E : e_i \in (G_{\tau})_{i-1} \text{ and } e_i \notin (G_{\tau})_i\}.$$

Proposition 4.13. Let G_{τ} be a bidirected graph. For each linear ordering < of E, $G_{\tau} - S_{<}(G_{\tau})$ is a transitive reduction of G_{τ} . Conversely, if $R(G_{\tau}) = (V, R(E); \tau)$ is a transitive reduction of G_{τ} , then $R(G_{\tau}) = G_{\tau} - S_{<}(G_{\tau})$ for some linear ordering < of E.

Proof. Assume linear ordering < of E. By construction, if $e_i \in S_<(G_\tau)$, then $e_i \in \mathrm{Tr}((G_\tau)_i)$. Let m = |E|. Then $\mathrm{Tr}(G_\tau) = \mathrm{Tr}^m(G_\tau - S_<(G_\tau))$ (the mth iterate of $\mathrm{Tr}) = \mathrm{Tr}(G_\tau - S_<(G_\tau))$ by Proposition 3.6. By Proposition 4.2, $\mathrm{tr}(G_\tau; G_\tau - S_<(G_\tau)) = G_\tau$ since $G_\tau \subseteq \mathrm{Tr}(G_\tau) = \mathrm{Tr}(G_\tau - S_<(G_\tau))$. If $G_\tau - S_<(G_\tau)$ were not a minimal partial graph that generates G_τ under Tr , then there would be an edge $e_j \in E - S_<(G_\tau)$ such that e_j is implied by a bipath $P_{(\alpha,\beta)}(x,y)$ in $G_\tau - S_<(G_\tau) - e_j$. This bipath is in $(G_\tau)_{j-1} - e_j$, so by construction $e_j \notin (G_\tau)_j$, therefore $e_j \in S_<(G_\tau)$, which is absurd. Therefore $G_\tau - S_<(G_\tau)$ is a transitive reduction of G_τ .

Suppose $R(G_{\tau})$ is a transitive reduction of G_{τ} . Let $S = E - E(R(G_{\tau}))$. Every edge in S is implied by a bipath in $R(G_{\tau})$. Linearly order E by < so that $S = \{e_1, \ldots, e_k\}$ is initial in the ordering. Then at step $i \leq k$ of the construction of $S_{<}(G_{\tau})$, edge e_i is implied by a bipath in $(G_{\tau})_{i-1} - \{e_i\}$, so $e_i \in S_{<}(G_{\tau})$; but at step i > k, $(G_{\tau})_i = R(G_{\tau})$, which has no such bipath because of minimality of $R(G_{\tau})$.

Corollary 4.14. Let G_{τ} be a bidirected graph and < a linear ordering of $E(G_{\tau})$. If $S_{<}(G_{\tau}) = \emptyset$, then $R(G_{\tau}) = G_{\tau}$.

Corollary 4.15. If $P_{(\alpha,\beta)}(x,y)$ is a bipath, then $R(P_{(\alpha,\beta)}(x,y)) = P_{(\alpha,\beta)}(x,y)$. Proof. For the graph $P_{(\alpha,\beta)}(x,y)$ we have $S_{<}(G_{\tau}) = \emptyset$.

4.2. Transitive closure—transitive reduction. In this section we study the relationship between transitive closure and transitive reduction.

Proposition 4.16. Let G_{τ} be a bidirected graph. Then every transitive reduction of G_{τ} is a transitive reduction of $\text{Tr}(G_{\tau})$.

Proof. We apply Proposition 4.13. Let $R(G_{\tau})$ be a transitive reduction of G_{τ} . Choose a linear ordering of $E(\operatorname{Tr}(G_{\tau})$ in which the edges of $\operatorname{Tr}(G_{\tau}) - E(G_{\tau})$ are initial and the edges of $R(G_{\tau})$ are final. By the definition of Tr, the m edges of $\operatorname{Tr}(G_{\tau}) - E(G_{\tau})$ are in $S_{<}(\operatorname{Tr}(G_{\tau}) - E(G_{\tau}))$ and $(\operatorname{Tr}(G_{\tau}))_m = \operatorname{Tr}(G_{\tau})$. The proposition follows.

