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Local convergence analysis of a modified

Newton-Jarratt’s composition under weak conditions

Ioannis K. Argyros, Santhosh George

Abstract. A. Cordero et. al (2010) considered a modified Newton-Jarratt’s com-
position to solve nonlinear equations. In this study, using decomposition tech-
nique under weaker assumptions we extend the applicability of this method.
Numerical examples where earlier results cannot apply to solve equations but
our results can apply are also given in this study.

Keywords: Newton-Jarratt’s method; radius of convergence; local convergence;
decomposition techniques; restricted convergence domain

Classification: 65D10, 65D99, 65J20, 49M15, 74G20, 41A25

1. Introduction

In this study, we consider the problem of approximating the solution x∗ of
nonlinear equation

(1.1) H(x) = 0,

where H : Ω ⊆ B1 −→ B2 is a continuous Fréchet-differentiable operator and Ω is
a convex set. Newton-like methods are used widely for obtaining an approximation
for the solution x∗ of (1.1). Higher order multi-point methods are studied in the
literature (see [1], [5]–[20]) for approximating the solution x∗ of (1.1).

In the present paper, we consider the following construction considered in [7]

(1.2)

zn = xn − 2

3
H ′(xn)

−1H(xn)

yn = xn − 1

2
(3H ′(zn)−H ′(xn))

−1(3H ′(zn) +H ′(xn))H
′(xn)

−1H(xn),

xn+1 = yn − 1

2
(3H ′(zn)−H ′(xn))

−1H(yn),

where x0 is an initial point for solving equation (1.1) when, B1 = B2 = R
i,

i a natural integer. Let B(a, ̺), B(a, ̺) stand respectively for the open and
closed balls in B1 with center a ∈ B1 and of radius ̺ > 0. The convergence
analysis of iterative methods is usually divided into two categories: semilocal
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and local convergence analysis. The semilocal convergence matter is based on the
information around an initial point, to give conditions ensuring the convergence of
the method. On the other hand, the local convergence is based on the information
around a solution, to find estimates on the radii of the convergence balls. We are
concerned with the local convergence analysis of method (1.2) in this study.

Finding solutions for the equation (1.1) is an important problem in mathemat-
ics due to its wide applications. In [7] the existence of the Fréchet derivative of H
of order up to four was used for the derivation of the convergence order although
only the first derivative appears in method (1.2). This assumption on the higher
order Fréchet derivatives of the operator H restricts the applicability of method
(1.2) to problems where the fourth or higher order derivatives of H exist. For
example consider the following:

Example 1.1. Let B1 = B2 = C[0, 1], Ω =B(x∗, 1) and consider the nonlinear
integral equation of the mixed Hammerstein-type [2], [17], [7]–[11], [15] defined
by

x(s) =

∫ 1

0

G(s, t)
(

x(t)3/2 +
x(t)2

2

)

dt,

where the kernel G is the Green function defined on the interval [0, 1]× [0, 1] by

G(s, t) =

{

(1− s)t, t ≤ s,
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of equation (1.1), where
H : C[0, 1] −→ C[0, 1] is defined by

H(x)(s) = x(s)−
∫ 1

0

G(s, t)
(

x(t)3/2 +
x(t)2

2

)

dt.

Notice that
∥

∥

∥

∥

∫ 1

0

G(s, t) dt

∥

∥

∥

∥

≤ 1

8
.

Then, we have that

H ′(x)y(s) = y(s)−
∫ 1

0

G(s, t)
(3

2
x(t)1/2 + x(t)

)

dt,

so since H ′(x∗(s)) = I,

‖H ′(x∗)−1(H ′(x)−H ′(y))‖ ≤ 1

8

(3

2
‖x− y‖1/2 + ‖x− y‖

)

.

One can see that, higher order derivatives of H do not exist in this example.
Therefore, there is no guarantee that method (1.2) converges under the assump-
tions in [7] although the method may converge under weaker assumptions.

