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Abstract. We consider the problem of determining the unknown source term f =
f(x, t) in a space fractional diffusion equation from the measured data at the final time
u(x, T ) = ψ(x). In this way, a methodology involving minimization of the cost functional

J(f) =
∫ l
0(u(x, t; f)|t=T −ψ(x))2 dx is applied and shown that this cost functional is Fréchet

differentiable and its derivative can be formulated via the solution of an adjoint problem. In
addition, Lipschitz continuity of the gradient is proved. These results help us to prove the

monotonicity and convergence of the sequence {J ′(f (n))}, where f (n) is the nth iteration
of a gradient like method. At the end, the convexity of the Fréchet derivative is given.

Keywords: inverse source problem; space fractional diffusion equation; weak solution
theory; adjoint problem; Lipschitz continuity
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1. Introduction

We study the inverse problem associated with the space fractional diffusion prob-

lem

ut(x, t)−
1

2
RDα

xu(x, t)−
1

2
R
xD

αu(x, t) = f(x, t), (x, t) ∈ QT ,(1.1)

u(0, t) = u(l, t) = 0, t ∈ (0, T ),(1.2)

u(x, 0) = ϕ(x), x ∈ Λ,(1.3)

where ut := ∂u/∂t, Λ = (0, l), QT = Λ × (0, T ) and 1 < α < 2. Here RDα
xu(x, t)

and R
xD

αu(x, t) denote the left and right Riemann-Liouville fractional derivatives,
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respectively, which are defined for x ∈ (0, l) by

RDα
xu(x, t) =

1

Γ(2 − α)

d2

dx2

∫ x

0

u(ξ, t)

(x− ξ)α−1 dξ,

R
xD

αu(x, t) =
1

Γ(2 − α)

d2

dx2

∫ l

x

u(ξ, t)

(ξ − x)
α−1 dξ.

The inverse problem here consists of determining the source term f = f(x, t) from

the measured data at the final time

(1.4) u(x, T ) = ψ(x).

The function ψ(x) is assumed to be the measured output data and also the functions f

and ϕ are the inputs data. In this context, the inverse source problem (1.1)–(1.4)

and the problem (1.1)–(1.3) for a given f will be referred to as the problem (ISP)

and the direct problem, respectively.

It is worth pointing out that for α = 1 and α = 2, the ISP (1.1)–(1.4) is a clas-

sical ISP and has been studied by some researchers such as ISP for linear parabolic

equations with final overdetermination, see [3], [8], nonlinear source term given by

f(x, t, u) = p(x)ur, see [1], ISP for the parabolic equation ut = ∆u + p(x)u + f(u),

see [2], determination of the unknown function p(x) in the source term F = p(x)f(u),

see [16] and determination of the unknown source term F (x, t) in ut = (k(x)ux)x +

F (x, t), see [6], [7], [9]. But to our knowledge, there are few works on inverse source

space fractional diffusion equations.

In this paper, we apply the weak solution theory and the adjoint problem approach

to ISP (1.1)–(1.4). To this end, the auxiliary functional

(1.5) J(f) =

∫ l

0

(u(x, t; f)|t=T − ψ(x))2 dx

is introduced and ISP is reformulated as a minimization problem for this functional.

It is shown that the gradient J ′ of the cost functional (1.5) is Lipschitz continuous.

Then, an explicit formula for this gradient is obtained by the solution of the cor-

responding adjoint problem. Based on these results, monotonicity of the sequence

{J(f (n))} is proved where {f (n)} is the sequence of iterations obtained by the gra-
dient method.

Note that, as a consequence of the physical model, the inputs ϕ = ϕ(x) and

f = f(x, t) may not be smooth and, especially in real problems, the input f = f(x, t)

belongs to L2(QT ). This circumstance requires use of weak solution theory. So, the

main motivation of the proposed approach and also the substantial difference of the
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provided results in this paper in comparison to the available scientific results, is to

apply the weak solution theory which reduces the order of regularity. To be exact,

the approach proposed here is based on weak solution theory and the adjoint method.

This combination leads to an applicable method which is more consistent with the

physical model in real-world problem.

