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Abstract. The purpose of this article is to obtain sharp estimates for the first eigenvalue of
the stability operator of constant mean curvature closed hypersurfaces immersed into locally
symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in
particular, a Riemannian space with constant sectional curvature). As an application,
we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient
spaces.
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1. Introduction

Let ψ : Σn →Mn+1 be a constant mean curvature closed orientable hypersurface

immersed into an (n + 1)-dimensional oriented Riemannian manifold and denote

by dΣ the standard volume element of Σn with respect to the induced metric from

the ambient space. Fixing a unit normal vector field N globally defined on Σn, we

will denote by A the second fundamental form with respect to N of the immersion

and by H its mean curvature, which is given by H = (trA)/n.

It is well known that every smooth function f ∈ C∞(Σ) induces a normal varia-

tion ψt of the immersion ψ, with variational normal field fN and first variation of

the area functional A(t) =
∫

Σ
dΣt, where dΣt stands for the volume element of Σ

n
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with respect to the metric induced by ψt, given by

δfA =
dA
dt

(0) = −n
∫

Σ

Hf dΣ.

As a consequence, minimal hypersurfaces (that is, with zero mean curvature) are

characterized as critical points of the area functional A whereas constant mean cur-
vature hypersurfaces (shortly H-hypersurfaces) are critical points of the area func-

tional restricted to functions f ∈ C∞(Σ) which satisfy the additional condition
∫

Σ
f dΣ = 0. Geometrically, this additional condition means that the variations

under consideration preserve a certain volume function.

For such critical points, the stability of the corresponding variational problem is

given by the second variation of the area functional

δ2fA =
d2A
dt2

(0) = −
∫

Σ

fJf dΣ

with

(1.1) J = ∆+ |A|2 +Ric(N,N),

where∆ stands for the Laplacian operator on Σn and Ric denotes the Ricci curvature

of Mn+1. Let us recall that an H-hypersurface Σn is said to be strongly stable if

δ2fA > 0 for every f ∈ C∞(Σ). The operator J is called the Jacobi or stability

operator of Σn and it is a Schrödinger operator. As it is well known, the spectrum

of J ,

Spec(J) = {λ1 < λ2 < λ3 < . . .},

consists of an increasing sequence of eigenvalues λk (with our notation, a real num-

ber λ is an eigenvalue of J if and only if Jf+λf = 0 on Σn for some nonzero smooth

function f ∈ C∞(Σ)). Moreover, the first stability eigenvalue λ1 of Σ
n is simple and

satisfies the following min-max characterization:

(1.2) λ1 = min

{

−
∫

Σ

fJf dΣ

/
∫

Σ

f2 dΣ: f ∈ C∞(Σ), f 6= 0

}

.

We observe that, in terms of the first stability eigenvalue, a closedH-hypersurface Σn

is strongly stable if and only if λ1 > 0.

In this setting, in his seminal work (see [14]), Simons established an estimate for the

first eigenvalue of J on any compact minimal hypersurface Σn in the standard sphere.

Specifically, he proved that either λ1 = −n and Σn is a totally geodesic sphere, or

λ1 6 −2n. Later on, Wu in [16] characterized the equality λ1 = −2n by showing
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that it holds only for the minimal Clifford torus. In the last decade, Perdomo in [13]

gave a new proof of this spectral characterization by the first stability eigenvalue.

Afterwards, Alías et al. in [2] extended Wu and Perdomo’s results to the case of

H-hypersurfaces in the standard sphere.

More recently, Velásquez et al. in [15] obtained upper bounds for the first eigen-

value of the stability operator of a closed H-hypersurfaces immersed either in the

Euclidean space or in the hyperbolic space. On the other hand, many authors have

studied estimates for the first stability eigenvalue in various types of ambient spaces.

For instance, Alías et al. in [6] studied this problem in homogeneous Riemannian

3-manifolds and, in particular, in Berger spheres, finding out sharp upper bounds

of the first stability eigenvalue λ1 of compact orientable H-surfaces immersed into

such manifolds. In [10], [11], Meroño and Ortiz gave sharp estimates for the first

eigenvalue of the stability operator of compact orientable H-surfaces immersed into

certain warped products.