It may not be true that every transitive reduction of $\operatorname{Tr}(G_{\tau})$ is an $\operatorname{R}(G_{\tau})$. Let H_{τ} be a bidirected graph that has more than one transitive reduction, and let $G_{\tau} = \operatorname{R}(H_{\tau})$. Then $G_{\tau} = \operatorname{R}(G_{\tau})$. Since $H_{\tau} \subseteq \operatorname{Tr}(H_{\tau}) = \operatorname{Tr}(G_{\tau})$, every transitive reduction of H_{τ} is a transitive reduction of $\operatorname{Tr}(G_{\tau})$, but only one of those transitive reductions can be $G_{\tau} = \operatorname{R}(G_{\tau})$. That cannot happen if G_{τ} has no bicircuit. We prove a lemma first.

Lemma 4.17. Let G_{τ} be a bidirected graph without a bicircuit or parallel edges. Then $\text{Tr}(G_{\tau})$ has no bicircuit.

Proof. Suppose $e = \{x^{\alpha}, y^{\beta}\} \in \text{Tr}(G_{\tau}) - E(G_{\tau})$. That means there is a bipath $P_{(\alpha,\beta)}(x,y)$ in G_{τ} . Now suppose there is a bicircuit C from z^{γ} to $z^{-\gamma}$ in $G_{\tau} \cup \{e\}$, $C = C_1 e C_2$, where we may assume C_1 ends at $x^{-\alpha}$ and C_2 begins at $y^{-\beta}$. Then $C_1 P C_2$ is a closed bichain from z^{γ} to $z^{-\gamma}$ in G_{τ} , so it contains a bicircuit, but that is absurd. Therefore $G_{\tau} \cup \{e\}$ contains no bicircuit. The proof follows by induction on the number of edges in $\text{Tr}(G_{\tau}) - E(G_{\tau})$.

Proposition 4.18. Let G_{τ} be a bidirected graph without a bicircuit or parallel edges. Then $R(Tr(G_{\tau})) = R(G_{\tau})$. That is, the unique transitive reduction of $Tr(G_{\tau})$ is the (unique) transitive reduction of G_{τ} .

Proof. By Lemma 4.17, $\text{Tr}(G_{\tau})$ has no bicircuit. According to Proposition 4.11, $\text{Tr}(G_{\tau})$ has a unique transitive reduction. $R(G_{\tau})$ is such a transitive reduction. Therefore $R(\text{Tr}(G_{\tau})) = R(G_{\tau})$.

Corollary 4.19. Let G_{τ} be a bidirected graph without a bicircuit or parallel edges. If $S_{<}(G_{\tau}) = \emptyset$, then $R(\text{Tr}(G_{\tau})) = G_{\tau}$.

Proof. If $S_{\leq}(G_{\tau}) = \emptyset$, then according to Corollary 4.14 we have $R(G_{\tau}) = G_{\tau}$. Moreover, it follows from Proposition 4.18 that $R(\text{Tr}(G_{\tau})) = R(G_{\tau})$, from which the result follows.

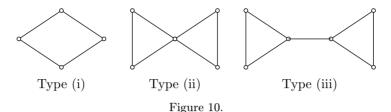
Proposition 4.20. Let G_{τ} be a bidirected graph without a bicircuit or parallel edges. Then $\text{Tr}(R(\text{Tr}(G_{\tau}))) = \text{Tr}(G_{\tau})$.

Proof. By Proposition 4.18,

$$R(Tr(G_{\tau})) = R(G_{\tau}) \Rightarrow Tr(R(Tr(G_{\tau}))) = Tr(R(G_{\tau})) \Rightarrow Tr(R(Tr(G_{\tau}))) = Tr(G_{\tau})$$

by Proposition 4.4.

5. The matroid of a bidirected graph


We indicate by $b(G_{\tau})$ the number of balanced connected components of G_{τ} .

Theorem 5.1 ([9]). Given a signed graph G_{σ} , there is a matroid $M(G_{\sigma})$ associated to G_{σ} , such that a subset F of the edge set E is a circuit of $M(G_{\sigma})$ if and only if either:

- (i) F is a positive cycle, or
- (ii) F is the union of two negative cycles, having exactly one common vertex, or
- (iii) F is the union of two vertex-disjoint negative cycles and an elementary chain which is internally disjoint from both cycles.

The rank function is $r(M(G_{\tau})) = |V| - b(G_{\tau})$.

This matroid is now called the *frame matroid* of G_{σ} . See Figure 10, where we represent a positive (or negative) cycle by a quadrilateral (or triangle).