The paper is organized as follows. In Section 2, we introduce a quasi solution of

ISP (1.1)–(1.4), based on the weak solution of the direct problem (1.1)–(1.3). In

Section 3, we introduce an adjoint space fractional diffusion problem and obtain an

explicit relationship between the weak solution of this problem and the gradient of

the cost functional (1.5). The Lipschitz continuity of the gradient is obtained in

Section 4. These results help one to construct a gradient like iteration process for

the sequence of approximate solutions {f (n)} ⊂ χ of the inverse problem and prove

monotonicity of the sequence of functionals {J(f (n))}. In Section 5, convexity of the
Fréchet derivative is studied and finally, in Section 6, an application of the considered

problem is given.

2. Quasi solution of the inverse problem and the gradient

Let us denote by χ := L2(QT ) the set of admissible unknown source functions f .

Evidently, the set χ is closed and convex. The weak solution of the direct problem

(1.1)–(1.3) will be defined as the function u ∈ Bα/2(QT ) satisfying the integral

identity

(2.1) Π(u, v) = F (v) ∀ v ∈ Bα/2(QT ),

where the bilinear form Π(·, ·) is defined by

Π(u, v) := (ut, v)L2(QT ) −
1

2

(

RDα/2
x u,RxD

α/2v
)

L2(QT )
− 1

2

(

R
xD

α/2u,RDα/2
x v

)

L2(QT )
,

and the functional F (·) is given by

F (v) := (f, v)L2(QT ).

Here

Bα(QT ) := L∞((0, T ), L2(Λ)) ∩ L2((0, T ), H
α
0 (Λ))

is a Banach space with respect to the norm

‖v‖Bα(QT ) =
(

max
06t6T

‖v(·, t)‖2L2(Λ) + ‖v‖2L2((0,T ),Hα

0
(Λ))

)1/2

,
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where

L2((0, T ), H
α
0 (Λ)) = {v ; ‖v(·, t)‖Hα

0
(Λ) ∈ L2(0, T )},

endowed with the norm

‖v‖L2((0,T ),Hα

0
(Λ)) = ‖‖v(·, t)‖Hα

0
(Λ)‖L2(0,T ).

In the above definitionHα
0 (Λ) denotes the usual fractional Sobolev space with respect

to the norm ‖·‖Hα

0
(Λ) (for more details see [11]). Now suppose that the following

assumptions hold:

(A1) 1 < α < 2,

(A2) f ∈ χ,

(A3) ϕ ∈ L2(Λ),

(A4) ψ ∈ L2(Λ).

Then it is proved that the weak solution u ∈ Bα/2(QT ) of the direct problem

(1.1)–(1.3) exists and is unique, see [11], [5], [10]. We denote this weak solution

by u(x, t; f) corresponding to a given f ∈ χ. If this function satisfies the additional

condition (1.4), then it must satisfy the equation

(2.2) u(x, t; f)|t=T = ψ(x), x ∈ Λ.

However, due to measurement errors in practice, the exact equality in the above

equation is usually not achieved [7]. For this reason, we define a quasi solution of the

inverse problem as a solution of the minimization problem for the cost functional J ,

given by (1.5). In doing so, find f∗ ∈ χ such that

(2.3) J(f∗) = inf
f∈χ

J(f).

Clearly, if J(f∗) = 0, then the quasi solution f∗ ∈ χ is a strict solution of the

inverse problem (1.1)–(1.4) and also f∗ ∈ χ satisfies the functional equation (2.2). In

addition, in view of the weak solution theory for space fractional diffusion problems,

from [11] we have

‖u(·, T ; f (n))− u(·, T ; f)‖L2(Λ) . ‖f (n) − f‖L2(QT ).

This, in particular, means that if the sequence {f (n)} ∈ χ weakly converges to the

function f ∈ χ, then the sequence of traces {u(x, T ; f (n))} of the corresponding
solutions of the direct problem (1.1)–(1.3) converges in the L2-norm to the solution

u(x, T ; f), which implies J(f (n)) → J(f), as n→ ∞ (see [10], [11]). This means that
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the functional J is continuous with respect to the weak convergence in χ, hence due

to the Weierstrass existence theorem, see [6], [9], the set of solutions

χ∗ :=
{

f∗ ∈ χ : J(f∗) = inf
f∈χ

J(f)
}

,

of the minimization problem (2.3) is not an empty set.

R em a r k 2.1. It is worth pointing out that the solution of the problem (2.1) does

not imply the boundary conditions imposed upon the strong solution of (1.1)–(1.3)

for functions in Bα/2(QT ) with α/2 < 1/2. In fact it has no sense to define the trace

at x = 0 (and also x = l) for functions in Bα/2(QT ) with 0 < α < 1. But in our

problem, according to [11], [10] the the trace at time t = 0 (and also t = T ) and

boundary conditions are well-defined.