Proceeding with the picture described above, in this paper we consider as the

ambient spaces the so-called locally symmetric spaces, which are a wide class of

Riemannian manifolds and a natural generalization of constant sectional curvature

spaces. We recall that a Riemannian manifold is said to be locally symmetric when

all the covariant derivative components of its curvature tensor vanish identically. In

this direction, here we deal with compact orientable H-hypersurfaces immersed into

a locally symmetric Riemannian manifold obeying standard curvature constraints.

Then, by extending techniques developed in the aforementioned works, our purpose

is to obtain sharp estimates for the first stability eigenvalue of such hypersurfaces.

This manuscript is organized in the following way: in Section 2 we introduce

some basic facts and notations that will appear in the proof of our results. Finally,

in Section 3 we establish our main results concerning upper bounds for the first

stability eigenvalue, characterizing the equality by showing that if it holds, then

the hypersurface must be either totally umbilical or isometric to an isoparametric

hypersurface having two distinct principal curvatures, in the first case, one of them

being simple (see Theorem 1) and, in the second case, with multiplicities p and n−p
(see Theorem 2).

2. Preliminaries

In this work, we will deal with n-dimensional, orientable and connected hyper-

surface ψ : Σn → Mn+1 immersed into an (n + 1)-dimensional Riemannian mani-

foldMn+1. We choose a local field of orthonormal frame {e1, . . . , en+1} inMn+1 with

dual coframe {ω1, . . . , ωn+1} such that at each point of Σn, e1, . . . , en are tangent to
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Σn and en+1 is normal to Σ
n. We will use the following convention for the indices:

1 6 A,B,C, . . . 6 n+ 1 and 1 6 i, j, k, . . . 6 n.

In this setting, RABCD and RAC denote, respectively, the Riemannian curvature

tensor and the Ricci tensor of the Riemannian manifold Mn+1. So, we have

RAC =
∑

B

RABCB.

Now, restricting the tensor to Σn, we see that ωn+1 = 0 on Σn. Hence,

0 = dωn+1 = −
∑

i

ωn+1i ∧ ωi and as it is well known, we get

ωn+1i =
∑

j

hijωj , hij = hji.

This gives the second fundamental form of Σn, A =
∑

i,j

hijωiωjen+1 and its square

length |A|2 =
∑

i,j

h2ij . Furthermore, the mean curvature H of Σn is defined by

H =
∑

i

hii/n.

A well fact known is that the covariant differential of the second fundamental

form A of the hypersurface Σn can be described in terms of the curvature tensor of

the ambient space Mn+1 by the Codazzi equation given by

(2.1) hijk − hikj = −Rn+1ijk,

where hijk denote the first covariant derivatives of hij .

Taking a local orthonormal frame {e1, . . . , en} on Σn such that hij = µiδij , the

following Simons type formula is well known (see, for instance, equation (2.10) in [8]):

(2.2)
1

2
∆|A|2 = |∇A|2 +

∑

i

µi(nH)ii + nH
∑

i

µ3
i − |A|4

−
∑

i,j,k

hij(R(n+1)ijk;k +R(n+1)kik;j)

+
∑

i

R(n+1)i(n+1)i(nHµi − |A|2) +
∑

i,j

(µi − µj)
2Rijij .

Proceeding within the context above, we will assume that there exist constants c1

and c2 such that the sectional curvature K of the ambient space M
n+1 satisfies the

following two constraints:

(2.3) K(η, v) =
c1
n
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for vectors η ∈ T⊥Σ and v ∈ TΣ, and

(2.4) K(u, v) > c2

for vectors u, v ∈ TΣ.

From now on, we considerMn+1 a locally symmetric Riemannian manifold. Recall

that a Riemannian manifold is said to be locally symmetric when all the covariant

derivative components RABCD;E of its curvature tensor vanish identically.

Example 1. Obviously, when the ambient manifoldMn+1 has constant sectional

curvature c̄, then it is locally symmetric and the curvature conditions (2.3) and (2.4)

are satisfied for every hypersurface Σn immersed into Mn+1 with c1/n = c2 = c̄.