Our goal is to weaken the assumptions in [7] using only hypotheses on the first
derivative and apply the method for solving equation (1.1) in Banach spaces, so
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that the applicability of the method (1.2) can be extended. To estimate the order
of convergence while bypassing the usage of high order derivatives, we use the
computational order of convergence and the approximate order of convergence
(see Remark 2.2 (d)). So, we find a ball containing the initial guesses and we
know how many iterates are needed to obtain a desired error tolerance. Notice
that in the studies using Taylor expansions these bounds are not available and
the initial guess is a shot in the dark. No uniqueness results are either available
in [7].

The rest of the paper is organized as follows. In Section 2 we present the local
convergence analysis. We also provide a radius of convergence, computable error
bounds and uniqueness result. Special cases and numerical examples are given in
the last section.

2. Ball convergence

We introduce some functions and parameters for the ball convergence analysis
of method (1.2). Let w0 : [0, R0) −→ R+ be a continuous and non-decreasing
function with w0(0) = 0. Define the parameter R0 by

(2.1) R0 = sup{t ≥ 0: w0(t) < 1}.

Let also w : [0, R0) −→ R+, v : [0, R0) −→ R+ be continuous and nondecreasing
functions with w(0) = 0. Moreover, define functions ϕ1, ψ1, q, ψq on the interval
[0, R0) by

ϕ1(t) =

∫ 1

0
w((1 − θ)t) dθ + 1

3

∫ 1

0
v(θt) dθ

1− w0(t)
,

ψ1(t) = ϕ1(t)− 1,

q(t) =
1

2
(3w0(ϕ1(t)t) + w0(t)),

and

ψq(t) = q(t) − 1.
Suppose that

(2.2) v(0) < 3.

We have that ψ1(0) = −1 < 0, ψq(0)− 1 < 0 and ψ1(t) → ∞, ψq(t) −→ ∞ as

t → R−

0 . Then, the intermediate value theorem guarantees the existence of zeros
in the interval (0, R0) for functions ψ1 and ψq. Let R1, Rq stand for the smallest
zeros of functions ψ1 and ψq on the interval (0, R0), respectively. Furthermore,
define functions ϕ2 and ψ2 on the interval [0, Rq) by

ϕ2(t) =

∫ 1

0
w((1 − θ)t) dθ

1− w0(t)
+

3

4

(w0(ϕ1(t)t) + w0(t))
∫ 1

0
v(θt) dθ

(1− q(t))(1 − w0(t))
,
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and
ψ2(t) = ϕ2(t)− 1.

We get that ψ2(0) = −1 < 0 and ψ2(t) −→ ∞ as t −→ R−

q . Denote by R2 the
smallest zero of function ψ2 on the interval (0, Rq). Finally, define functions ϕ3

and ψ3 on the interval [0, Rq) by

ϕ3(t) =

(

1 +

∫ 1

0
v(θϕ2(t)t) dθ

4(1− q(t))

)

ϕ2(t),

and
ψ3(t) = ϕ3(t)− 1.

We obtain that ψ3(0) = −1 < 0 and ψ3(R2) =
∫ 1

0
v(θR2) dθ/(4(1− q(R2))) > 0.

Denote by R3 the smallest zero of function ψ3 on the interval (0, R2). Define the
radius of convergence R by

(2.3) R = min{R1, R3}.

Then, we have for each t ∈ [0, R)

(2.4) 0 ≤ ϕi(t) < 1, i = 1, 2, 3,

and

(2.5) 0 ≤ q(t) < 1.

We shall show next the ball convergence result for method (1.2) using the
preceding notation.

Theorem 2.1. Let H : Ω ⊂ B1 → B2 be a continuously Fréchet-differentiable

operator. Assume there exist x∗ ∈ Ω and function w0 : R+ −→ R+ continuous

non-decreasing such that for each x ∈ Ω

(2.6) H(x∗) = 0, H ′(x∗)−1 ∈ L(B2,B1),

and

(2.7) ‖H ′(x∗)−1(H ′(x)−H ′(x∗)‖ ≤ w0(‖x− x∗‖),

there exist functions w : [0, R0) −→ R+, v : [0, R0) −→ R+ continuous nonde-

creasing with w(0) = 0 and v satisfying (2.2) such that for each x, y ∈ Ω0 =
Ω ∩B(x∗, R)

‖H ′(x∗)−1(H ′(x) −H ′(y)‖ ≤ w(‖x− y‖),(2.8)

