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A note on generalizations of semisimple modules

Eng
.
ın Kaynar, Burcu N. Türkmen, Ergül Türkmen

Abstract. A left module M over an arbitrary ring is called an RD-module (or
an RS-module) if every submodule N of M with Rad(M) ⊆ N is a direct
summand of (a supplement in, respectively) M . In this paper, we investigate

the various properties of RD-modules and RS-modules. We prove that M is
an RD-module if and only if M = Rad(M) ⊕ X, where X is semisimple. We
show that a finitely generated RS-module is semisimple. This gives us the
characterization of semisimple rings in terms of RS-modules. We completely
determine the structure of these modules over Dedekind domains.
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1. Introduction

Throughout this study, all rings are associative with identity and all modules
are unital left modules unless indicated otherwise. Let R be such a ring and M
be an R-module. The notation N ⊆ M means that N is a submodule of M .
In [8, 17.1], a nonzero submodule L ⊆ M is called essential in M , denoted as
L E M , if L ∩ N 6= 0 for every nonzero submodule N ⊆ M . Dually, a proper
submodule S ⊆ M is called small in M , denoted by S << M , if S + L 6= M for
every proper submodule L of M [8, 19.1]. For a module M , Rad(M) (or Soc(M))
indicates the radical (the socle, respectively) of M . The module M is said to
be radical in case Rad(M) = M . A nonzero module M is said to be hollow if
every proper submodule is small in M , and it is said to be local if it is hollow and
finitely generated. M is local if and only if it is finitely generated and Rad(M) is
maximal. A ring R is called local if RR (or RR) is a local module, that is, every
proper submodule of RR is small in RR (see [8]).

By a supplement of N in M we mean a submodule K which is minimal in the
collection of submodules L of M such that M = N + L. It is well known that K
is a supplement of N in M if and only if M = N +K and N ∩K << K. Clearly,
every direct summand is a supplement (see [8, Section 41]). A module M is said to
be supplemented if every submodule ofM has a supplement in M , and it is said to
be strongly radical supplemented if every submodule N ⊆ M with Rad(M) ⊆ N
has a supplement in M (see [3] and [8, page 349]). Every semisimple module is
supplemented, and supplemented modules are strongly radical supplemented.
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It is shown in [5, Lemma 2.13] that a module M is semisimple if and only
if every submodule of M is a supplement in the module M . Motivated by this
characterization and the concept of strongly radical supplemented modules, we
say that M is an RS-module if every submodule N of M with Rad(M) ⊆ N is
a supplement in M . Note that semisimple modules are RS-modules. Also, an
RS-module which has zero radical is semisimple.

In [2], a module M is said to be a md-module (or ms-module) if every maximal
submodule of M is a direct summand of (supplement in, respectively) M . We
also say that a module M is an RD-module if every submodule N of M with
Rad(M) ⊆ N is a direct summand of M . It is clear that RS-modules are ms-
modules. Obviously, the same relationship betweenRD-modules andmd-modules
also holds.

In this study, we investigate the various properties of RD-modules and RS-
modules. A module M is an RD-module if and only if M = Rad(M)⊕X , where
X is a semisimple submodule of M . We prove that RS-modules are semilocal.
We show that a finitely generated RS-module is semisimple. This gives us the
characterization of semisimple rings in terms of RS-modules. We determine the
structure of RS-modules over Dedekind domains, and using this we show that
RD-modules and RS-modules coincide. We also prove that, over a Dedekind
domain, every RS-module is strongly ⊕-radical supplemented.

2. RD-modules and RS-modules

Let M be a module. By P(M) we will denote the sum of all radical submodules
of M . Note that P(M) is the largest radical submodule of M and P(M) ⊆
Rad(M).

Lemma 2.1. A sum P(M) is an RD-module for every module M .

Proof: Since P(M) is a radical module, it suffices to prove that any radical
module is an RD-module. Let Y be radical, that is, Y = Rad(Y ). Since Y has
the trivial decomposition, it follows that Y is an RD-module. �

In general it is not true that every RD-module (consequently, every RS-
module) is semisimple. Consider the Z-module M =Z Q. Since M is injective, it
is radical. By Lemma 2.1, M is an RD-module. On the other hand, M is not
semisimple.

The following Theorem gives the characterization of the radical of an RS-
module.

Theorem 2.2. Let M be an RS-module and Rad(M) ⊆ N ⊆ M . Then,

Rad(N) = P(M).

