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Abstract. We use the Laplace transform method to solve certain families of fractional or-
der differential equations. Fractional derivatives that appear in these equations are defined
in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative.
We first state and prove our main results regarding the solutions of some families of frac-
tional order differential equations, and then give examples to illustrate these results. In
particular, we give the exact solutions for the vibration equation with fractional damping
and the Bagley-Torvik equation.
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1. Introduction

The origin of fractional calculus rests in the 17th century. However, the first use of

fractional operations was made by Niels Henrik Abel in 1823. Abel used fractional

calculus to obtain the solution of the tautochrone problem and this area rapidly

progressed from that day in [13].

In the last few decades, fractional calculus has been used to model many processes

in physics and engineering with the use of fractional order differential equations. Sig-

nal processing, fluid mechanics, diffusion process, capacitor theory, electro chemistry,

continuum and statistical mechanics are some important areas in which fractional

calculus is used [1], [9], [11], [12].

There are several ways to get exact or numerical solutions of fractional order

differential equations. In this paper, we use the Laplace transform method to obtain

exact solutions of some families of fractional order differential equations [13].
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In the remainder of the paper, we give the definitions of the Laplace transform op-

erator and some related operators which are the Riemann-Liouville fractional integ-

ral, the fractional derivative operators and the Caputo fractional derivative opera-

tor. Also, we give place to the Laplace transform of the Riemann-Liouville fractional

derivative and the Caputo sense fractional derivative of a function. Then, we in-

troduce various theorems about the solutions of some families of fractional order

differential equations which include the Riemann-Liouville fractional derivative or

the Caputo sense fractional derivative. Finally, we use the introduced theorems to

obtain the solutions for the vibration equation with fractional damping, the Bagley-

Torvik equation and some other fractional differential equations.

2. Preliminaries

Definition 2.1. The Laplace transform of a function f(t) is defined by [4]

(2.1) L{f(t)} = f̄(s) =

∫
∞

0

e−stf(t) dt,

where s ∈ C and Re(s) > 0.

Definition 2.2. The inverse Laplace transform of f̄(s) is defined by [4]

(2.2) L−1{f̄(s)} = f(t) =
1

2πi

∫ c+i∞

c−i∞

estf̄(s) ds,

where s ∈ C and Re(s) > 0.

Definition 2.3. The quantity (f ∗ g)(t) is called the convolution of the func-

tions f(t) and g(t) and defined by the integral

(2.3) (f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ) dτ.

Theorem 2.4. If L{f(t)} = f̄(s) and L{g(t)} = ḡ(s), then the following equation

holds true [4], p. 146,

(2.4) L{(f ∗ g)(t)} = f̄(s)ḡ(s).

Definition 2.5. The Gamma Euler function is given by the integral

(2.5) Γ(z) =

∫
∞

0

e−ttz−1 dt, Re(z) > 0.

558



Definition 2.6. The Riemann-Liouville fractional integral of f(t) of order ν is

defined by [13]

(2.6) D−ν
0,t f(t) =

1

Γ(ν)

∫ t

0

(t− x)ν−1f(x) dx,

where x > 0, ν ∈ C, and Re(ν) > 0.

Definition 2.7. The Riemann-Liouville fractional derivative of f(t) of order µ

is defined by [13]

(2.7) Dµ
0,tf(t) = Dm[D−ν

0,t f(t)], µ > 0, t > 0,

where m > Re(µ) > m− 1 and ν = m− µ.

In equation (2.7), Dm is defined as the so-called Newton-Leibniz differential ope-

rator, where m ∈ N,

(2.8) Dmf(t) =
dmf(t)

dxm
.

Definition 2.8. The fractional derivative of f(t) of order µ in the Caputo sense

is defined by [9]

(2.9) Dµf(t) = D−ν
0,t [D

mf(t)], µ > 0, t > 0,

where m > Re(µ) > m− 1 and ν = m− µ.

It can be easily seen that, if we choose µ = m ∈ Z
+ in equations (2.7) and

(2.9), then we get the classical derivative that is defined in equation (2.8). So, the

Riemann-Liouville fractional derivative and the Caputo sense fractional derivative

coincide with the classical derivative under the choice of µ = m ∈ Z
+.

Theorem 2.9. If f (n)(t) is the nth derivative of f(t) for n ∈ N, then the Laplace

transform of f (n)(t) is given by the formula [4], p. 144,

(2.10) L{f (n)(t)} = snf̄(s)− sn−1f(0)− sn−2f ′(0)− . . .− sf (n−2)(0)− f (n−1)(0)

= snf̄(s)−
n−1∑

r=0

f (r)(0)sn−r−1,

where f (r)(0) is the value of f (r)(t) at t = 0 for r = 0, 1, . . . , n− 1.
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Theorem 2.10. The Laplace transform of the Riemann-Liouville fractional

derivative of f(x) of order µ is given by [5],

(2.11) L{Dµ
0,tf(t)} = sµf(s)−

m−1∑

k=0

skD
(µ−k−1)
0,t f(0),

where µ ∈ C, m > Re(µ) > m− 1 and ν = m− µ for Re(µ) > 0.

Theorem 2.11. The Laplace transform of the fractional derivative of f(x) of

order µ in Caputo sense is given by [12],

(2.12) L{Dµf(t)} = sµf̄(s)−
m∑

k=1

sµ−kDk−1f(0),

where µ ∈ C, m− 1 < Re(µ) 6 m, and ν = m− µ for Re(µ) > 0.

