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1. Introduction

Let A be the class of analytic functions f defined on the unit disc E = {z ∈

C : |z| < 1}, normalized by f(0) = f ′(0)− 1 = 0 and of the form

(1.1) f(z) = z +

∞
∑

n=2

anz
n, z ∈ E.

Also, let S, K, S∗ and C denote the subclasses of A which are univalent, close-to-

convex, starlike and convex in E, respectively. Let Pm(γ) be the class of functions

p(z) analytic in the unit disc E satisfying the properties p(0) = 1 and for z = reiθ,

m > 2,

(1.2)

∫ 2π

0

∣

∣

∣
Re

p(z)− γ

1− γ

∣

∣

∣
dθ 6 mπ, 0 6 γ < 1.

The class Pm(γ) for γ = 0 and 0 6 γ < 1 has been introduced and investigated by

Pinchuk in [6], and Padmanabhan and Parvatham in [5], respectively. We note that
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Pm(0) = Pm and P2(γ) = P (γ) is the class of analytic functions with positive real

part greater than γ. For m = 2 and γ = 0 we have the class P of functions with

positive real part. We can write (1.2) as

(1.3) p(z) =
1

2

∫ 2π

0

1 + (1− 2γ)ze−it

1− ze−it
dµ(t),

where µ(t) is a function with bounded variation on [0, 2π] such that

(1.4)

∫ 2π

0

dµ(t) = 2 and

∫ 2π

0

|dµ(t)| 6 m.

Also, for p ∈ Pm(γ) we can write from (1.2)

(1.5) p(z) =
(m

4
+

1

2

)

p1(z)−
(m

4
−

1

2

)

p2(z), p1, p2 ∈ P2(γ), z ∈ E.

It is known [3] that Pm(γ) is a convex set. Also p ∈ Pm(γ) is in P2(γ) = P (γ) for

|z| < r1, where

(1.6) r1 =
1

2

(

m−
√

m2 − 4
)

.

The classes Vm(γ) of functions of bounded boundary rotation of order γ and Rm(γ)

of functions of bounded radius rotation of order γ are closely related with Pm(γ). A

function f ∈ A is in Vm(γ) if and only if (zf ′(z))′/f ′(z) ∈ Pm(γ). Also

(1.7) f ∈ Rm(γ) ⇔
zf ′(z)

f(z)
∈ Pm(γ).

It is clear that

(1.8) f ∈ Vm(γ) ⇔ zf ′(z) ∈ Pm(γ).

When m = 2, γ = 0, then V2(0) coincides with the class C and R2(0) = S∗. Wang et

al. in [9] introduced and investigated class S
(k)
s (ϕ), which satisfies the inequality:

zf ′(z)

fk(z)
≺ ϕ(z), z ∈ E,

where ϕ(z) ∈ P , k > 2 is a fixed positive integer and fk(z) is defined by the following

equality:

fk(z) =
1

k

k−1
∑

υ=0

ε−υf(ευz), ε = exp
2πi

k
,

192



and a function f(z) ∈ E is in the class C
(k)
s (ϕ) if and only if zf ′(z) ∈ S

(k)
s (ϕ).

Also Wang and Gao (see [9]) introduced and investigated two classes S
(k)
sc (ϕ) and

C
(k)
sc (ϕ) of functions starlike and convex with respect to 2k-symmetric conjugate

points. Noor and Mustafa in [2] introduced and investigated class Rk
s (γ) of analytic

functions which are of bounded radius rotation of order γ with respect to symmetrical

points if and only if
2zf ′(z)

f(z)− f(−z)
∈ Pk(z), z ∈ E.

We now define the following.

Definition 1.1. Let f ∈ A. Then f is said to be of bounded radius rotation of

order γ with respect to 2k-symmetric conjugate points if and only if

(1.9)
zf ′(z)

f2k(z)
∈ Pm(γ), z ∈ E,

where k > 1 is a fixed positive integer and f2k(z) is defined as

(1.10) f2k(z) =
1

2k

k−1
∑

υ=0

(ε−υf(ευz) + ευf(ευz)), ε = exp
2πi

k
.

We shall denote the class of such functions as Rs−2k
m (γ). We note that Rs−2

2 (γ) is the

class S∗

s of univalent functions starlike with respect to symmetrical points defined

by Sakaguchi (see [8]). Also we define the class V s−2k
m (γ) as follows.