Proof: By the hypothesis, N is a supplement in M . In particular, Rad(M)
is a supplement of some submodule K of M , that is, M = K + Rad(M) and
K ∩ Rad(M) << Rad(M). Therefore, Rad(Rad(M)) = Rad(M) ∩ Rad(M) =
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Rad(M) according to [5, Theorem 2.3]. So Rad(M) is radical. Since P(M) is the
largest radical submodule of M , we get Rad(M) = P(M).

Now again applying [5, Theorem 2.3], we obtain that Rad(N) = N∩Rad(M) =
Rad(M) = P(M). �

Recall that a module M is reduced provided P(M) = 0, that is, every nonzero
submodule of M has a maximal submodule. Note that for any module M since
P(M/P(M)) = 0, the factor module M/P(M) is reduced.

Proposition 2.3. Let M be a reduced module. Then, the following are equiva-

lent:

(1) A module M is an RD-module.

(2) A module M is an RS-module.

(3) A module M is semisimple.

Proof: (1) =⇒ (2) and (3) =⇒ (1) are clear.
(2) =⇒ (3) Let M be an RS-module. It follows from Theorem 2.2 that

Rad(M) = P(M). Then, since M is reduced, we get Rad(M) = 0. So, by the
hypothesis, every submodule of M is a supplement in M . Thus, M is semisimple
by [5, Lemma 2.13]. �

Let R be a ring. A ring R is said to be a left max ring if every nonzero left
R-module has maximal submodules. Left perfect rings (over which every module
has a projective cover, see [8, 43.9]) and left V -rings (whose simple modules are
injective, see [8, Section 23]) are left max rings.

Corollary 2.4. Let R be a left max ring and M be a nonzero left R-module. If

M is an RS-module, then it is semisimple.

Proof: Let M be an RS-module. Since R is a left max ring, every left R-module
has a maximal submodule. So M is reduced. Applying Proposition 2.3, we have
M is semisimple. �

Lemma 2.5. Every factor module of an RS-module is an RS-module.

Proof: Let M be an RS-module. For Rad(M/L) ⊆ N/L ⊆ M/L modules and
the canonical projection Φ: M −→ M/L, we have Φ(Rad(M)) = (Rad(M) + L)/
L ⊆ Rad(M/L) ⊆ N/L and so Rad(M) ⊆ N . Since M is an RS-module, we can
write M = U + N and U ∩ N << N for some submodule U ⊆ M . Therefore,
M/L = (U + L)/L+N/L. Note that, by [8, 19.3 (4)],

Φ(U ∩N) =
U ∩N + L

L
=

(U + L) ∩N

L
=

U + L

L
∩

N

L
<<

N

L
.

This means thatN/L is a supplement inM/L. Hence, M/L is anRS-module. �

Now we obtain the following result, which is crucial for our work.

Proposition 2.6. For every RS-module M , M/P(M) is semisimple.
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Proof: By Lemma 2.5, we deduce that M/P(M) is an RS-module as a fac-
tor module of the RS-module M . Since M/P(M) is reduced, it follows from
Proposition 2.3 that M/P(M) is semisimple. �

Let M be a module and U, V be submodules of M . If M = U + V and
U ∩ V << M , then V is said to be a weak supplement in M . The module M
is said to be weakly supplemented (shortly, say, ws-module) if every submodule
N of M is a weak supplement in M , it is said to be weakly radical supplemented

(or briefly, wrs-module) provided every submodule N of M with Rad(M) ⊆ N
is a weak supplement in M . For the properties and characterizations of wrs-
modules, see the paper [7]. Clearly, every RS-module is a wrs-module because
supplements are weak supplements.

In [4], over an arbitrary ring a module M is said to be semilocal if M/Rad(M)
is semisimple. It is shown in [4, Proposition 2.1] that a module M is semilocal if
and only if every submoduleK ofM is a weak Rad-supplement inM , that is, M =
N +K and N ∩K ⊆ Rad(M) for some submodule N of M . Equivalently, N is
a weak Rad-supplement in M whenever Rad(M) ⊆ N ⊆ M . By [7, Corol-
lary 2.10], semilocal modules are proper generalizations of wrs-modules, and so
RS-modules are clearly semilocal.

Now using Theorem 2.2 and Proposition 2.6 we prove the following fact, that
is, RS-modules are contained in the class of semilocal modules.

Corollary 2.7. Every RS-module is semilocal.