3. Fréchet differentiability of the cost functional and its gradient

Let f and f+δf ∈ χ be source functions. We denote by u(x, t; f) and u(x, t; f+δf)

the corresponding solutions of the problem (1.1)–(1.3). Then

δu(x, t; f) := u(x, t; f + δf)− u(x, t; f),

is the solution of the problem

δut(x, t)−
1

2
RDα

x δu(x, t)−
1

2
R
xD

αδu(x, t) = δf(x, t), (x, t) ∈ QT ,(3.1)

δu(0, t) = δu(l, t) = 0, t ∈ (0, T ),(3.2)

δu(x, 0) = 0, x ∈ Λ.(3.3)

The first variation ∆J of the cost functional J is

(3.4) ∆J(f) := J(f + δf)− J(f) = 2

∫ l

0

(u(x, t; f)|t=T − ψ(x))δu(x, t; f)|t=T dx

+

∫ l

0

(δu(x, t; f)|t=T )
2 dx,

where δu(x, t; f) is the solution of (3.1)–(3.3).

Lemma 3.1. Let f, f + δf ∈ χ be given source functions. If u = u(x, t; f) is

the solution of the direct problem (1.1)–(1.3) and p = p(x, t) is the solution of the
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adjoint problem

pt(x, t) +
1

2
RDα

xp(x, t) +
1

2
R
xD

αp(x, t) = 0, (x, t) ∈ QT ,(3.5)

p(0, t) = p(l, t) = 0, t ∈ (0, T ),(3.6)

p(x, T ) = q(x), x ∈ Λ,(3.7)

with an arbitrary function q = q(x) ∈ L2(Λ), then the following integral identity

holds:

(3.8)

∫ l

0

q(x)δu(x, t; f)|t=T dx =

∫ T

0

∫ l

0

δf(x, t)p(x, t) dxdt.

P r o o f. Multiply (3.1) by p and integrate over QT to get

(3.9) (δut, p)L2(QT ) −
1

2

(

RDα
x δu, p

)

L2(QT )
− 1

2

(

R
xD

αδu, p
)

L2(QT )
= (δf, p)L2(QT ).

According to [14], we have

(3.10)
(

RDα
x δu, p

)

L2(QT )
=

(

δu,RxD
αp

)

L2(QT )
,

(

R
xD

αδu, p
)

L2(QT )
=

(

δu, RDα
xp

)

L2(QT )
.

Now, consider the first term on the left-hand side of (3.9). Applying integration by

parts, we get

(δut, p)L2(QT ) =

∫ l

0

∫ T

0

δut(x, t; f)p(x, t) dt dx

=

∫ l

0

δu(x, t; f)|t=T p(x, T ) dx−
∫ l

0

δu(x, t; f)|t=0 p(x, 0) dx

− (δu, pt)L2(QT ).

So, we obtain

(3.11) (δut, p)L2(QT ) =

∫ l

0

δu(x, t; f)|t=T q(x) dx− (δu, pt)L2(QT ).

For the second and third terms on the left-hand side of (3.9), using (3.10) we have

(3.12) −1

2

(

RDα
x δu, p

)

L2(QT )
− 1

2

(

R
xD

αδu, p
)

L2(QT )

= −1

2

(

δu,RxD
αp

)

L2(QT )
− 1

2

(

δu,RDα
xp

)

L2(QT )
.
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Applying (3.11) and (3.12) in (3.9), we can obtain

∫ l

0

δu(x, t; f)|t=T q(x) dx− (δu, pt)L2(QT )

− 1

2

(

δu, RxD
αp

)

L2(QT )
− 1

2

(

δu,RDα
xp

)

L2(QT )
= (δf, p)L2(QT ),

and

∫ l

0

δu(x, t; f)|t=T q(x) dx+
(

δu,−pt −
1

2
R
xD

αp− 1

2
RDα

xp
)

L2(QT )
= (δf, p)L2(QT ),

which leads to

∫ l

0

δu(x, t; f)|t=T q(x) dx =

∫ T

0

∫ l

0

δf(x, t)p(x, t) dxdt.