Therefore, in some sense our assumptions are a natural generalization of the case,

where the ambient space has constant sectional curvature. Moreover, when the

ambient manifold is a Riemannian product of two Riemannian manifolds of constant

sectional curvature, say M =M1(κ1)×M2(κ2), then M is locally symmetric and if

κ1 = 0 and κ2 > 0, then every hypersurface of type Σ = Σ1×M2(κ2), where Σ1 is an

orientable and connected hypersurface immersed intoM1(κ1), satisfies the curvature

constraints (2.3) and (2.4) with c1 = c2 = 0 (for more details, see [4], Remark 3.1).

Moreover, it is not difficult to see that the equality Rn+1ijk = 0 holds on Σ. Then by

the Codazzi equation we get that the second fundamental form A of hypersurface Σ

must be a Codazzi tensor, that is, the covariant differential ∇A is symmetric in all
indices. In particular, this justifies the study of geometry of hypersurfaces such that

its second fundamental form is a Codazzi tensor.

Next, given Φij = hij −Hδij we will also consider the following symmetric tensor

Φ =
∑

i,j

Φijωi ⊗ ωj .

Let |Φ|2 =
∑

i,j

Φ2
ij be the square of the length of Φ. It is not difficult to check

that Φ is traceless and |Φ|2 = |A|2 − nH2 > 0 with equality if and only if Σn is

totally umbilical. For that reason, Φ is called the total umbilicity tensor of Σn.

Moreover, from curvature condition (2.3) we can see that Rn+1n+1 = c1. Then it

follows from (1.1) that

(2.5) J = ∆+ |Φ|2 + nH2 + c1.

In order to establish our upper bounds for the first stability eigenvalue, we recall

two classic algebraic lemmas. The first one is the well known Okumura’s lemma due
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to Okumura in [12], and completed with the equality case proved by Alencar and

do Carmo in [1].

Lemma 1. Let κ1, . . . , κn, n > 3, be real numbers such that
∑

i

κi = 0 and
∑

i

κ2i = β2, where β > 0. Then

− (n− 2)
√

n(n− 1)
β3

6
∑

i

κ3i 6
(n− 2)

√

n(n− 1)
β3,

and the equality holds if and only if at least n− 1 of the numbers κi are equal.

The last auxiliary result established a suitable inequality for the square length of

the covariant differential of a symmetric tensor (for more details, see [7], Lemma 1).

Lemma 2. Let Σn be an n-dimensional Riemannian manifold and let T : X(Σ) →
X(Σ) be a Codazzi tensor on Σn such that tr(T ) = 0. Then

∣

∣∇|T |2
∣

∣

2
6

4n

n+ 2
|T |2|∇T |2.

3. Upper bounds for the first stability eigenvalue

This section is devoted to establish our main results concerning upper bounds

for the first stability eigenvalue of a closed H-hypersurface immersed into a locally

symmetric Riemannian manifold. The first one is the following:

Theorem 1. Let ψ : Σn → Mn+1 be a closed H-hypersurface immersed in a lo-

cally symmetric Riemannian manifold Mn+1, n > 2, satisfying curvature condi-

tions (2.3) and (2.4), such that its second fundamental form is a Codazzi tensor and

H2 + c > 0, where c = 2c2 − c1/n. Then

(i) either λ1 = −n(H2 + c1/n) and Σn is a totally umbilical hypersurface or

(ii)

λ1 6 −2n(H2 + c2) +
n(n− 2)

√

n(n− 1)
|H |max

Σ
|Φ|.

Moreover, if the equality holds (and, in the case c > 0, H 6= 0), then Σn is an

isoparametric hypersurface with two distinct principal curvatures one of which is

simple.
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P r o o f. Firstly, using the constant function f = 1, it follows from (1.2) and (2.5)

that

λ1 6 −n
(

H2 +
c1
n

)

− 1

vol(Σ)

∫

Σ

|Φ|2 dΣ 6 −n
(

H2 +
c1
n

)

with equality λ1 = −n(H2+c1/n) if and only if Σ
n is a totally umbilical hypersurface.

Now, let us assume that Σn is not totally umbilical. For any arbitrary ε > 0 we

consider the positive smooth function fε ∈ C∞(Σ) defined by

fε =
√

ε+ |Φ|2.

A straightforward computation shows that

(3.1) fε∆fε =
1

2
∆|Φ|2 −

∣

∣∇|Φ|2|2

4(ε+ |Φ
∣

∣

2
)
.