The vibration equation with fractional damping with one degree of freedom is

stated as

(2.13) mD2y(t) + qDµy(t) + ky(t) = f(t),

where m represents the mass of the oscillator, q represents the fractional damping

coefficient and k represents the stiffness coefficient [8], [15].

The solution of the equation (2.13) depends on the interval to which µ belongs. In

this paper, we give the solutions to the equation (2.13) for the intervals 1 > Re(µ) > 0

and 2 > Re(µ) > 1.

The general form of the Bagley-Torvik equation is written as

(2.14) aD2y(t) + bD3/2y(t) + cDy(t) = f(t),

with the initial conditions

(2.15) y(0) = c0, y′(0) = c1,

where a 6= 0, b, c ∈ R, t > 0, and f(t) is a given function from the interval [0, T ]

into R, see [17].

The parameters in equation (2.14) and the initial conditions in equation (2.15)

can be varied to attain different responses.

Linearly damped fractional oscillator that includes a damping term contains a frac-

tional derivative of order µ = 3/2 and can be represented by the Bagley-Torvik

equation with the initial conditions c0 = 0 and c1 = 0, see [2].
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To get another response for expression (2.14), let m denote the mass of a thin rigid

plate, S denote the area of the rigid, and µ̄ and ̺ denote the viscosity and the density

of a Newtonian fluid, respectively. Moreover, let k denote the stiffness of a spring.

In equation (2.14) if we let a = m, b = 2S
√
µ̺̄, and c = k, then the Bagley-Torvik

equation represents the modelling of motion of a rigid sheet that submerged in the

Newtonian fluid [2], [6].

In this paper, we give the solution to the equation (2.14) with the initial conditions

y(0) = c0 6= 0 and y′(0) = c1 6= 0.

Before proceeding to the main theorems, we give the definitions of two generaliza-

tions of the Mittag-Leffler function since we frequently use these generalizations for

the representation of the solutions of the fractional differential equations.

Definition 2.12. The Wiman’s function Eµ,ν(z) is defined by the series

(2.16) Eµ,ν(z) =
∞∑

n=0

zn

Γ(µn+ ν)
, Re(µ) > 0,

where ν, µ ∈ C, see [16].

Definition 2.13. The function Eγ
µ,ν(z) is defined by the series

(2.17) Eγ
µ,ν(z) =

∞∑

n=0

(γ)nz
n

Γ(µn+ ν)n!
, Re(µ) > 0,

where ν, µ, γ ∈ C and the function (γ)n is defined by the equations (γ)n =

Γ(γ + n)/Γ(γ) and (γ)0 = 1, see [16].

The function Eγ
µ,ν(z) is an entire function of order [Re(µ)]

−1 and some special

functions can be written as particular cases of this function [16].

If we take γ = 1 in the equation (2.17), we obtain the Wiman’s function. If we

take γ = 1 and ν = 1 in the equation (2.17), we obtain the function Eµ(z) which is

the Mittag-Leffler function [16]. If we take γ = 1, ν = 1, and µ = 1 in the equation

(2.17), we obtain the exponential function ez, see [10].

R em a r k 2.14. For Re(ν) > 0,Re(s) > 0 and |s| > |λ|[Re(α)]−1

the Laplace

transform of the function tβ−1E̺
α,β(λt

α) is given by [16], Eq. (2.5),

(2.18) L{tβ−1E̺
α,β(λt

α)} =
1

sβ(1− λs−α)̺
.

R em a r k 2.15. The Laplace transform of the function tβ−1 is given by [7],

p. 137, Eq. (1),

(2.19) L{tβ−1} = Γ(β)s−β ,

for Re(s) > 0.
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3. Solutions for various fractional differential equations

Lemma 3.1. If a, b ∈ R, b 6= 0, α, µ ∈ C, Re(α) > Re(µ) > 0, and

∣∣∣
bs−µ

sα−µ + a

∣∣∣ < 1,

then

(3.1)
1

sα + asµ + b
=

∞∑

k=0

(−b)ks−αk−α(1 + asµ−α)−k−1,
∣∣∣

bs−α

1 + asµ−α

∣∣∣ < 1.

P r o o f. Note that we have the equality

(3.2)
1

sα + asµ + b
=

s−µ

sα−µ + a+ bs−µ

=
s−µ

(sα−µ + a)
(
1 +

bs−µ

sα−µ + a

) .

By using the series expansion [9]

(3.3)
(
1 +

bs−µ

sα−µ + a

)
−1

=

∞∑

k=0

( −bs−µ

sα−µ + a

)k
,

we obtain the equation

(3.4)
1

sα + asµ + b
=

s−µ

sα−µ + a

∞∑

k=0

( −bs−µ

sα−µ + a

)k

=
∞∑

k=0

(−b)ks−µk−µ

(sα−µ + a)k+1

=

∞∑

k=0

(−b)ks−µk−µ

s(α−µ)(k+1)(1 + asµ−α)k+1

=

∞∑

k=0

(−b)ks−αk−α

(1 + asµ−α)k+1
,

as desired. �
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Lemma 3.2. If b ∈ R, b 6= 0, α ∈ C, and |bs−α| < 1, then the equation

(3.5)
1

sα + b
=

∞∑

k=0

(−b)ks−αk−α

is a special case of Lemma 3.1.

P r o o f. Equation (3.5) could be easily obtained by letting a = 0 in Lemma 3.1.