�

Corollary 3.1. Let us choose an arbitrary control function q = q(x) in (3.8) as

q(x) :=
δu(x, t; f)|t=T

‖δu(x, t; f)|t=T ‖L2(Λ)

.

Then we obtain

‖δu(x, t; f)|t=T ‖L2(Λ) 6 ‖p‖L2(QT )‖δf‖L2(QT ),

where δu = δu(x, t; f) is the solution of (3.1)–(3.3) and p = p(x, t) is defined in

Lemma 3.1. We note that the existence and uniqueness of (3.5)–(3.7) are the straight-

forward results of [11].

Corollary 3.2. If in (3.8) we set q(x) := 2(u(x, t; f)|t=T − ψ(x)), we obtain the

useful identity

(3.13) 2

∫ l

0

(u(x, t; f)|t=T − ψ(x))δu(x, t; f)|t=T dx =

∫ T

0

∫ l

0

δf(x, t)p(x, t) dxdt,

which will be used in the following.

Hereafter, in cases where no confusion could arise, the symbol p in (3.5)–(3.7)

refers to the terminal condition q defined in Corollary 3.2.
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The integral equality (3.13) yields that the first variation of the cost functional J

may be written in the form

(3.14) ∆J(f) = J(f + δf)− J(f)

=

∫ T

0

∫ l

0

δf(x, t)p(x, t) dxdt+

∫ l

0

(δu(x, t; f)|t=T )
2
dx.

Now, we will show that the second term on the right-hand side of (3.14) is of the

order O(‖δf‖2L2(QT )).

Lemma 3.2. If f ∈ χ is a given source function and u = u(x, t; f) ∈ Bα/2(QT )

is the corresponding solution of the direct problem (1.1)–(1.3), then we have the

inequality

(3.15) ‖δu(x, t; f)|t=T ‖L2(Λ) 6 eT ‖δf‖L2(QT ).

P r o o f. Multiply both sides of (3.1) by δu and then integrate over Qt, t ∈ (0, T ],

to get

(3.16) (δuτ , δu)L2(Qt) −
1

2

(

RDα
x δu, δu

)

L2(Qt)

− 1

2

(

R
xD

αδu, δu
)

L2(Qt)
= (δf, δu)L2(Qt).

Using an energy function

G(τ) =

∫ l

0

δu2(x, τ ; f) dx,

we obtain G′(τ) = 2
∫ l

0 δuτ (x, τ ; f)δu(x, τ ; f) dx. Therefore, we get

1

2

∫ t

0

G′(τ) dτ =
1

2
(G(t) −G(0)) =

1

2

(
∫ l

0

δu2(x, t; f)−
∫ l

0

δu2(x, 0; f) dx

)

,

which means that

(3.17) (δuτ , δu)L2(Qt) =
1

2

d

dt

∫ l

0

δu2(x, t; f) dx.
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On the other hand, we have

(3.18)
1

2

(

RDα
x δu, δu

)

L2(Qt)
+

1

2

(

R
xD

αδu, δu
)

L2(Qt)

=
1

2

(

RDα/2
x δu,Rx D

α/2δu
)

L2(Qt)
+

1

2

(

R
xD

α/2δu,RDα/2
x δu

)

L2(Qt)

=
1

2

∫ t

0

∫ l

0

RDα/2
x δu(x, τ ; f)RxD

α/2δu(x, τ ; f) dx dτ

+
1

2

∫ t

0

∫ l

0

R
xD

α/2δu(x, τ ; f)RDα/2
x δu(x, τ ; f) dxdτ

=
(

RDα/2
x δu,Rx D

α/2δu
)

L2(Qt)
= cos

(

πα

2

)

∥

∥

RDα/2
x δu

∥

∥

2

L2(Qt)
,

where in the last equality we use Fourier transform property [4]. Consequently,

applying the relations (3.17) and (3.18) in (3.16), we conclude that

d

dt

∫ l

0

δu2(x, t; f) dx− 2 cos
(

πα

2

)

∥

∥

RDα/2
x δu

∥

∥

2

L2(Qt)
= 2(f, δu)L2(Qt),

and
d

dt

∫ l

0

δu2(x, t; f) dx 6 2(f, δu)L2(Qt).

Now, using the Cauchy-Schwarz inequality, we get

d

dt

∫ l

0

δu2(x, t; f) dx 6 2

∫ l

0

δu2(x, t; f) dx

∫ l

0

δf2(x, t) dx

6

∫ l

0

δu2(x, t; f) dx+

∫ l

0

δf2(x, t) dx.