Definition 1.2.

(1.11) f ∈ V s−2k
m (γ) ⇔ zf ′ ∈ Rs−2k

m (γ), z ∈ E.

Motivated by the above-mentioned classes we now define the following subclasses of

analytic functions.

Definition 1.3. Let f ∈ A and f(z)f ′(z)z−1 6= 0 for z ∈ E. Then f is said to

be of bounded Mocanu variation of order γ with respect to 2k-symmetric conjugate

points if and only if

(1.12) α
zf ′(z)

f2k(z)
+ (1− α)

(zf ′(z))′

f ′

2k(z)
∈ Pm(γ), z ∈ E,

where 0 6 α 6 1 and k > 1 is a fixed positive integer and f2k(z) is defined by (1.10).

We shall denote the class of such functions asMs−2k
m (α, γ).
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Definition 1.4. Let f ∈ A and f(z)f ′(z)z−1 6= 0 for z ∈ E. Then f belongs to

the class Hs−2k
m,m1

(α, γ) if

(1.13) α
zf ′(z)

g2k(z)
+ (1− α)

(zf ′(z))′

g′2k(z)
∈ Pm(γ),

where 0 6 α 6 1 and k > 1 is a fixed positive integer and g2k(z) is defined as

(1.14) g2k(z) =
1

2k

k−1
∑

υ=0

(ε−υg(ευz) + ευg(ευz)), ε = exp
2πi

k

with g ∈ Ms−2k
m1

(α, γ).

For simplicity, we write Hs−2k
m,m (α, γ) =: Hs−2k

m (α, γ).

In our investigation of the classes Rs−2k
m (γ), V s−2k

m (γ), Ms−2k
m (α, γ) and

Hs−2k
m,m1

(α, γ) we need the following lemmas.

Lemma 1.1 ([1]). Let p be an analytic function in the unit disc with P (0) = a,

where Re a > 0. Let P : E → C be a function such that ReP (z) > 0 for z ∈ E.

Then

Re[p(z) + P (z)zp′(z)] > 0 ⇒ Re p(z) > 0.

Lemma 1.2 ([1]). Let β, γ ∈ C and h be convex and univalent function in E with

h(0) = 1 and Re(βh(z) + γ) > 0, z ∈ E.

If p is analytic in E with p(0) = 1, then subordination

p(z) +
zp′(z)

βp(z) + γ
≺ h(z)

implies that

p(z) ≺ h(z).
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2. Basic properties of Rs−2k
m (γ), V s−2k

m (γ), Ms−2k
m (α, γ) and Hs−2k

m,m1
(α, γ)

Theorem 2.1. Let f ∈ Ms−2k
m (α, γ). Then the function

(2.1) ψ(z) = f2k(z)

belongs toMs−2k
m (α, γ).

P r o o f. Let f ∈ Ms−2k
m (α, γ). Then from Definition 1.3 we have

α
zf ′(z)

f2k(z)
+ (1− α)

(zf ′(z))′

f ′

2k(z)
∈ Pm(γ), z ∈ E,

or

(2.2) α
zf ′(z)

f2k(z)
+ (1 − α)

f ′(z) + zf ′′(z)

f ′

2k(z)
∈ Pm(γ), z ∈ E.

Replacing z by ευz, υ = 0, 1, 2, . . . , k − 1 in (2.2) leads to

(2.3) α
ευzf ′(ευz)

f2k(ευz)
+ (1 − α)

f ′(ευz) + ευzf ′′(ευz)

f ′

2k(ε
υz)

∈ Pm(γ).

We note that

f2k(ε
υz) = ευf2k(z), f ′

2k(ε
υz) = f ′

2k(z),(2.4)

f2k(ευz) = ε−υf2k(z), f ′

2k(ε
υz) = f ′

2k(z), ψ2k(z) = f2k(z).

Thus, in view of (2.3) and (2.4) we obtain

(2.5) α
zf ′(ευz)

f2k(z)
+ (1− α)

f ′(ευz) + ευzf ′′(ευz)

f ′

2k(z)
∈ Pm(γ)

and

(2.6) α
zf ′(ευz)

f2k(z)
+ (1− α)

f ′(ευz) + ε−υzf ′′(ευz)

f ′

2k(z)
∈ Pm(γ).