On the other hand, taking a local orthonormal frame field {e1, . . . , en} in Σn such

that

hij = µiδij and Φij = κiδij ,

we can check that

∑

i

κi = 0,
∑

i

κ2i = |Φ|2 and
∑

i

µ3
i =

∑

i

κ3i + 3H |Φ|2 + nH3.

Since Mn+1 is locally symmetric and Σn has constant mean curvature, it follows

from (2.2) that

(3.2)
1

2
∆|Φ|2 = |∇Φ|2 + nH

∑

i

µ3
i − |A|4 +

∑

i

R(n+1)i(n+1)i(nHµi − |A|2)

+
∑

i,j

(µi − µj)
2Rijij .

From curvature conditions (2.3) and (2.4) we get

(3.3)
∑

i

R(n+1)i(n+1)i(nHµi − |A|2) = c1(nH
2 − |A|2) = −c1|Φ|2

and

(3.4)
∑

i,j

Rijij(µi − µj)
2 > c2

∑

i,j

(µi − µj)
2 = 2nc2(|A|2 − nH2) = 2nc2|Φ|2.
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Moreover, when n > 3, we can apply Lemma 1 to the real numbers κ1, . . . , κn and

obtain

(3.5) nH
∑

i

µ3
i − |A|4 = n2H4 + 3nH2|Φ|2 + nH

∑

i

κ3i − (|Φ|2 + nH2)2

> n2H4 + 3nH2|Φ|2 − n|H |
∣

∣

∣

∣

∑

i

κ3i

∣

∣

∣

∣

− |Φ|4

− 2nH2|Φ|2 − n2H4

> − |Φ|4 − n(n− 2)
√

n(n− 1)
|H ||Φ|3 + nH2|Φ|2.

In the case that n = 2, a straightforward computation gives

(3.6) 2H
∑

i

µ3
i − |A|4 = 2H(3H |Φ|2 + 2H3)− (|Φ|2 + 2H2)2 = −|Φ|4 + 2H2|Φ|2.

In any case, since c = 2c2 − c1/n, inserting (3.3), (3.4), (3.5) and (3.6) into (3.2) we

obtain that

(3.7)
1

2
∆|Φ|2 > |∇Φ|2 − |Φ|4 − n(n− 2)

√

n(n− 1)
|H ||Φ|3 + n(H2 + c)|Φ|2

= |∇Φ|2 − |Φ|2P|H|,c(|Φ|),

where

P|H|,c(x) = x2 +
n(n− 2)
√

n(n− 1)
|H |x− n(H2 + c).

Hence, from (3.1) and (3.7) we get

fε∆fε > |∇Φ|2 − |Φ|2P|H|,c(|Φ|)−
∣

∣∇|Φ|2
∣

∣

2

4(ε+ |Φ|2) .

Moreover, from Lemma 2 applied to Φ we have

(3.8) fε∆fε > |∇Φ|2 − |Φ|2P|H|,c(|Φ|)−
n

n+ 2
|∇Φ|2 =

2

n+ 2
|∇Φ|2 − |Φ|2P|H|,c(|Φ|).

Then from (2.5) and (3.8) we see that

(3.9) −fεJ(fε) 6 |Φ|2P|H|,c(|Φ|) −
2

n+ 2
|∇Φ|2 − (ε+ |Φ|2)

(

|Φ|2 + n
(

H2 +
c1
n

))

.

Thus, it follows from (1.2) and (3.9) that

(3.10) λ1

∫

Σ

f2
ε dΣ 6 −

∫

Σ

fεJ(fε) dΣ 6

∫

Σ

|Φ|2P|H|,c(|Φ|) dΣ− 2

n+ 2

∫

Σ

|∇Φ|2 dΣ

−
∫

Σ

(ε+ |Φ|2)
(

|Φ|2 + n
(

H2 +
c1
n

))

dΣ.
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Since

lim
ε→0

∫

Σ

f2
ε dΣ =

∫

Σ

|Φ|2 dΣ > 0,

letting ε→ 0 in (3.10) we get

(3.11) λ1

∫

Σ

|Φ|2 dΣ 6

∫

Σ

(

|Φ|2P|H|,c(|Φ|)− |Φ|4 − n
(

H2 +
c1
n

)

|Φ|2
)

dΣ

− 2

n+ 2

∫

Σ

|∇Φ|2 dΣ

6 − 2n(H2 + c2)

∫

Σ

|Φ|2 dΣ +
n(n− 2)

√

n(n− 1)
|H |

∫

Σ

|Φ|3 dΣ.