Proof: Let M be an RS-module. It follows from Theorem 2.2 that Rad(M) =
P(M). Then, by Proposition 2.6, we obtain that M/Rad(M) = M/P(M) is
semisimple. This means that M is semilocal. �

Now, we have the following implications between the classes of modules:
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The class of RD-modules over an arbitrary ring will be characterized in the
following theorem which is frequently used in this study.

Theorem 2.8. For a module M over an arbitrary ring, the following three state-

ments are equivalent:

(1) A module M is an RD-module.

(2) M = Rad(M)⊕X , where X is a semisimple submodule of M .

(3) M = P(M)⊕X , where X is a semisimple submodule of M .

Proof: (1) =⇒ (2) (1) implies that Rad(M) is a direct summand of M . So we
can write the decomposition M = Rad(M) ⊕ X for some submodule X of M .
Since all RD-modules are a RS-module, it follows from Theorem 2.2 and Propo-
sition 2.6 that X is semisimple.

(2) =⇒ (3) Let M = Rad(M) ⊕ X , where X is semisimple. By [8, 21.6 (5)],
we can write Rad(M) = Rad(Rad(M)) ⊕ Rad(X) = Rad(Rad(M)) ⊕ 0 =
Rad(Rad(M)), and so Rad(M) is radical. Therefore, P(M) = Rad(M) because
P(M) is the largest radical submodule of M .

(3) =⇒ (1) Let Rad(M) ⊆ N ⊆ M . Since X is semisimple, the intersection
X∩N is a direct summand ofX . Therefore, we can writeX = (X∩N)⊕Y for some
submodule Y ⊆ X . Now M = P(M)⊕X = N +X = N +(X ∩N +Y ) = N +Y .
Note that N ∩ Y = N ∩ (X ∩ Y ) = (X ∩ N) ∩ Y = 0, thus the sum N + Y is
direct. Hence, M is an RD-module. �

Proposition 2.9. Every finitely generated RS-module is semisimple.

Proof: Let M be a finitely generated RS-module. By Theorem 2.2, the radical
module P(M) is a supplement in M . Since M is finitely generated, it follows
from [8, 41.1 (2)] that P(M) is finitely generated. It means that P(M) = 0. By
Proposition 2.3, we get M is semisimple. �

Now we give the closure properties of RD-modules in the following proposition.

Proposition 2.10. (1) If a module M is an RD-module, then so is every factor

module.

(2) Let M =
∑

i∈I
Mi, where each Mi is an RD-module for any index set I.

Then, M is an RD-module.

(3) Every submodule U of an RD-module M with Soc(M) ⊆ U is an RD-

module.

(4) A nonzero projective RD-module M is semisimple.

(5) A finitely generated RD-module is semisimple.

Proof: (1) Let M be an RD-module and U ⊆ M . If the factor module M/U
of M is radical, then it follows from Lemma 2.1 that it is an RD-module. Let
Rad(M/U) 6= M/U and Rad(M/U) ⊆ N/U ⊆ M/U . By the first part in proof
of Lemma 2.5, we have Rad(M) ⊆ N . Since M is an RD-module, M has
the decomposition M = N ⊕ K for some submodule K ⊆ M . Therefore,
M/U = N/U + U +K/U . Now, N/U ∩ (U +K)/U = N ∩ (U +K)/U =
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(U +N ∩K)/U = 0. So M/U = N/U ⊕ (U +K)/U . It means that M/U is
an RD-module.

(2) Let M =
∑

i∈I
Mi, where each Mi is an RD-module for any index set I.

Now, we consider the external direct sum M ′ =
⊕

i∈I
Mi. So there exists an

epimorphism Ψ: M ′ −→ M via Ψ((mi)i∈I) =
∑

i∈I0
mi, where I0 is a finite

subset of the index set I. By (1), it suffices to show that M ′ is an RD-module.
Applying Theorem 2.8, we obtain that Mi = Rad(Mi) ⊕ Xi where each Xi is
a semisimple submodule of Mi for every i ∈ I. Put X =

⊕
i∈I

Xi. Therefore,
X is semisimple as the direct sum of semisimple modules Xi. It follows from [8,
21.6 (5)] that M ′ =

⊕
i∈I

Mi =
⊕

i∈I
(Rad(Mi)⊕Xi) = Rad(M ′) +X . It can be

seen that the sum Rad(M ′) + X is direct. Hence, applying Theorem 2.8 twice,
M ′ is an RD-module.