�

Theorem 3.3. If a, b ∈ R, b 6= 0, α, µ ∈ C, m, n ∈ N, n > Re(α) > n− 1 > m >

Re(µ) > m − 1 > 0, and |bs−µ/(sα−µ + a)| < 1, then the solution of the fractional

differential equation,

(3.6) Dαy(t) + aDµy(t) + by(t) = f(t),

with the initial conditions y(r)(0) = cr for r = 0, 1, 2, . . . , n− 1 is

(3.7) y(t) =

∫ t

0

f(x)
∞∑

k=0

(−b)k(t− x)αk+α−1Ek+1
α−µ,αk+α(−a(t− x)α−µ) dx

+
n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+rEk+1
α−µ,αk+r+1(−atα−µ)

+ a

m−1∑

j=0

cj

∞∑

k=0

(−b)ktαk+α−µ+jEk+1
α−µ,αk+α−µ+j+1(−atα−µ).

P r o o f. Applying the Laplace operator to the differential equation (3.6), we get

(3.8) L{Dαy(t) + aDµy(t) + by(t)} = L{f(t)}.

By the equation (2.12), this implies that we have

sαȳ(s)−
n−1∑

r=0

sα−r−1cr + asµȳ(s)−
m−1∑

j=0

asµ−j−1cj + bȳ(s) = f̄(s),

where cr = Dry(0) for r = 0, 1, 2, . . . , n − 1, cj = Djy(0) for j = 0, 1, 2, . . . ,m − 1,

ȳ(s) = L{y(t)}, and f̄(s) = L{f(t)}. Therefore, by solving this equation for ȳ(s),
we get

(3.9) ȳ(s) =
f̄(s) +

∑n−1
r=0 crs

α−r−1 + a
∑m−1

j=0 cjs
µ−j−1

sα + asµ + b
.
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Now, by using Lemma 3.1, we have

(3.10) ȳ(s) =

(
f̄(s) +

n−1∑

r=0

sα−r−1cr +

m−1∑

j=0

asµ−j−1cj

)

×
∞∑

k=0

(−b)ks−αk−α(1 + asµ−α)−k−1

= f̄(s)

∞∑

k=0

(−b)ks−αk−α(1 + asµ−α)−k−1

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ks−αk−r−1(1 + asµ−α)−k−1

+ a

m−1∑

j=0

cj

∞∑

k=0

(−b)ks−αk−α+µ−j−1(1 + asµ−α)−k−1.

If we take the inverse Laplace transform of ȳ(s), by using Theorem 2.4 and equa-

tion (2.18), we get

(3.11) y(t) = f(t) ∗
∞∑

k=0

(−b)ktαk+α−1Ek+1
α−µ,αk+α(−atα−µ)

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+rEk+1
α−µ,αk+r+1(−atα−µ)

+ a

m−1∑

j=0

cj

∞∑

k=0

(−b)ktαk+α−µ+jEk+1
α−µ,αk+α−µ+j+1(−atα−µ).

Then the equation (3.7) directly follows from the equation (3.11) by using the defi-

nition of convolution (2.3). �

Corollary 3.4. If a, b ∈ R, b 6= 0, α, µ ∈ C, n,m ∈ N, n > Re(α) > n− 1 > m >

Re(µ) > m − 1 > 0, and |bs−µ/(sα−µ + a)| < 1, then the solution of the fractional

differential equation

(3.12) Dαy(t) + aDµy(t) + by(t) = 0

with the initial conditions y(r)(0) = cr for r = 0, 1, 2, . . . , n− 1 is

(3.13) y(t) =

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+rEk+1
α−µ,αk+r+1(−atα−µ)

+ a

m−1∑

j=0

cj

∞∑

k=0

(−b)ktαk+α−µ+jEk+1
α−µ,αk+α−µ+j+1(−atα−µ).
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P r o o f. Equation (3.13) can be easily obtained by substituting f(t) = 0 in The-

orem 3.3. �

Theorem 3.5. If a, b ∈ R, α, µ ∈ C, n ∈ N, n > Re(α) > n − 1 > 0, and

|bs−α| < 1, then the solution of the fractional differential equation

(3.14) Dαy(t) + by(t) = f(t)

with the initial conditions y(r)(0) = cr for r = 0, 1, 2, . . . , n− 1 is

(3.15) y(t) =

∫ t

0

f(x)(t − x)α−1Eα,α(−b(t− x)α) dx+

n−1∑

r=0

crt
rEα,r+1(−btα).

P r o o f. Applying the Laplace operator to the differential equation (3.14), we get

(3.16) L{Dαy(t) + by(t)} = L{f(t)}.

By the equation (2.12), this implies that we have

(3.17) sαȳ(s)−
n−1∑

r=0

sα−r−1cr + bȳ(s) = f̄(s),

where cr = Dry(0) for r = 0, 1, 2, . . . , n − 1, ȳ(s) = L{y(t)}, and f̄(s) = L{f(t)}.
Therefore, we can easily get

(3.18) ȳ(s) =

[
f̄(s) +

∑n−1

r=0
crs

α−r−1

]
(sα + b)−1.

Now, by using Lemma 3.2, we obtain

(3.19) ȳ(s) =

(
f̄(s) +

n−1∑

r=0

sα−r−1cr

) ∞∑

k=0

(−b)ks−αk−α

= f̄(s)

∞∑

k=0

(−b)ks−αk−α +

n−1∑

r=0

cr

∞∑

k=0

(−b)ks−αk−r−1.

If we take the inverse Laplace transform of ȳ(s) by using Theorem 2.4, equa-

tion (2.19), and Definition 2.12, we get

(3.20) L−1{ȳ(s)} = y(t) = f(t) ∗ tα−1Eα,α(−btα) +

n−1∑

r=0

crt
rEα,r+1(−btα).