The matroid associated to the bidirected graph is the matroid associated to its signed graph (given by Definition 2.9).

Definition 5.2 ([6], [7]). A signed graph G_{σ} is called *quasibalanced* (*m-balanced* in [6], [7]) if it does not admit circuits of types (ii) and (iii). (We have the same definition for bidirected graphs.)

Proposition 5.3. A connected signed graph G_{σ} is quasibalanced if and only if for any two negative cycles C and \acute{C} we have $|V(C) \cap V(\acute{C})| \ge 2$.

Proof. Sufficiency results from Definition 5.2 and Theorem 5.1.

To prove the necessity, suppose that G_{σ} admits two negative cycles C and \acute{C} . Suppose $|V(C) \cap V(\acute{C})| = 0$. Since G_{σ} is connected, there exists a chain connecting a vertex of C with a vertex of \acute{C} , therefore there exists a circuit of type (iii) which contains C and \acute{C} . Suppose $|V(C) \cap V(\acute{C})| = 1$. Then $C \cup \acute{C}$ is a circuit of type (ii). Both cases are impossible; therefore $|V(C) \cap V(\acute{C})| > 1$.

Proposition 5.4. If G_{τ} is a quasibalanced bidirected graph, then $R(G_{\tau})$ is quasibalanced.

Proof. As $M(G_{\tau})$ is without circuits of type (ii) and (iii), and since $R(G_{\tau})$ is a partial graph of G_{τ} , the result follows.

Proposition 5.5. Let G_{τ} be a bidirected graph such that $R(G_{\tau})$ is quasibalanced. Let < be a linear ordering of E. If G_{τ} is quasibalanced, then for every edge e belonging to the set $S_{<}(G_{\tau})$, e is not in the transitive closure of any cyclic bipath in G_{τ} .

Proof. Let G_{σ} be the signed graph corresponding to G_{τ} .

Assume that there is an edge $e = \{x^{\alpha}, y^{\beta}\}$ belonging to the set $S_{<}(G_{\tau})$, which is in the transitive closure of the cyclic bipath $P = P_{(\alpha,\beta)}(x,y)$, containing the negative cycle C. This implies that $P \cup \{e\}$ is a circuit of type (ii) or (iii) of G_{σ} if the cycle C of

 $P \cup \{e\}$ that contains e is negative. By Proposition 2.17 the sign of P is $-\alpha\beta$, which is also the sign of e. Therefore, the sign of the closed chain Pe is +. This sign equals $\sigma(C)\sigma(\acute{C})$, so $\sigma(\acute{C})=\sigma(C)=-$. Thus, G_{τ} is not quasibalanced, which is absurd. \square

We do not have a sufficient condition for quasibalance. The converse of Proposition 5.6 is false. Consider G_{τ} with $V = \{1, 2, 3, 4, 5, 6, 7\}$ and edges

$$e = 1^{-}2^{+}, 2^{+}3^{+}, 3^{+}4^{+}, 4^{+}5^{+}, 1^{-}5^{+}, 5^{-}6^{+}, 6^{-}7^{+}, 5^{+}7^{+}, 7^{-}2^{+},$$

linearly ordered in that order. We claim that e is redundant using the path P: 15672, and that no other edge is redundant. There is no matroid circuit of type (ii) or (iii) in $G_{\tau} - e$. But $G_{\tau} - 7^{-}2^{+}$ is a matroid circuit of type (ii). Therefore, G_{τ} is not quasibalanced, but $R(G_{\tau}) = G_{\tau} - e$ is quasibalanced. However, e is not in the transitive closure of any cyclic bipath. P and e are the only bipaths from 1 to 2.

Let \overline{F} denote the closure of F in a matroid.

Lemma 5.6. Let G_{τ} be a bidirected graph with edge set E. If $e \in E - R(E)$, then e belongs to the closure $\overline{R(E)}$ in $M(G_{\tau})$. If $e \in E(\text{Tr}(G_{\tau})) - E$, then e belongs to the closure \overline{E} in $M(\text{Tr}(G_{\tau}))$.

Proof. Let P be a bipath in $R(G_{\tau})$ which induces $e \in E$. Then $P \cup \{e\}$ is a matroid circuit of type (i), (ii) or (iii). Thus, $e \in \overline{R(E)}$ in $M(G_{\tau})$.