Hence, from (3.11) we obtain

(3.12) λ1 6 −2n(H2 + c2) +
n(n− 2)

√

n(n− 1)
|H |max

Σ
|Φ|.

Finally, let us assume that equality (3.12) holds. Thus, from (3.11) and Lemma 2

we have that ∇|Φ| = 0 and since we are assuming that Σn is not totally umbilical,

|Φ| must be a positive constant and Σn is an isoparametric hypersurface. On the

other hand, denoting by λ∆1 the first eigenvalue of the Laplacian operator of Σ
n, it

follows from (2.5) that the first stability eigenvalue λ1 satisfies

(3.13) λ∆1 = λ1 +
(

|Φ|2 + n
(

H2 +
c1
n

))

.

Hence, since Σn is supposed to be compact, from (3.13) we have that

0 = λ∆1 = |Φ|2 + n(n− 2)
√

n(n− 1)
|H ||Φ| − n(H2 + c) = P|H|,c(|Φ|),

which jointly with H2 + c > 0 assures that |Φ| is the unique positive root of polyno-
mial P|H|,c(x) and is given by

|Φ| =
√
n

2
√
n− 1

(
√

n2H2 + 4(n− 1)c− (n− 2)|H |
)

.

Therefore, from (3.7) we conclude that the equality in Okumura’s lemma (Lemma 1)

holds, which implies that Σn is an isoparemetric hypersurface with two distinct

principal curvatures one of which is simple. This finishes the proof of the theorem.

�
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Remark 1. Since there does not exist closed minimal hypersurface in Rn+1 and

observing that Lemma 8 of [5] guarantees thatH2−1 > 0 for a closedH-hypersurface

in H
n+1, we observe that the assumption H2 + c > 0 in Theorem 1 occurs trivially

when the ambient space is a space form of constant sectional curvature c ∈ {−1, 0, 1}.
In this setting, the constraint H2 + c > 0 in Theorem 1 is a mild hypothesis.

It is well known that there are no strongly stable closed H-hypersurfaces immersed

into the sphere Sn+1 (see, for instance, [3], Section 2). More generally, if Mn+1 is

any locally symmetric space with c1 > 0 and Σn is a closed H-hypersurface immersed

into Mn+1, then using f = 1 as a test function in (1.2), it follows from (2.5) that

λ1 6 − 1

vol(Σ)

∫

Σ

(|Φ|2 + nH2 + c1) dΣ

6 − 1

vol(Σ)

∫

Σ

(nH2 + c1) dΣ = −n
(

H2 +
c1
n

)

< 0,

which means that there are no strongly stable closed H-hypersurfaces immersed

into Mn+1. When c1 > 0, as a consequence of Theorem 1 we obtain an extension of

this result for such a locally symmetric space.

Corollary 1. There are no strongly stable closed H-hypersurface immersed in

a locally symmetric Riemannian manifold Mn+1, n > 3, satisfying curvature con-

ditions (2.3) to (2.4), such that its second fundamental form is a Codazzi tensor,

H 6= 0, H2 + c > 0, c1 > 0 and its total umbilicity operator Φ satisfies

|Φ| <
√

n(n− 1)(H2 + c)

(n− 2)|H | .

Proceeding in order to prove our next result and motivated by Okumura’s lemma,

we will make use of the following Okumura type inequality introduced by Me-

lendéz in [9]

(3.14) | tr(Φ3)| 6 (n− 2p)
√

np(n− p)
|Φ|3,

where 1 6 p 6 n/2. It is worth pointing out that since Φ is traceless, by the classical

Okumura’s lemma, inequality (3.14) is automatically true when p = 1. Moreover, to

suppose that inequality (3.14) holds is weaker than to assume that the hypersurface

has two distinct principal curvatures with multiplicities p and n− p. Indeed, in this

case there are real numbers µ and ν such that

κ1 = . . . = κp = µ, κp+1 = . . . = κn = ν,
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where κi stands for the eigenvalues of Φ. Then it is not difficult to see that

0 =
∑

i

κi = pµ+ (n− p)ν and |Φ|2 =
∑

i

κ2i = pµ2 + (n− p)ν2.