Then applying Gronwall inequality, the desired result can be archived. �

By the definition of the Fréchet derivative, from (3.14) and (3.15) we conclude

that the gradient of the cost functional J is the operator

(3.19) J ′(f) = p(x, t; f),

where p is the solution of (3.5)–(3.7).

By using Lemma 3.1 and Lemma 3.2, one can prove the following theorem.

Theorem 3.1. Let the assumptions (A1)–(A4) hold. Then the cost functional J

is Fréchet-differentiable, J ∈ C1(χ). The Fréchet derivative at f ∈ χ of the cost

functional J is defined via the solution of the adjoint problem (3.5)–(3.7) as

J ′(f) = p(x, t; f).
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Corollary 3.3. Let J ∈ C1(χ) and let χ∗ ⊂ χ be the set of quasi solutions of the

ISP (1.1)–(1.4). Then f∗ ∈ χ∗ is a strict solution of the ISP (1.1)–(1.4) if and only

if p(x, t; f∗) ≡ 0 on QT .

4. Lipschitz continuity of the gradient and the monotone

iteration scheme

A gradient-type iteration algorithm for the minimization problem (2.3) has the

form

(4.1) f (n+1) = f (n) − ωnJ
′(f (n)), n = 0, 1, 2, . . . ,

where f (0) ∈ χ is a given initial iteration and ωn > 0 is a relaxation parameter.

The choice of ωn > 0 defines different gradient methods. In many situations, espe-

cially when numerically solving nonlinear problems, the estimation of the relaxation

parameter ωn is a difficult problem. Hasanov et al. in [7] asserted that in the case

of Lipschitz continuity of the Fréchet gradient, i.e., when J is of the Hölder class

C1,1(χ), the relaxation parameter can be estimated via the Lipschitz constant L > 0,

as follows:

ωn ∈ (0, 2/L).

In fact, if J ∈ C1,1(χ) and {f (n)} ⊂ χ is a sequence of iterations defined by the above

algorithm, then for ωn ∈ (0, 2/L) the numerical sequence {J ′(f (n))} is decreasing
and lim

n→∞

‖J ′(f (n))‖ = 0. Thus, the Lipschitz continuity of the gradient of the cost

functional implies the monotonicity of the numerical sequence {J ′(f (n))}, where f (n)

is the nth iteration of a gradient-type iteration.

As a result, now we will prove the Lipschitz continuity of the cost functional (1.5).

Lemma 4.1. Let the assumptions (A1)–(A4) hold. Also, let the functions

p(x, t; f) and p(x, t; f + δf) be the solutions of adjoint problem (3.5)–(3.7) with

q(x) = 2(u(x, t; f)|t=T − ψ(x)) and q(x) = 2(u(x, t; f + δf)|t=T − ψ(x)), respec-

tively. Then the functional J is of the Hölder class C1,1(χ) and

(4.2) ‖J ′(f + δf)− J ′(f)‖L2(QT ) 6 L‖δf‖L2(QT ),

where L := 2eT
√
T is a Lipschitz constant and

(4.3) ‖J ′(f + δf)− J ′(f)‖2L2(QT ) =

∫ T

0

∫ l

0

(δp(x, t; f))
2
dxdt,
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in which δp(x, t; f) = p(x, t; f + δf)− p(x, t; f) is the solution of the problem

δpt(x, t) +
1

2
RDα

x δp(x, t) +
1

2
R
xD

αδp(x, t) = 0, (x, t) ∈ QT ,(4.4)

δp(0, T ) = δp(l, t) = 0, t ∈ (0, T ),(4.5)

δp(x, T ) = 2δu(x, t; f)|t=T , x ∈ Λ.(4.6)

P r o o f. Multiply (4.4) by δp(x, t; f) and integrate over (0, l) to get

(δpt, δp)L2(Λ) =
1

2

d

dt

∫ l

0

(δp(x, t; f))
2
dx,

and

1

2

(

RDα
x δp, δp

)

L2(Λ)
+

1

2

(

R
xD

αδp, δp
)

L2(Λ)
= cos

(

πα

2

)

∥

∥

RDα/2
x δp

∥

∥

2

L2(Λ)
.