Then, equation (3.15) directly follows from equation (3.20) by using the definition

of convolution (2.3). �
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Theorem 3.6. If a, b ∈ R, b 6= 0, µ ∈ C, n,m ∈ N, n > m > Re(µ) > m− 1 > 0

and |bs−µ/(sn−µ + a)| < 1, then the solution of the fractional differential equation

(3.21) Dny(t) + aDµy(t) + by(t) = 0

with the initial conditions y(r)(0) = cr for r = 0, 1, 2, . . . , n− 1 is

(3.22) y(t) =

n−1∑

r=0

cr

∞∑

k=0

(−b)ktnk+rEk+1
n−µ,nk+r+1(−atn−µ)

+ a

m−1∑

j=0

cj

∞∑

k=0

(−b)ktnk+n−µ+jEk+1
n−µ,nk+n−µ+j+1(−atn−µ).

P r o o f. Applying the Laplace operator to the differential equation (3.21), we get

(3.23) L{Dny(t) + aDµy(t) + by(t)} = 0.

By the equations (2.10) and (2.12), this implies that we have

(3.24) snȳ(s)−
n−1∑

r=0

crs
n−r−1 + asµȳ(s)− a

m−1∑

j=0

cjs
µ−j−1 + bȳ(s) = 0,

where cr = Dry(0) for r = 0, 1, 2, . . . , n − 1, cj = Djy(0) for j = 0, 1, 2, . . . ,m − 1,

and ȳ(s) = L{y(t)}. Therefore, by solving this equation for ȳ(s), we get

(3.25) ȳ(s) =

∑n−1
r=0 crs

n−r−1 + a
∑m−1

j=0 cjs
µ−j−1

sn + asµ + b
.

The rest of the proof is similar to the proof of Theorem 3.4. �

Theorem 3.7. If a, b ∈ R, α, µ ∈ C, m, n ∈ N, n > Re(α) > n−1 > m > Re(µ) >

m− 1 > 0, and |bs−µ/(sα−µ + a)| < 1, then the solution of the fractional differential

equation

(3.26) Dα
0,ty(t) + aDµ

0,ty(t) + by(t) = f(t)

with the initial conditions Dα−r−1
0,t y(0) = cr for r = 0, 1, 2, . . . , n − 1 and

Dµ−j−1
0,t y(0) = bj for j = 0, 1, 2, . . . ,m− 1 is

(3.27) y(t) =

∫ t

0

f(x)

∞∑

k=0

(−b)k(t− x)αk+α−1Ek+1
α−µ,αk+α(−a(t− x)α−µ) dx

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+α−r−1Ek+1
α−µ,αk+α−r(−atα−µ)

+ a

m−1∑

j=0

bj

∞∑

k=0

(−b)ktαk+α−j−1Ek+1
α−µ,αk+α−j(−atα−µ).
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P r o o f. Applying the Laplace operator to the fractional differential equa-

tion (3.26), we obtain

(3.28) L{Dα
0,ty(t) + aDµ

0,ty(t) + by(t)} = L{f(t)}.

By using equation (2.11), we have

(3.29) sαȳ(s)−
n−1∑

r=0

crs
r + asµȳ(s)− a

m−1∑

j=0

bjs
j + bȳ(s) = f̄(s),

where Dα−r−1
0,t y(0) = cr if r = 0, 1, . . . , n−1, Dµ−j−1

0,t y(0) = bj if j = 0, 1, . . . ,m− 1,

ȳ(s) = L{y(t)} and f̄(s) = L{f(t)}. Then, by solving equation (3.29) for ȳ(s), we

get

(3.30) ȳ(s) =
f̄(s) +

∑n−1
r=0 crs

r + a
∑m−1

j=0 bjs
j

sα + sµ + b
.

Now, by using Lemma 3.1, we find

(3.31) ȳ(s) =

(
f̄(s) +

n−1∑

r=0

srcr + a

m−1∑

j=0

sjbj

) ∞∑

k=0

(−b)ks−αk−α(1 + asµ−α)−k−1

= f̄(s)

∞∑

k=0

(−b)ks−αk−α(1 + asµ−α)−k−1

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ks−αk−α+r(1 + asµ−α)−k−1

+ a

m−1∑

j=0

bj

∞∑

k=0

(−b)ks−αk−α+j(1 + asµ−α)−k−1.

If we take the inverse Laplace transform of ȳ(s) by using Theorem 2.4 and equa-

tion (2.18), we get

(3.32) y(t) = f(t) ∗
∞∑

k=0

(−b)ktαk+α−1Ek+1
α−µ,αk+α(−atα−µ)

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+α−r−1Ek+1
α−µ,αk+α−r(−atα−µ)

+ a

m−1∑

j=0

bj

∞∑

k=0

(−b)ktαk+α−j−1Ek+1
α−µ,αk+α−j(−atα−µ).

Then, the equation (3.27) directly follows from the equation (3.32) by using the

definition of convolution (2.3). �
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Corollary 3.8. If a, b ∈ R, α, µ ∈ C, m, n ∈ N, n > Re(α) > n − 1 > m >

Re(µ) > m − 1 > 0 and |bs−µ/(sα−µ + a)| < 1, then the solution of the fractional

differential equation

(3.33) Dα
0,ty(t) + aDµ

0,ty(t) + by(t) = 0

with the initial conditions Dα−r−1
0,t y(0) = cr for r = 0, 1, 2, . . . , n − 1 and

Dµ−j−1
0,t y(0) = bj for j = 0, 1, 2, . . . ,m− 1 is

(3.34) y(t) =
n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+α−r−1Ek+1
α−µ,αk+α−r(−atα−µ)

+ a
m−1∑

j=0

bj

∞∑

k=0

(−b)ktαk+α−j−1Ek+1
α−µ,αk+α−j(−atα−µ).