Hence, we obtain that

tr(Φ3) =
∑

i

κ3i = pµ3 + (n− p)ν3 = ± (2p− n)
√

np(n− p)
|Φ|3.

The next result is an Okumura type lemma obtained by Meléndez in [9], which says

that the reciprocal of this fact is also true.

Lemma 3. Let κ1, . . . , κn, n > 3, be real numbers such that
∑

i

κi = 0 and
∑

i

κ2i = β2, where β > 0. Then

∑

i

κ3i =
(n− 2p)

√

np(n− p)
β3

(

or
∑

i

κ3i = − (n− 2p)
√

np(n− p)
β3

)

, 1 6 p 6 n− 1,

holds if and only if p of the numbers κi are nonnegative (or nonpositive) and equal

and the rest n− p of the numbers κi are nonpositive (or nonnegative) and equal.

In this context, under assumption (3.14) on the total umbilicity tensor of the

hypersurface and reasoning as in the proof of Theorem 1 we are able to improve the

estimate given by Theorem 1 as follows.

Theorem 2. Let ψ : Σn → Mn+1 be a closed H-hypersurface immersed in a lo-

cally symmetric Riemannian manifold Mn+1, n > 4, satisfying curvature condi-

tions (2.3) and (2.4), such that its second fundamental form is a Codazzi tensor and

H2 + c > 0, where c = 2c2 − c1/n. If its total umbilicity tensor Φ satisfies (3.14) for

some 1 < p 6 n/2, then

(i) either λ1 = −n(H2 + c1/n) and Σn is a totally umbilical hypersurface or

(ii)

λ1 6 −2n(H2 + c2) +
n(n− 2p)

√

np(n− p)
|H |max

Σ
|Φ|.

Moreover, if the equality holds (and, in the case c > 0, H 6= 0), then Σn is an

isoparametric hypersurface with two distinct principal curvatures with multiplici-

ties p and n− p.
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P r o o f. In what follows, we keep the notation established in the proof of the

previous theorem. So, as in the proof of Theorem 1, we get that λ1 = −n(H2+c1/n)

if and only if Σn is a totally umbilical hypersurface.

From now on, let us assume that Σn is not totally umbilical. It follows from our

hypothesis (3.14) that

(3.15) nH
∑

i

µ3
i − |A|4 > −|Φ|4 − n(n− 2p)

√

np(n− p)
|H ||Φ|3 + nH2|Φ|2.

On the other hand, it is clear that equations (3.3) and (3.4) also occur in this case.

Then (2.2) jointly with (3.15) gives

(3.16)
1

2
∆|Φ|2 > |∇Φ|2 − |Φ|4 − n(n− 2p)

√

np(n− p)
|H ||Φ|3 + n(H2 + c)|Φ|2

= |∇Φ|2 − |Φ|2P|H|,c,p(|Φ|),

where

P|H|,c,p(x) = x2 +
n(n− 2p)
√

np(n− p)
|H |x− n(H2 + c).

Hence, we can reason in a similarly to the proof of Theorem 1 and obtain that

(3.17) λ1 6 −2n(H2 + c2) +
n(n− 2p)

√

np(n− p)
|H |max

Σ
|Φ|.

Finally, if equality (3.17) holds, we can reason again as in the proof of Theorem 1

and conclude that |Φ| is a positive constant which is given by

|Φ| =
√
n

2
√

p(n− p)

(
√

n2H2 + 4p(n− p)c− (n− 2p)|H |
)

.

Therefore, from (3.16) we conclude that the equality in Lemma 3 holds, which implies

that Σn is an isoparametric hypersurface with two distinct principal curvatures of

multiplicities p and n− p. �

Remark 2. We point out that for all 1 6 p 6 n/2 it holds that

n− 2p
√

p(n− p)
6

n− 2√
n− 1

,

with the equality if and only if p = 1. In this setting, Theorem 2 is a refinement

of Theorem 1 for the case when the total umbilicity tensor Φ of the hypersurface

satisfies (3.14).
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