‖H ′(x∗)−1H ′(x)‖ ≤ v(‖x− y‖),(2.9)

and

(2.10) B(x∗, R) ⊆ Ω,
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where the radii R0 and R are given in (2.1) and (2.3), respectively. Then, the

sequence {xn} generated for x0 ∈ U(x∗, R)−{x∗} by method (1.2) is well defined
in U(x∗, R), remains in U(x∗, R) for each n = 0, 1, 2, . . . and converges to x∗ so

that

‖zn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < R,(2.11)

‖yn − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,(2.12)

and

(2.13) ‖xn+1 − x∗‖ ≤ ϕ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,

where for i = 1, 2, 3 the functions ϕi are defined previously. Moreover, if there

exists R∗ ≥ R such that

(2.14)

∫ 1

0

w0(θR
∗) dθ < 1,

then the limit point x∗ is the only solution of equation H(x) = 0 in Ω1 = Ω ∩
B(x∗, R∗).

Proof: We shall show that point x0 is well defined by the first substep of method
(1.2) for n = 0. Using the hypothesis x0 ∈ B(x∗, R)−{x∗}, (2.1), (2.3) and (2.7)
we have in turn that

(2.15) ‖H ′(x∗)−1(H ′(x0)−H ′(x∗)‖ ≤ w0(‖x0 − x∗‖) ≤ w0(R) < 1.

It follows by (2.15) and the Banach lemma on invertible operators [2], [10], [20]
that H ′(x0)

−1 ∈ L(B2,B1) and

(2.16) ‖H ′(x0)
−1H ′(x∗)‖ ≤ 1

1− w0(‖x0 − x∗‖) .

Hence, y0 is well defined. By the first substep of method (1.2) for n = 0 we can
write the identity

(2.17) z0 − x∗ = x0 − x∗ −H ′(x0)
−1H(x0) +

1

3
H ′(x0)

−1H(x0).

In view of (2.3), (2.4) for i = 1, (2.6), (2.8), (2.16) and (2.17) we get in turn that

‖z0 − x∗‖ ≤ ‖H ′(x0)
−1H ′(x∗)‖

×
∥

∥

∥

∥

∫ 1

0

H ′(x∗)−1(H ′(x∗ + θ(x0 − x∗))−H ′(x0))(x0 − x∗) dθ

∥

∥

∥

∥

+
1

3
‖H ′(x0)

−1H ′(x∗)‖‖H ′(x∗)−1H(x0)‖
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(2.18)

≤
∫ 1

0
w((1 − θ)‖x0 − x∗‖) dθ ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)

+
1

3

∫ 1

0
v(θ‖x0 − x∗‖) dθ ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)
= ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R,

which shows (2.11) for n = 0 and z0 ∈ B(x∗, R), where we also used the estimate

(2.19)

‖H ′(x∗)−1H(x0)‖ =

∥

∥

∥

∥

∫ 1

0

H ′(x∗)−1H ′(x∗ + θ(x0 − x∗))(x0 − x∗) dθ

∥

∥

∥

∥

≤
∫ 1

0

v(θ‖x0 − x∗‖) dθ‖x0 − x∗‖ by (2.9).

Next, we must show that (3H ′(z0) − H ′(x0))
−1 ∈ L(B2,B1). In view of (2.3),

(2.5) and (2.7) we obtain in turn that

‖(2H ′(x∗))−1(3(H ′(z0)−H ′(x∗)) + (H ′(x∗)−H ′(x0)))‖

≤ 1

2
[3‖H ′(x∗)−13(H ′(z0)−H ′(x∗))‖

+ ‖H ′(x∗)−1(H ′(x∗)−H ′(x0))‖]

≤ 1

2
(3w0(‖z0 − x∗‖) + w0(‖x0 − x∗‖))

≤ 1

3
(3w0(g1(‖x0 − x∗‖)‖x0 − x∗‖) + w0(‖x0 − x∗‖))

= q(‖x0 − x∗‖) ≤ q(R) < 1,

so

(2.20) ‖(3H ′(z0)−H ′(x0))
−1H ′(x∗)‖ ≤ 1

2(1− q(‖x0 − x∗‖)) .