Then we have

1

2

d

dt

∫ l

0

(δp(x, t; f))
2
dx = − cos

(

πα

2

)

∥

∥

RDα/2
x δp

∥

∥

2

L2(Λ)
.

Now, we define

Φ(t) :=

∫ l

0

(δp(x, t; f))
2
dx.

Since Φ′(t) > 0, Φ(t) is increasing on (0, T ], hence

Φ(t) 6 Φ(T ), t ∈ (0, T ].

Consequently, we obtain

∫ l

0

(δp(x, t; f))
2
dx 6

∫ l

0

(δp(x, T ; f))
2
dx

= 4

∫ l

0

(δu(x, t; f)|t=T )
2 dx 6 4e2T ‖δf‖2L2(QT ),

which concludes the proof. �

We will prove the monotonicity and convergence of the sequence J(f (n)), where

f (n), n = 0, 1, 2, . . ., are defined by (4.1).

Lemma 4.2. Let J ∈ C1,1(χ). Then

(4.7) |J(f1)− J(f2)− (J ′(f2), f2 − f1)L2(QT )| 6
1

2
L‖f1 − f2‖2L2(QT ), f1, f2 ∈ χ,

where L is defined in Lemma 4.1.

479



P r o o f. According to [7], Lemma 3.4.3, page 112, one can easily prove the

lemma. �

Lemma 4.3. Let f (n), n = 0, 1, 2, . . ., be iterations defined by (4.1) and the

conditions of Lemmas 4.1 and 4.2 hold. Then {J(f (n))} is a decreasing convergent
sequence and

(4.8) lim
n→∞

‖J ′(f (n))‖L2(QT ) = 0.

P r o o f. Apply inequality (4.7) and take f1 = f (n) − ωnJ
′(f (n)) and f2 = f (n),

ωn > 0. Then we get

J(f (n) − ωnJ
′(f (n)))− J(f (n)) + ωn‖J ′(f (n))‖2L2(QT ) 6

1

2
Lω2

n‖J ′(f (n))‖2L2(QT ),

and

J(f (n))− J(f (n+1)) > ωn

(

1− 1

2
Lωn

)

‖J ′(f (n))‖2L2(QT ).

The function ωn(1 − 1
2Lωn), ωn > 0 reaches its minimum value at w∗ := 1/L, i.e.,

w∗ := 1/2eT
√
T . Hence,

J(f (n))− J(f (n+1)) >
1

4eT
√
T
‖J ′(f (n))‖2L2(QT ) ∀ f (n), f (n+1) ∈ χ.

The right-hand side is positive, which means that the sequence {J(f (n))} is decreas-
ing. Since this sequence is bounded from below, this result also implies convergence

of the numerical sequence {J(f (n))}. In conclusion, passing to the limit in the above
inequality, we obtain the second assertion (4.8) of the lemma. �

Notice that the optimal value w∗ := 1/L is in the range (0, 2/L), which reveals

the validation of the proposed gradient-type iteration algorithm.

Corollary 4.1. If {f (n)} ⊂ χ is the sequence of iterations defined by

f (n+1) = f (n) − ω∗J
′(f (n)), ω∗ :=

1

L
=

1

2eT
√
T
, n = 0, 1, 2, . . . ,

then {J(f (n))} is a decreasing convergent sequence and

lim
n→∞

‖J ′(f (n))‖L2(QT ) = 0.
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5. Convexity of the Fréchet derivative

In this section, we will study the convexity of the cost functional J .

Lemma 5.1. Let f and f + δf ∈ χ. Then

(J ′(f + δf)− J ′(f), δf)L2(QT ) = 2

∫ l

0

δu(x, t;ϕ)|t=T )
2
dx.

P r o o f. Using (3.14) and (3.19), we can write that

(J ′(f + δf)− J ′(f), δf)L2(QT ) =

∫ T

0

∫ l

0

δf(x, t)δp(x, t; f) dxdt

=

∫ l

0

δu(x, t; f)|t=T δq(x) dx,

where

δp(x, t; f) = p(x, t; f + δf)− p(x, t; f),

and

δq(x) = 2(u(x, t; f + δf)|t=T − ψ(x))− 2(u(x, t; f)|t=T − ψ(x))

= 2δu(x, t; f)|t=T .

So we have

(J ′(f + δf)− J ′(f), δf )L2(Λ) = 2

∫ l

0

δu(x, t; f)|t=T δu(x, t; f)|t=T dx.