Since Pm(γ) is a convex set, summing (2.5) and (2.6) leads to

(2.7) α
1
2z

(

f ′(ευz) + f ′(ευz)
)

f2k(z)

+ (1− α)
1
2

(

f ′(ευz) + f ′(ευz)
)

+ 1
2z

(

ευf ′′(ευz) + ε−υf ′′(ευz)
)

f ′

2k(z)
∈ Pm(γ).
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Putting υ = 0, 1, 2, . . . , k − 1 in (2.7) and summing the resulting equations yields

α
1
2zk

−1
∑k−1

υ=0

(

f ′(ευz) + f ′(ευz)
)

f2k(z)

+ (1− α)
1
2k

−1
∑k−1

υ=0

(

f ′(ευz) + f ′(ευz) + z
(

ευf ′′(ευz) + ε−υf ′′(ευz)
))

f ′

2k(z)
∈ Pm(γ)

and hence ψ ∈ Pk(γ) in E. �

Putting α = 0, 1 in Theorem 2.1 we have the following results for the classes

Rs−2k
m (γ) and V s−2k

m (γ).

Corollary 2.1. Let f ∈ Rs−2k
m (γ). Then the function ψ(z) = f2k(z) belongs to

Rs−2k
m (γ) in E.

Corollary 2.2. Let f ∈ V s−2k
m (γ). Then the function ψ(z) = f2k(z) belongs to

V s−2k
m (γ) in E.

In order to prove our next result we need the following lemma.

Lemma 2.1. Let p and ϕ be analytic functions in E with p(0) = 1 and

Reϕ(z) > 0 for z ∈ E. If

p(z) + ϕ(z)zp′(z) ∈ Pm(γ),

then p(z) ∈ Pm(γ).

P r o o f. From the definition of Pm(γ) there exist q1, q2 ∈ P2(γ) such that

(2.8) p(z) + ϕ(z)zp′(z) = mq1(z) + (1−m)q2(z).

Let p1 and p2 be the solutions of the Cauchy problems

(2.9) p(z) + ϕ(z)zp′(z) = q1(z), p(0) = 1

and

(2.10) p(z) + ϕ(z)zp′(z) = q2(z), p(0) = 1,

respectively. In view of (2.9) and (2.10) we rewrite (2.8) as

p(z) + ϕ(z)zp′(z) = m(p1(z) + ϕ(z)zp′1(z)) + (1−m)(p2(z) + ϕ(z)zp′2(z)),
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or equivalently,

(2.11) (p(z)−mp1(z)− (1−m)p2(z)) + zϕ(z)(p′(z)−mp′1(z)− (1−m)p′2(z)) = 0.

Now if we define h(z) = p(z) − mp1(z) − (1 − m)p2(z), then h(0) = 0 and (2.11)

yields

(2.12) h(z) + ϕ(z)zh′(z) = 0, h(0) = 0.

But it is clear that Cauchy problem (2.12) has the only solution h(z) = 0. Hence

p(z) = mp1(z)+(1−m)p2(z). For completing the proof we show that p1, p2 ∈ P2(γ).

Form equation (2.9) we can write

q1(z)− γ

1− γ
=
p1(z)− γ

1− γ
+
ϕ(z)

1− γ
zp′1(z).

Since Re (q1(z)− γ)/(1− γ) > 0 and Reϕ(z) > 0, applying Lemma 1.1 we obtain

Re p1(z) > γ. Similarly, we have Re p2(z) > γ and this means that p ∈ Pm(γ) and

the proof is complete. �

Theorem 2.2. Let 0 < α 6 1, k > 1 and m > 2. Then

Hs−2k
m,2 (α, γ, g) ⊆ Hs−2k

m,2 (1, γ, g).

P r o o f. Let f ∈ Hs−2k
m,2 (α, γ, g). Then by the definition of the classHs−2k

m,2 (α, γ, g)

and applying Theorem 2.1 we know that g2k ∈ Ms−2k
2 (α, γ), i.e.

α
zϕ′(z)

ϕ(z)
+ (1 − α)

(zϕ′)′(z)

ϕ′(z)
∈ P (γ),

where ϕ = g2k.

Or equivalently,

(2.13) α
zϕ′(z)

ϕ(z)
+ (1− α)

(zϕ′(z))′

ϕ′(z)
≺ h(z) :=

1 + (1− 2γ)z

1− z
.