It also follows from the second and third substep of method (1.2), respectively
that y0 and x1 are well defined. In particular, we can write

(2.21)

y0 − x∗ = x0 − x∗ −H ′(x0)
−1H(x0)

+
[

I − 1

2
(3H ′(z0)−H ′(x0))

−1(3H ′(z0)

+H ′(x0))
]

H ′(x0)
−1H(x0)

= x0 − x∗ −H ′(x0)
−1H(x0)

+
3

2
(3H ′(z0)−H ′(x0))

−1[(H ′(z0)−H ′(x∗))

+ (H ′(x∗)−H ′(x0))]H
′(x0)

−1H(x0).
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Next, by using (2.3), (2.4) for i = 2, (2.16), (2.18), (2.20) and (2.21), we have in
turn that

(2.22)

‖y0 − x∗‖ ≤ ‖x0 − x∗ −H ′(x0)
−1H(x0)‖

+
3

2
‖(3H ′(z0)−H ′(x0))

−1H ′(x∗)‖

× [‖H ′(x∗)−1(H ′(z0)−H ′(x∗))‖
+ ‖H ′(x∗)−1(H ′(x∗)−H ′(x0))‖]
× ‖H ′(x0)

−1H ′(x∗)‖‖H ′(x∗)−1H(x0)‖

≤
∫ 1

0
w((1 − θ)‖x0 − x∗‖) dθ
1− w0(‖x0 − x∗‖) ‖x0 − x∗‖

+
3(w0(‖z0 − x∗‖) + w0(‖x0 − x∗‖))

4(1− q(‖x0 − x∗‖))

×
∫ 1

0
v(θ‖x0 − x∗‖) dθ‖x0 − x∗‖
(1 − w0(‖x0 − x∗‖))

≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R,

which shows (2.12) for n = 0 and y0 ∈ B(x∗, R). Then from the third substep
of method (1.2) for n = 0, (2.3), (2.4) for i = 3, (2.18), (2.19) for x0 = y0 and
(2.22), we get in turn that

(2.23)

‖x1 − x∗‖ ≤ ‖y0 − x∗‖

+
1

2
‖(3H ′(z0)−H ′(x0))

−1H ′(x∗)‖‖H ′(x∗)−1H(y0)‖

≤ ‖y0 − x∗‖) +
∫ 1

0
v(θ‖y0 − x∗‖)‖y0 − x∗‖ dθ
4(1− q(‖x0 − x∗‖))

≤
(

1 +

∫ 1

0
v(θϕ2(‖x0 − x∗‖)‖x0 − x∗‖) dθ

4(1− q(‖x0 − x∗‖))

)

× ϕ2(‖x0 − x∗‖)‖x0 − x∗‖
= ϕ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < R,

which shows (2.13) for n = 0 and x1 ∈ B(x∗, R). By simply replacing x0, z0, y0, x1
by xk, zk, yk, xk+1 in the preceding estimates, we arrive at estimates (2.11)–(2.13).
Then, from the estimates

(2.24) ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < R,

where c = ϕ3(‖x0 − x∗‖) ∈ [0, 1), we deduce that lim
k→∞

xk = x∗ and xk+1 ∈
B(x∗, R). Finally to show the uniqueness part, let T =

∫ 1

0
H ′(x∗ + θ(y∗ − x∗)) dθ
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where y∗ ∈ Ω2 with H(y∗) = 0. Using (2.7), we obtain that

(2.25)

‖H ′(x∗)−1(T −H ′(x∗))‖ ≤
∫ 1

0

w0(θ‖x∗ − y∗‖) dθ

≤
∫ 1

0

w0(θR
∗) dθ < 1.

Hence, we have that T−1 ∈ L(B2,B1). Then, from the identity 0 = H(y∗) −
H(x∗) = T (y∗ − x∗), we conclude that x∗ = y∗. �

Remark 2.2. (a) In the case when w0(t) = L0t, w(t) = Lt and Ω0 = Ω, the
radius rA = 2/(2L0 + L) was obtained by I.K. Argyros in [2] as the con-
vergence radius for Newton’s method under condition (2.6)–(2.8). Notice
that the convergence radius for Newton’s method given independently by
W.C. Rheinboldt in [16] and J. F. Traub in [20] is given by

̺ =
2

3L
< rA.