P r o o f. Equation (3.34) can be easily obtained by substituting f(t) = 0 in The-

orem 3.7. �

Theorem 3.9. If a, b ∈ R, α, µ ∈ C, n ∈ N, n > Re(α) > n−1 > 0 and |bs−α| < 1,

then the solution of the fractional differential equation

(3.35) Dα
0,ty(t) + by(t) = f(t)

with the initial conditions Dα−r−1
0,t y(0) = cr for r = 0, 1, 2, . . . , n− 1 is

(3.36) y(t) =

∫ t

0

f(x)

∞∑

k=0

(−b)k(t− x)αk+α−1Ek+1
α−µ,αk+α(0) dx

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+α−r−1Ek+1
α−µ,αk+α−r(0).

P r o o f. Applying the Laplace operator to the fractional differential equa-

tion (3.26), we obtain

(3.37) L{Dα
0,ty(t) + by(t)} = L{f(t)}.

By using equation (2.11), we have

(3.38) sαȳ(s)−
n−1∑

r=0

crs
r + bȳ(s) = f̄(s),
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where Dα−r−1
0,t y(0) = cr for r = 0, 1, 2, . . . , n−1, ȳ(s) = L{y(t)} and f̄(s) = L{f(t)}.

Then, by solving equation (3.38) for ȳ(s), we get

(3.39) ȳ(s) =

[
f̄(s) +

n−1∑

r=0

crs
r

]
(sα + b)−1.

Now, by using Lemma 3.2, we find

(3.40) ȳ(s) =

[
f̄(s) +

n−1∑

r=0

crs
r

] ∞∑

k=0

(−b)ks−αk−α

= f̄(s)

∞∑

k=0

(−b)ks−αk−α +

n−1∑

r=0

cr

∞∑

k=0

(−b)ks−αk−α+r .

If we take the inverse Laplace transform of ȳ(s) by using Theorem 2.4, equation (2.19)

and Definition 2.12, we get

(3.41) y(t) = f(t) ∗ tα−1Eα,α(−btα) +

n−1∑

r=0

crt
α−r−1Eα,α+r(−btα).

Then, the equation (3.36) directly follows from the equation (3.41) by using the

definition of convolution (2.3). �

Theorem 3.10. If a, b ∈ R, µ ∈ C, m, n ∈ N, n > m > Re(µ) > m − 1 > 0 and

|bs−µ/(sn−µ + a)| < 1, then the solution of the fractional differential equation

(3.42) Dny(t) + aDµ
0,ty(t) + by(t) = 0

with the initial conditions y(n−r−1)(0) = cr for r = 0, 1, 2, . . . , n − 1 and

Dµ−j−1
0,t y(0) = bj for j = 0, 1, 2, . . . ,m− 1 is

(3.43) y(t) =

n−1∑

r=0

cr

∞∑

k=0

(−b)ktnk+n−r−1Ek+1
n−µ,nk+n−r(−atn−µ)

+ a

m−1∑

j=0

bj

∞∑

k=0

(−b)ktnk+n−j−1Ek+1
n−µ,nk+n−j(−atn−µ).

P r o o f. Applying the Laplace operator to the differential equation (3.42), we get

(3.44) L{Dny(t) + aDµ
0,ty(t) + by(t)} = 0.
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By the equations (2.10) and (2.12), this implies that we have

(3.45) snȳ(s)−
n−1∑

r=0

srcr + asµȳ(s)−
m−1∑

j=0

asjbj + bȳ(s) = 0,

whereDα−r−1
0,t y(0) = cr for r = 0, 1, . . . , n−1,Dµ−j−1

0,t y(0) = bj for j = 0, 1, . . . ,m−1

and ȳ(s) = L{y(t)}. Therefore, we get

(3.46) ȳ(s) =

∑n−1
r=0 crs

r + a
∑m−1

j=0 bjs
j

sn + sµ + b
.

The rest of the proof is similar to the proof of Theorem 3.7. �

4. Illustrative examples

As applications of the theorems that we give, we have the following results. By

the first two examples, it could be seen how the solution of the fractional differential

equation differs for the different interval values that the fractional order derivative

part of the differential equation belongs to.

E x am p l e 4.1. If 1 > Re(µ) > 0, then the solution for the vibration equation

with fractional damping with one degree of freedom

(4.1) m̃D2y(t) + q̃Dµy(t) + k̃y(t) = f(t),

with the initial conditions y(0) = c0 and y′(0) = c1, is

(4.2) y(t) =

∫ t

0

f(x)

∞∑

k=0

(−b)k(t− x)2k+1Ek+1
2−µ,2k+2(−a(t− x)2−µ) dx

+ c0

∞∑

k=0

(−b)kt2kEk+1
2−µ,2k+1(−at2−µ)

+ c1

∞∑

k=0

(−b)kt2k+1Ek+1
2−µ,2k+2(−at2−µ)

+ ac0

∞∑

k=0

(−b)kt2k+2−µEk+1
2−µ,2k+3−µ(−at2−µ).

P r o o f. If we divide both sides of equation (4.1) by m̃, we get the equation

(4.3) D2y(t) +
q̃

m̃
Dµy(t) +

k̃

m̃
y(t) = f(t).