Set

q(z) =
zϕ′(z)

ϕ(z)
,

then we can rewrite (2.13) as

(2.14) α
zϕ′(z)

ϕ(z)
+ (1− α)

(zϕ′)′(z)

ϕ′(z)
= q(z) +

(1− α)zq′(z)

q(z)
≺ h(z).
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Since h is convex and univalent in E with h(0) = 1 and Re(h(z)/(1 − α)) > 0,

applying Lemma 1.2, we obtain

(2.15) q(z) ≺ h(z), z ∈ E.

By Setting

p(z) =
zf ′(z)

g2k(z)
,

we get

zp′(z) = z
(zf ′(z))′g2k(z)− g′2k(z)zf

′(z)

g22k(z)
= z

(zf ′(z))′

g2k(z)
−
zf ′(z)

g2k(z)
q(z)(2.16)

=
(zf ′(z))′

g′2k(z)
q(z)−

zf ′(z)

g2k(z)
q(z).

Therefore in view of f ∈ Hs−2k
m,2 (α, γ, g) and (2.16) we conclude that

α
zf ′(z)

g2k(z)
+ (1− α)

(zf ′(z))′

g′2k(z)
= p(z) + (1− α)

zp′(z)

q(z)
∈ Pm(γ).

Now from relation (2.15) it is clear that Re(q(z)/(1−α)) > 0, so applying Lemma 2.1,

we get p(z) ∈ Pm(γ) and the proof is complete. �

By Putting m = 2 and considering g = f2k in Theorem 2.2, we have the following

corollary.

Corollary 2.3. Let 0 < α < 1 and k > 1. Then

Ms−2k
2 (α, γ) ⊆ Rs−2k

2 (γ) ⊆ K ⊆ S.

Theorem 2.3. Let 0 6 α < 1 and f ∈ Ms−2k
m (α, γ). Then there exists a function

p ∈ Pm(γ) such that

(2.17) f2k(z) =

(

1

1− α

∫ z

0

uα/(1−α) exp

(

1

1− α

∫ u

0

h(t)− 1

t
dt

)

du

)1−α

,

where

(2.18) h(z) =
1

2k

k−1
∑

υ=0

(

p(ευz) + p(ευz)
)

.
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P r o o f. Since f ∈ Ms−2k
m (α, γ), there exists a function p ∈ Pm(γ) such that

(2.19) α
zf ′(z)

f2k(z)
+ (1− α)

(zf ′(z))′

f ′

2k(z)
= p(z).

Using similar arguments given in the proof of Theorem 2.1 to (2.19) we obtain

(2.20) α
zf ′

2k(z)

f2k(z)
+ (1− α)

(zf ′

2k(z))
′

f ′

2k(z)
=

1

2k

k−1
∑

υ=0

(

p(ευz) + p(ευz)
)

= h(z).

Let us define F as

α
zf ′

2k(z)

f2k(z)
+ (1− α)

(zf ′

2k(z))
′

f ′

2k(z)
=
zF ′(z)

F (z)
,

then

(2.21) f2k(z) =

(

1

1− α

∫ z

0

(F (t))1/(1−α)

t
dt

)1−α

and the function F is analytic with F (0) = 0 and from (2.20) we can write

zF ′(z)

F (z)
= h(z).

Now by solving the last equation and putting its response into equality (2.21) we get

the result and the proof is complete. �

Theorem 2.4. Let 0 6 α < 1 and f ∈ Ms−2k
m (α, γ). Then there exists a function

p ∈ Pm(γ) such that

(2.22) f ′(z) =
1

(1 − α)1−α

∫ 1

0 u
α/(1−α) exp((1− α)−1

∫ uz

0 (h(t)− 1)t−1 dt)p(u) du
(∫ 1

0
uα/(1−α) exp((1− α)−1

∫ uz

0
(h(t)− 1)t−1 dt) du

)α ,

where h is given by (2.18).

P r o o f. Suppose that f ∈ Ms−2k
m (α, γ), we can get

α
zf ′(z)

f2k(z)
+ (1− α)

(zf ′(z))′

f ′

2k(z)
∈ Pk(γ),

so there exists a function p ∈ Pk(γ) such that

α
zf ′(z)

f2k(z)
+ (1− α)

(zf ′(z))′

f ′

2k(z)
= p(z).
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Taking F (z) = zf ′(z) and G(z) = f2k(z) in the above equation yields

α
F (z)

G(z)
+ (1− α)

F ′(z)

G′(z)
= p(z),

or

(2.23) F ′(z) +
α

1− α

G′(z)

G(z)
F (z) =

p(z)G′(z)

1− α
.