�

Lemma 5.1 proves that J is convex. If for f ∈ χ we have

(5.1)

∫ l

0

(δu(x, t; f)|t=T )
2
dx > 0,

then J is strictly convex. Using here the uniqueness theorem on minimal problems

for strictly convex functionals defined on convex sets, we may derive the following

unicity result.

Theorem 5.1. Suppose that (5.1) hold. Then ISP (1.1)–(1.4) has at most one

quasi solution.

481



At the end, we give the convergence theorem of the sequence J(f (n)).

Theorem 5.2. Let the conditions of Lemmas 4.1 and 4.2 hold. Then for any

initial source f (0) ∈ χ the sequence of iterations {f (n)}, given by (4.1), weakly

converges in L2(QT ) to a quasi solution f∗ ∈ χ∗ of the inverse problem (1.1)–(1.4).

P r o o f. It is well known that a minimization problem for a continuous convex

functional in a bounded closed and convex set has a solution. Therefore the mini-

mizing sequence {f (n)} ⊂ χ weakly converges to an element f∗ ∈ χ∗. Hence, for the

sequence {f (n)} ⊂ χ defined by (4.1) we have f (n) ⇀ f∗ ∈ χ∗ as n→ ∞. �

6. Application

In this section, we briefly present the physical background of the space fractional

diffusion equation and introduce its concrete form. It is well known that the ordinary

diffusion process is intimately related to the validity of the central limit theorem,

which is characterized by the linear dependence of the mean square displacement

〈x2(t)〉 ∼ κt on the diffusion coefficient κ. However, some diffusion processes, es-

pecially in various complex systems, no longer follow Gaussian behavior. This phe-

nomenon is named anomalous diffusion which is described by the nonlinear growth of

the mean square displacement x(t) of a diffusion particle over time t : 〈x2(t)〉 ∼ καt
α,

where κα is the diffusion coefficient, and α is the anomalous diffusion exponent. For

different α, the anomalous diffusion is classified into subdiffusion (0 < α < 1), nor-

mal diffusion (α = 1), superdiffusion (α > 1), and ballistic diffusion (α = 2), see [12],

[15], [13] and Fick’s law is inevitable to be modified in order to precisely describe the

anomalous diffusion behavior [12].

Following [12], [15], denote by u = u(x, t) the probability distribution of the

particles (or the concentration of solute) at point x and time t. For the pure diffusion

process, the conservation of the mass equation can be expressed as

(6.1)
∂u(x, t)

∂t
= −∂H(x, t)

∂x
+ f(x),

where H is the mass flux and f(x) a stable source. Usually, the mass flux H refers

to the Fick’s first law

H(x, t) = −κ∂u(x, t)
∂x

.

However, the anomalous diffusion is given by the generalized Fick’s law

(6.2) H(x, t) = −κα
{

pRDα−1
x − qRxD

α−1
}

u,
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where κα > 0, and p+ q = 1 for p, q > 0 (the case in [12] is p = q = 1
2 ). Substitut-

ing (6.2) into (6.1) leads to

(6.3)
∂u(x, t)

∂t
= κα∇α

p,q + f(x),

where

∇α
p,q =

{

pRDα
x − qRxD

α
}

,

still being meaningful when α tends to 2, and corresponding to the second order

derivative.

In other words, the space fractional diffusion equation, we consider in this paper

can describe the probability distribution of the particles having superdiffusion. Much

progress has been made for numerically solving space fractional partial differential

equations. Here instead of further pursuing research in this direction, we discuss

the space fractional inverse diffusion equation, i.e., to determine an unknown source,

which depends only on the spatial variable, in the one dimensional space fractional

diffusion equation. Determination of the unknown source is to obtain information

about a physical object or system by observed datum, and it is one of the most

important and well-studied problems in many branches of engineering sciences. It is

worth pointing out that, identifying the unknown source is an inverse and severely

ill-posed problem [15].

Conclusion

In this paper, we considered an inverse source problem associated with a space

fractional diffusion equation from the final overdetermination. Using the weak solu-

tion theory and the adjoint problem, we proved the existence and uniqueness of the

quasi solution and constructed a monotone iteration scheme based on a gradient like

method. To this end, we showed that the cost functional is Fréchet differentiable and

its derivative can be formulated via the solution of the adjoint problem. In addition,

Lipschitz continuity of the gradient and convergence of the iteration scheme were

given.
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