Now, if we make choices of α = 2, a = q̃/m̃ and b = k̃/m̃ in equation (3.6), we obtain

equation (4.3). So, equation (4.2) directly follows from Theorem 3.3. �
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R em a r k 4.2. If 1 > Re(µ) > 0, then the solution for the fractional differential

equation

(4.4) m̃D2y(t) + q̃Dµy(t) + k̃y(t) = 0,

with the initial conditions y(0) = c0 6= 0 and y′(0) = c1 6= 0, is

(4.5) y(t) = c0

∞∑

k=0

(
− k̃

m̃

)k
t2kEk+1

2−µ,2k+1

(
− q̃

m̃
t2−µ

)

+ c1

∞∑

k=0

(
− k̃

m̃

)k
t2k+1Ek+1

2−µ,2k+2

(
− q̃

m̃
t2−µ

)

+
q̃

m̃
c0

∞∑

k=0

(
− k̃

m̃

)k
t2k+2−µEk+1

2−µ,2k+3−µ

(
− q̃

m̃
t2−µ

)
.

Note that this is the special case of the vibration equation with fractional damping

defined in the equation (2.13) with the choice of 1 > Re(µ) > 0 and f(t) = 0.

E x am p l e 4.3. If 2 > Re(µ) > 1, then the solution for the vibration equation

with fractional damping with one degree of freedom

(4.6) m̃D2y(t) + q̃Dµy(t) + k̃y(t) = f(t),

with the initial conditions y(0) = c0 and y′(0) = c1, is

(4.7) y(t) =

∫ t

0

f(x)

∞∑

k=0

(
− k̃

m̃

)k
(t− x)2k+1Ek+1

2−µ,2k+2

(
− q̃

m̃
(t− x)2−µ

)
dx

+ c0

∞∑

k=0

(
− k̃

m̃

)k
t2kEk+1

2−µ,2k+1

(
− q̃

m̃
t2−µ

)

+ c1

∞∑

k=0

(
− k̃

m̃

)k
t2k+1Ek+1

2−µ,2k+2

(
− q̃

m̃
t2−µ

)

+
q̃

m̃
c0

∞∑

k=0

(
− k̃

m̃

)k
t2k+2−µEk+1

2−µ,2k+2−µ+1

(
− q̃

m̃
t2−µ

)

+
q̃

m̃
c1

∞∑

k=0

(
− k̃

m̃

)k
t2k+3−µEk+1

2−µ,2k+2−µ+2

(
− q̃

m̃
t2−µ

)
.

P r o o f. If we divide both sides of equation (4.6) by m̃, we get the following

equation

(4.8) D2y(t) +
q̃

m̃
Dµy(t) +

k̃

m̃
y(t) = f(t).
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Now, if we make choices of α = 2, a = q̃/m̃ and b = k̃/m̃ in equation (3.6), we obtain

equation (4.8). So, the equation (4.7) directly follows from Theorem 3.3. �

R em a r k 4.4. If 2 > Re(µ) > 1, then the solution for the fractional differential

equation,

(4.9) m̃D2y(t) + q̃Dµy(t) + k̃y(t) = 0,

with the initial conditions y(0) = c0 and y′(0) = c1, is

(4.10) y(t) = c0

∞∑

k=0

(
− k̃

m̃

)k
t2kEk+1

2−µ,2k+1

(
− q̃

m̃
t2−µ

)

+ c1

∞∑

k=0

(
− k̃

m̃

)k
t2k+1Ek+1

2−µ,2k+2

(
− q̃

m̃
t2−µ

)

+
q̃

m̃
c0

∞∑

k=0

(
− k̃

m̃

)k
t2k+2−µEk+1

2−µ,2k+3−µ

(
− q̃

m̃
t2−µ

)

+
q̃

m̃
c1

∞∑

k=0

(
− k̃

m̃

)k
t2k+3−µEk+1

2−µ,2k+4−µ

(
− q̃

m̃
t2−µ

)
.

Note that this is the special case of the vibration equation with fractional damping

defined in equation (2.13) with the choice of 2 > Re(µ) > 1 and f(t) = 0.

E x am p l e 4.5. The solution for the Bagley-Torvik equation,

(4.11) ãD2y(t) + b̃D3/2y(t) + c̃y(t) = f(t),

with the initial conditions y(0) = c0 6= 0 and y′(0) = c1 6= 0, is

y(t) =

∫ t

0

f(x)
∞∑

k=0

(
− c̃

ã

)k
(t− x)2k+1Ek+1

2−µ,2k+2

(
− b̃

ã
(t− x)1/2

)
dx(4.12)

+ c0

∞∑

k=0

(
− c̃

ã

)k
t2kEk+1

1/2,2k+1

(
− b̃

ã
t1/2

)

+ c1

∞∑

k=0

(
− c̃

ã

)k
t2k+1Ek+1

1/2,2k+2

(
− b̃

ã
t1/2

)

+
b̃

ã
c0

∞∑

k=0

(
− c̃

ã

)k
t2k+1/2Ek+1

1/2,2k+3/2

(
− b̃

ã
t1/2

)

+
b̃

ã
c1

∞∑

k=0

(
− c̃

ã

)k
t2k+3/2Ek+1

1/2,2k+5/2

(
− b̃

ã
t1/2

)
.
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P r o o f. If we divide both sides of the equation (4.11) by ã, we get the equation

(4.13) D2y(t) +
b̃

ã
D3/2y(t) +

c̃

ã
y(t) = f(t).