(3) Let M be an RD-module. Then, it follows from Theorem 2.8 that we have
M = P(M) ⊕ X , where X is a semisimple submodule of M . Since U contains
Soc(M), by the modular law, we can write N = N ∩M = N ∩ (P(M) ⊕ X) =
N ∩ P(M) ⊕ X = P(N) ⊕ X . Hence, again applying Theorem 2.8, N is an
RD-module.

(4) By [8, 22.3 (2)] and Theorem 2.8, we get P(M) = 0. Hence, M is semisim-
ple.

(5) It follows from Proposition 2.9. �

Proposition 2.11. Every finite sum of RS-submodules of a module M is an

RS-module.

Proof: The proof is standard. �

It is known that a ring R is semisimple if and only if every left R-module is
semisimple. Now we generalize this fact in the next theorem, characterizing the
rings over which modules are RS-modules.

Theorem 2.12. Let R be a ring. Then, R is semisimple if and only if every left

R-module is an RS-module.

Proof: (=⇒) It is clear.
(⇐=) By the assumption, we obtain that RR is an RS-module. It follows from

Proposition 2.10 that RR is semisimple. Hence, R is semisimple. �

We get the following Corollary.

Corollary 2.13. The following statements are equivalent for a ring R.

(1) A ring R is semisimple.

(2) Every left R-module is an RD-module.

(3) Every left R-module is an RS-module.

Proof: (1) =⇒ (2) and (2) =⇒ (3) are clear, and (3) =⇒ (1) follows from
Theorem 2.12. �
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3. RS-modules over commutative domains

In this section, we shall consider commutative domains, and determine the
structure of RS-modules over these domains. In particular, we show that RD-
modules and RS-modules coincide.

Let R be a commutative domain and M be an R-module. We denote by
Tor(M) the set of all elements m of M for which there exists a nonzero element r
of R such that rm = 0, i.e. Ann(m) 6= 0. Then Tor(M), which is a submodule
of M , is called the torsion submodule of M . If M = Tor(M), then M is called
the torsion module and M is called torsion-free provided Tor(M) = 0. Note that
Tor(M/Tor(M)) = 0 for every module M over a commutative domain R.

Proposition 3.1. Let R be a commutative domain which is not a field and M
be a torsion-free R-module. Then, M is an RD-module if and only if it is radical.

Proof: (=⇒) Let M be an RD-module. It follows from Theorem 2.8 that M =
Rad(M) ⊕X for some semisimple submodule X of M . Note that X ⊆ Tor(M),
and by the assumption, we obtain X = 0. Hence, M is radical.

(⇐=) It follows from Lemma 2.1. �

Let R be a Dedekind domain and M be a left R-module. Since R is a Dedekind
domain, by [1, Lemma 4.4], P(M) is (divisible) injective and so there exists
a submodule A of M such that M = P(M) ⊕ A. By Lemma 2.1, we obtain
that P(M) is an RD-module. Using these facts, we have the following result,
showing that over Dedekind domains RD-modules and RS-modules coincide.

Theorem 3.2. Let R be a Dedekind domain and M be a left R-module. Then,

the following statements are equivalent:

(1) A module M is an RD-module.

(2) A module M is an RS-module.

(3) A module M is a direct sum of a divisible R-module and a semisimple

R-module.

Proof: (1) =⇒ (2) is clear.
(2) =⇒ (3) Let M = P(M) ⊕ A for some submodule A of M . Since M is

an RS-module, by Proposition 2.6, A is semisimple. This completes the proof of
(2) =⇒ (3).

(3) =⇒ (1) Let M = D ⊕ A, where D is a divisible submodule and A is
a semisimple submodule of M . By [1, Lemma 4.4] and Lemma 2.1, the divisible
module D is an RD-module. Hence, M is an RD-module as the direct sum of
RD-modules by (2) of Proposition 2.10. �

Note that, by Theorem 3.2 and [2, Proposition 6.4 and Theorem 6.11], we have
the following strict containments of classes of modules:

{semisimple modules} ⊂ {RD-modules} ⊂ {md-modules}

A module M is said to be strongly ⊕-radical supplemented if every submodule
N of M containing the radical has a supplement that is a direct summand of M
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(see [6]). It is clear that every RD-module is strongly ⊕-radical supplemented.
Using this fact and Theorem 3.2, we get this result:

Corollary 3.3. Every RS-module over a Dedekind domain is strongly ⊕-radical

supplemented.
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[2] Büyükaşık E., Pusat-Yılmaz D., Modules whose maximal submodules are supplements,
Hacet. J. Math. Stat. 39 (2010), no. 4, 477–487.
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