Now solving Cauchy problem (2.23) and considering (2.17) we get our result and the

proof is complete. �

Theorem 2.5. Let f, g ∈ Ms−2k
2 (α, γ) and suppose that F is defined by

(2.24) F (z) =
1

δz1/δ−1

∫ z

0

t1/δ−2(f2k(t))
β/(1+β)(g2k(t))

1/(1+β) dt,

where z ∈ E, δ > 0, β > 0 and γ + δ−1 − 1 > 0. Then F belongs toMs−2k
2 (1, γ).

P r o o f. Since f, g ∈ Ms−2k
2 (α, γ), by applying Theorem 2.1 and Corollary 2.3

we obtain f2k, g2k ∈ Ms−2k
2 (1, γ). Differentiating (2.24) logarithmically and setting

p(z) = zF ′(z)/F (z), we have

(2.25) p(z) +
zp′(z)

p(z) + δ−1 − 1
=

β

1 + β

zf ′

2k(z)

f2k(z)
+

1

1 + β

zg′2k(z)

g2k(z)
.

Since the functions zf ′

2k(z)/f2k(z) and zg
′

2k(z)/g2k(z) belong to P2(γ) in E, and

P2(γ) is a convex set,

β

1 + β

zf ′

2k(z)

f2k(z)
+

1

1 + β

zg′2k(z)

g2k(z)
∈ P2(γ).

We now apply Lemma 1.2 to obtain p(z) ∈ P2(γ) and the proof is complete. �

Let L(r, f) denote the length of the image of the circle |z| = r under f . We prove

the following.

Theorem 2.6. Let f ∈ Hs−2k
2 (1, γ). Then for 0 < r < 1,

(2.26) L(r, f) 6
4π(1 − γ)

(1− r)(k+2)/k
.
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P r o o f. Using Theorem 2.2 and in view of the definition of class Hs−2k
2 (1, γ)

there exists a function g ∈ Ms−2k
2 (1, γ) such that

(2.27) zf ′(z) = ψ(z)h(z), ψ = g2k ∈ S∗(γ), h ∈ P2(γ).

Since ψ ∈ S∗(γ) and ψ is a k-fold symmetric function, there exists a k-fold symmetric

function ψ1(z) such that

ψ(z) = z
(ψ1(z)

z

)1−γ

.

Now for z = reiθ we have

L(r, f) =

∫ 2π

0

|zf ′(z)| dθ

=

∫ 2π

0

∣

∣

∣
z
(ψ1(z)

z

)1−γ

h(z)
∣

∣

∣
dθ = rγ

∫ 2π

0

|(ψ1(z))
1−γh(z)| dθ,

and so, using Hölder’s inequality, we obtain

(2.28) L(r, f) 6 2πrγ
(

1

2π

∫ 2π

0

|ψ1(z)|
2 dθ

)1/2(
1

2π

∫ 2π

0

|h(z)|2 dθ

)1/2

.

For h ∈ P2(γ), from the Parseval’s identity it is easy to see that

(2.29)
1

2π

∫ 2π

0

|h(z)|2 dθ 6
1 + (4(1− γ)2 − 1)r2

1− r2
.

Also for k-fold symmetric function ψ1 it is known that (see [4])

(2.30) |ψ1(z)| 6
|z|

(1− |z|k)2/k
.

Using (2.29) and (2.30) in (2.28), it follows that

L(r, f) 6 2πrγ
(1 + (4(1− γ)2 − 1)r2

1− r2

)1/2 r

(1− rk)2/k
6

4π(1− γ)

(1− r)1+2/k
.

This completes the proof. �

Theorem 2.7. Let f ∈ Hs−2k
2 (1, γ). Then for 0 < r < 1,

(2.31) |an| 6 4π(1− γ)n2/k.
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P r o o f. Since with z = reiθ Cauchy Theorem gives

nan =
1

2πrn

∫ 2π

0

zf ′(z)e−inθ dθ,

then

n|an| 6
1

2πrn

∫ 2π

0

|zf ′(z)| dθ =
1

2πrn
L(r, f).

Using Theorem 2.6 and putting r = 1− n−1, n→ ∞, we obtain the required result.

�
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