Now, equation (4.12) directly follows from Theorem (3.3) by the choices of α = 2,

µ = 3/2, a = b̃/ã, b = c̃/ã and the fact that m = 2 for µ = 3/2. �

R em a r k 4.6. The solution for the fractional differential equation

(4.14) ãD2y(t) + b̃D3/2y(t) + c̃y(t) = 0,

with the initial conditions y(0) = c0 6= 0 and y′(0) = c1 6= 0, is

(4.15) y(t) = c0

∞∑

k=0

(
− c̃

ã

)k
t2kEk+1

1/2,2k+1

(
− b̃

ã
t1/2

)

+ c1

∞∑

k=0

(
− c̃

ã

)k
t2k+1Ek+1

1/2,2k+2

(
− b̃

ã
t1/2

)

+
b̃

ã
c0

∞∑

k=0

(
− c̃

ã

)k
t2k+1/2Ek+1

1/2,2k+3/2

(
− b̃

ã
t1/2

)

+
b̃

ã
c1

∞∑

k=0

(
− c̃

ã

)k
t2k+3/2Ek+1

1/2,2k+5/2

(
− b̃

ã
t1/2

)
.

Note that this is the special case of Bagley-Torvik equation defined in (2.14) with

the choice of f(t) = 0.

For the next example, we choose f(t) = t̺−1 in Theorem 3.3 and obtain the

solution for a particular case of the fractional differential equation (3.6).

E x am p l e 4.7. The solution for the fractional differential equation

(4.16) Dαy(t) + aDµy(t) + by(t) = t̺−1

with the initial conditions y(r)(0) = cr for r = 0, 1, 2, . . . ,m− 1 is

(4.17) y(t) =

∞∑

k=0

(−b)ktαk+α+̺−1Ek+1
α−µ,αk+α(−atα−µ)

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+rEk+1
α−µ,αk+r+1(−atα−µ)

+ a

m−1∑

j=0

cj

∞∑

k=0

(−b)ktαk+α−µ+jEk+1
α−µ,αk+α−µ+j+1(−atα−µ).
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P r o o f. By taking f(t) = t̺−1 in Theorem 3.3, we get the following solution for

the equation (4.16):

(4.18) y(t) =

∫ t

0

x̺−1
∞∑

k=0

(−b)k(t− x)αk+α−1Ek+1
α−µ,αk+α(−a(t− x)α−µ) dx

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+rEk+1
α−µ,αk+r+1(−atα−µ)

+ a
m−1∑

j=0

cj

∞∑

k=0

(−b)ktαk+α−µ+jEk+1
α−µ,αk+α−µ+j+1(−atα−µ).

Now, by changing the order of the integration and the summation in equation (4.18)

and then calculating the integration by using the relation [16], pp. 10, Eq. (2.10),

(4.19)

∫ x

t

(s−t)µ−1(x−s)β−1E̺
α,β(λ(x−s)α) ds = Γ(µ)(x−t)β+µ−1E̺

α,β(λ(x−t)α),

we obtain equation (4.17). �

R em a r k 4.8. If 1 > Re(µ) > 1/2, then the solution for the fractional differen-

tial equation

(4.20) D2µy(t) + aDµy(t) + by(t) = t̺−1

with the initial conditions y(0) = c0 and y′(0) = c1 is

(4.21) y(t) =

∞∑

k=0

(−b)kt2µk+2µ+̺−1Ek+1
µ,2µk+2µ(−atµ)

+ c0

∞∑

k=0

(−b)kt2µkEk+1
µ,2µk+1(−atµ)

+ c1

∞∑

k=0

(−b)kt2µk+1Ek+1
µ,2µk+2(−atµ)

+ ac0

∞∑

k=0

(−b)kt2µk+µEk+1
µ,2µk+µ+1(−atµ).

Note that this is the special case of the equation (4.16) with the choices of α = 2µ

and 1 > Re(µ) > 1/2.

As is known, ordinary differential equations and partial differential equations are

widely used to solve physics problems. However, due to the distinctive behaviour
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of materials, classical damping descriptions may fail. The reason for this is that in

classical theory, the operators are local ones. One of many well-known techniques

that are applied to overcome this kind of difficulties is to use differential equations

with fractional time derivatives. For details see [14]. The next example is given for

this reason.

E x am p l e 4.9. In fractional mechanics, Newton second law of motion could be

defined as

(4.22) F = ma = mDνv(t),

where “m” is the mass of the body. If the force “F” is constant, the body in motion

moves with a constant fractional acceleration of F/m. Now, we consider the vertical

motion of a body in a resisting medium in which there is a resisting force proportional

to the fractional velocity. If the body is projected downward with zero initial velocity

in a uniform gravitational field, then the equation of motion is given by the fractional

differential equation

(4.23) mDνv(t) = mg − kv(t), 1 > ν > 0,

and the solution for this fractional differential equation is

(4.24) v(t) =
gm

k

[
1− Eν

(
− k

m
tν
)]

.

P r o o f. Dividing the equation (4.23) by m, we get

(4.25) Dνv(t) +
k

m
v(t) = g.