As an example, let us consider the function H(x) = ex − 1. Then x∗ = 0.
Set Ω = B(0, 1). Then, we have that L0 = e − 1 < L = e, so ̺ =
0.24252961 < rA = 0.324947231.

Moreover, the new error bounds, see [2], are:

‖xn+1 − x∗‖ ≤ L

1− L0‖xn − x∗‖‖xn − x∗‖2,

whereas the old ones, see [4], [7]

‖xn+1 − x∗‖ ≤ L

1− L‖xn − x∗‖‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, we
do not expect the radius of convergence of method (1.2) given by r3 to be
larger than rA.

(b) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method (GMREM), the gen-
eralized conjugate method (GCM) for combined Newton/finite projection
methods and in connection to the mesh independence principle in order
to develop the cheapest and most efficient mesh refinement strategy, see
[2]–[4].

(c) The results can be also used to solve equations where the operator H ′

satisfies the autonomous differential equation [2]–[4]:

H ′(x) = P (H(x)),

where P : B2 −→ B2 is a known continuous operator and say B1 = B2 = R.
Since H ′(x∗) = P (H(x∗)) = P (0), we can apply the results without
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actually knowing the solution x∗. As an example, let H(x) = ex − 1.
Then, we can choose P (x) = x+ 1 and x∗ = 0.

(d) It is worth noticing that method (1.2) are not changing if we use the
new instead of the old conditions [7]. Moreover, for the error bounds in
practice we can use the computational order of convergence (COC)

ξ = ln
‖xn+2 − x∗‖
‖xn+1 − x∗‖

/

ln
‖xn+1 − x∗‖
‖xn − x∗‖ for each n = 1, 2, . . . ,

or the approximate computational order of convergence (ACOC)

ξ∗ = ln
‖xn+2 − xn+1‖
‖xn+1 − xn‖

/

ln
‖xn+1 − xn‖
‖xn − xn−1‖

for each n = 0, 1, 2, . . . .

(e) In view of (2.4) and the estimate

‖H ′(x∗)−1H ′(x)‖ = ‖H ′(x∗)−1(H ′(x)−H ′(x∗)) + I‖
≤ 1 + ‖H ′(x∗)−1(H ′(x)−H ′(x∗))‖ ≤ 1 + w0(‖x− x∗‖)

condition (2.6) can be dropped and can be replaced by

v(t) = 1 + w0(t),
or

v(t) = 1 + w0(R0),

since t ∈ [0, R0).

3. Numerical examples

We present two examples in this section.

Example 3.1. Let B1 = B2 = R
3, D = U(0, 1), x∗ = (0, 0, 0)T . Define function

H on D for w = (x, y, z)T by

H(w) =
(

ex − 1,
e− 1

2
y2 + y, z

)T

.

Then the Fréchet-derivative is given by

H ′(v) =





ex 0 0
0 (e− 1)y + 1 0
0 0 1



 .

Using x∗ = (0, 0, 0)T and (2.5)–(2.7), we can choose w0(t) = L0t, w(t) = e1/L0t,
v(t) = e1/L0 , L0 = e− 1. Then, the radius of convergence R is given by

R = R1 = 0.1544, R3 = 0.2321.

The iterates are given in Table 1 and ξ = 1.9989.
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n xn
1 (0.1400, 0.1200, 0.1400)
2 ( −0.0792, −0.1154, 0)
3 ( −0.0300, −0.0926, 0)
4 (−0.0042, −0.0614, 0)
5 ( −0.0001, −0.0278, 0)
6 (−0.0000, −0.0059, 0)
7 ( −0.0000, −0.0003, 0)
8 ( 0.0000, −0.0000, 0)

Table 1. Iterates.

Example 3.2. Returning back to the motivational example given at the intro-
duction of this study, we can choose (see also Remark 2.2 (e) for function v)
x∗ = 0, w0(t) = w(t) = 1

8

(

3

2

√
t + t

)

and v(t) = 1 + w0(R0), R0 ⋍ 4.7354. Then,
the radius of convergence R is given by

R1 = 1.2246, R3 = 1.1185 = R.
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