The second statement follows from the first because in $M(\text{Tr}(G_{\tau}))$, \overline{E} is the closure of $\overline{R(E)}$, which equals $\overline{R(E)}$.

Theorem 5.7. Let G_{τ} be a bidirected graph. Then

$$r(M(\operatorname{Tr}(G_{\tau}))) = r(M(G_{\tau})) = r(M(\operatorname{R}(G_{\tau}))).$$

Proof. For $r(M(\operatorname{Tr}(G_{\tau}))) = r(M(G_{\tau}))$, it is enough to use Lemma 5.7.

For $r(M(R(G_{\tau}))) = r(M(Tr(G_{\tau})))$, it is enough to cite Proposition 4.4 and replace G_{τ} in the previous case by $R(G_{\tau})$.

The definitions of a connected matroid in [8] apply to the matroids of signed graphs. In particular:

Definition 5.8. Let $G_{\sigma} = (V, E; \sigma)$ be a signed graph. The matroid $M(G_{\sigma})$ is connected if each pair of distinct edges e and e from G_{σ} is contained in a circuit C of $M(G_{\sigma})$.

Theorem 5.9. Let $G_{\tau} = (V, E; \tau)$ be a bidirected graph and let $R(G_{\tau})$ be any transitive reduction of G_{τ} . If $M(R(G_{\tau}))$ is connected, then $M(G_{\tau})$ is connected.

Proof. Theorem 5.8 implies that

$$\overline{E(R(G_{\tau}))} = \overline{E(G_{\tau})} = E(Tr(G_{\tau})) \text{ in } M(Tr(G_{\tau})).$$

It follows by standard matroid theory, since $M(R(G_{\tau}))$ is connected, that $M(G_{\tau})$ and $M(Tr(G_{\tau}))$ are connected.

We note that the converse is false. For example, let $P_{(\alpha,\beta)}(x,y)$ be a bipath of length not less than 2, whose graph is an elementary chain, and let e be the edge $\{x^{\alpha}, y^{\beta}\}$. Let $G_{\tau} = P_{(\alpha,\beta)}(x,y) \cup \{e\}$. Then $P_{(\alpha,\beta)}(x,y) = R(G_{\tau})$, but $M(P_{(\alpha,\beta)}(x,y))$ is disconnected while $M(G_{\tau})$ is connected (since the corresponding signed graph is a positive cycle).

References

- A. V. Aho, M. R. Garey, J. D. Ullman: The transitive reduction of a directed graph. SIAM J. Comput. 1 (1972), 131–137.
- [2] C. Berge: Théorie des graphes et ses applications. Collection Universitaire de Mathématiques, 2, Dunod, Paris, 1958. (In French.)
- [3] O. Bessouf: Menger's Theorem in the Bidirected Graphs. Master's Thesis, Faculty of Mathematics, University of Science and Technology Houari Boumediene, Algiers, 1999. (In French.)
- [4] F. Harary: On the notion of balance of a signed graph. Mich. Math. J. 2 (1954), 143–146. zbl MR doi
- [5] F. Harary: Structural duality. Behavioral Sci. 2 (1957), 255–265.
- [6] A. Khelladi: Algebraic Properties of Combinative Structures. Thesis of Doctorate of State, Institute of Mathematics, University of Science and Technology Houari Boumediene, Algiers, 1985. (In French.)
- [7] A. Khelladi: Nowhere-zero integral chains and flows in bidirected graphs. J. Comb. Theory, Ser. B 43 (1987), 95–115.
- [8] J. Oxley: Matroid Theory. Oxford Graduate Texts in Mathematics 21, Oxford University Press, Oxford, 2011.
- [9] T. Zaslavsky: Signed graphs. Discrete Appl. Math. 4 (1982), 47–74; erratum ibid. 5 (1983), 248.
- [10] T. Zaslavsky: Orientation of signed graphs. Eur. J. Comb. 12 (1991), 361–375.

Authors' addresses: Ouahiba Bessouf, (corresponding author), Abdelkader Khelladi, Faculty of Mathematics, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab-Ezzouar 16111, Algiers, Algeria, e-mail: obessouf@yahoo.fr; aekhelladi@gmail.com; Thomas Zaslavsky, Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, USA, e-mail: zaslav@math.binghamton.edu.

zbl MR

MR doi

zbl MR doi

zbl MR doi

zbl MR doi