Choosing f(t) = g, b = km−1, α = ν and y(0) = c0 = 0 in Theorem 3.5 and using

the fact that n = 1 for 1 > ν > 0, we have

(4.26) v(t) =

∫ t

0

g(t− x)ν−1Eν,ν

(
− k

m
(t− x)ν

)
dx

= g

∫ t

0

∞∑

n=0

(
− k

m

)n (t− x)νn+ν−1

Γ(νn+ ν)
dx.
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Then, by making the change of variable t−x = u and changing the order of integra-

tion under the condition of absolute convergence, we obtain

(4.27) v(t) = g

∞∑

n=0

(
− k

m

)n 1

Γ(νn+ ν)

∫ t

0

uνn+ν−1 du

= g

∞∑

n=0

(
− k

m

)n tνn+ν

Γ(νn+ ν + 1)

= −gm

k

[ ∞∑

n=0

(
− k

m

)n+1 tνn+ν

Γ(νn+ ν + 1)

]

=
gm

k

[
1−

∞∑

n=−1

(
− k

m

)n+1 tνn+ν

Γ(νn+ ν + 1)

]

=
gm

k

[
1−

∞∑

n=0

(
− k

m

)n tνn

Γ(νn+ 1)

]
.

Finally, we can get the equation (4.24) by using Definition 2.13. �

The fractional differential equation (4.23) could also be solved in [3] by using

another method.

By the following examples, we give solutions for some fractional differential equa-

tions that contain the Riemann-Liouville fractional derivative.

E x am p l e 4.10. The solution for the fractional differential equation

(4.28) Dα
0,ty(t) + aDµ

0,ty(t) + by(t) = t̺−1

with the initial conditions Dα−r−1
0,t y(0) = cr for r = 0, 1, 2, . . . , n − 1 and

Dµ−j−1
0,t y(0) = bj for j = 0, 1, 2, . . . ,m− 1, is

(4.29) y(t) =

∞∑

k=0

(−b)ktαk+α+̺−1Ek+1
α−µ,αk+α(−atα−µ)

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+α−r−1Ek+1
α−µ,αk+α−r(−atα−µ)

+ a

m−1∑

j=0

bj

∞∑

k=0

(−b)ktαk+α−j−1Ek+1
α−µ,αk+α−j(−atα−µ).
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P r o o f. By taking f(t) = t̺−1 in Theorem 3.7, we get the solution for the equa-

tion (4.28)

(4.30) y(t) =

∫ t

0

x̺−1
∞∑

k=0

(−b)k(t− x)αk+α−1Ek+1
α−µ,αk+α(−a(t− x)α−µ) dx

+

n−1∑

r=0

cr

∞∑

k=0

(−b)ktαk+α−r−1Ek+1
α−µ,αk+α−r(−atα−µ)

+ a

m−1∑

j=0

bj

∞∑

k=0

(−b)ktαk+α−j−1Ek+1
α−µ,αk+α−j(−atα−µ).

Now, by changing the order of the integration and the summation in equation (4.30)

and then using equation (4.19), we can directly get the equation (4.29). �

R em a r k 4.11. If 1 > Re(µ) > 1/2, then the solution for the fractional diffe-

rential equation

(4.31) D2µ
0,ty(t) + aDµ

0,ty(t) + by(t) = t̺−1

with the initial conditions Dα−1
0,t y(0) = c0, D

α−2
0,t y(0) = c1 and Dµ−1

0,t y(0) = b0, is

(4.32) y(t) =

∞∑

k=0

(−b)kt2µk+2µ+̺−1Ek+1
µ,2µk+2µ(−atµ)

+ c0

∞∑

k=0

(−b)kt2µk+2µ−1Ek+1
µ,2µk+2µ(−atµ)

+ c1

∞∑

k=0

(−b)kt2µk+2µ−2Ek+1
µ,2µk+2µ−1(−atµ)

+ ab0

∞∑

k=0

(−b)kt2µk+2µ−1Ek+1
µ,2µk+2µ(−atµ).

Note that this is the special case of the equation (4.28) with the choices of α = 2µ

and 1 > Re(µ) > 1/2.

E x am p l e 4.12. The solution for the fractional differential equation

(4.33) D
7/2
0,t y(t) +D

5/2
0,t y(t) + y(t) = f(t),
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with the initial conditions D
5/2−r
0,t y(0) = cr for r = 0, 1, 2, 3 and D

3/2−j
0,t y(0) = bj ,

for j = 0, 1, 2 is

(4.34) y(t) =

∫ t

0

f(x)
∞∑

k=0

(−1)k(t− x)7/2k+5/2Ek+1
1,7/2k+7/2(x− t) dx

+ c0

∞∑

k=0

(−1)kt7/2k+5/2Ek+1
1,7/2k+7/2(−t)

+ c1

∞∑

k=0

(−1)kt7/2k+3/2Ek+1
1,7/2k+5/2(−t)

+ c2

∞∑

k=0

(−1)kt7/2k+1/2Ek+1
1,7/2k+3/2(−t)

+ c3

∞∑

k=0

(−1)kt7/2k−1/2Ek+1
1,7/2k+1/2(−t)

+ b0

∞∑

k=0

(−1)kt7/2k+5/2Ek+1
1,7/2k+7/2(−t)

+ b1

∞∑

k=0

(−1)kt7/2k+3/2Ek+1
1,7/2k+5/2(−t)

+ b2

∞∑

k=0

(−1)kt7/2k+1/2Ek+1
1,7/2k+3/2(−t).

P r o o f. By taking α = 7/2, µ = 5/2 and a = b = 1 in equation (3.26), we get the

equation (4.33). Then, the equation (4.34) directly follows from Theorem 3.7. �

5. Conclusion

Laplace transform method is widely used and very effective tool for solving frac-

tional differential equations. Throughout the paper, we use this method to obtain

general solutions for various families of fractional differential equations and solutions

for some specific members of these families. Solutions for several different frac-

tional differential equations that contain the Caputo sense fractional derivative or

the Riemann-Liouville fractional derivative could also be achieved by the theorems

that are presented in this paper.
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