## Czechoslovak Mathematical Journal

Farzaneh Akbarzadeh; Ali Armandnejad
On row-sum majorization

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 4, 1111-1121

Persistent URL: http://dml.cz/dmlcz/147919

## Terms of use:

© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# ON ROW-SUM MAJORIZATION 

Farzaneh Akbarzadeh, Ali Armandnejad, Rafsanjan

Received February 12, 2018. Published online August 7, 2019.


#### Abstract

Let $\mathbb{M}_{n, m}$ be the set of all $n \times m$ real or complex matrices. For $A, B \in \mathbb{M}_{n, m}$, we say that $A$ is row-sum majorized by $B$ (written as $A \prec{ }^{\text {rs }} B$ ) if $R(A) \prec R(B)$, where $R(A)$ is the row sum vector of $A$ and $\prec$ is the classical majorization on $\mathbb{R}^{n}$. In the present paper, the structure of all linear operators $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on $\mathbb{R}^{n}$ and then find the linear preservers of row-sum majorization of these relations on $\mathbb{M}_{n, m}$.


Keywords: majorization; linear preserver; doubly stochastic matrix
MSC 2010: 15A04, 15A21

## 1. Introduction

In the recent years, the concept of majorization has been widely applied to the related research areas of mathematics and statistics. Although this concept is rather old, it is an active field of research and recently many papers in this topic have been published, see for example [4], [5], [6], [7]. The following notation will be fixed throughout the paper: $\mathbb{M}_{n, m}$ is the set of all $n \times m$ matrices with entries in $\mathbb{R}$, $\mathbb{M}_{n}:=\mathbb{M}_{n, n}$. The set of all $n \times 1$ column vectors is denoted by $\mathbb{R}^{n}$. The symbol $\mathbb{N}_{k}$ is used for the set $\{1, \ldots, k\}$. The symbol $e_{i}$ is the row (or column) vector with 1 as the $i$ th component and 0 elsewhere. $E_{i j}$ is the $n \times m$ matrix whose $(i, j)$ entry is one and all other entries are zero. The summation of all components of a vector $x$ in $\mathbb{R}^{n}$ is denoted by $\operatorname{tr}(x)$. The symbol $\left[x_{1}\left|x_{2}\right| \ldots \mid x_{m}\right]$ is used for the $n \times m$ matrix whose columns are $x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}^{n} . A_{[i]} \in \mathbb{M}_{n-1}$ is the principal submatrix of $A \in \mathbb{M}_{n}$ obtained by deleting the $i$ th row and the $i$ th column of $A$. The letter $\rrbracket$ stands for the (rank-1) square matrix all of whose entries are 1 . Let $\sim$ be a relation on $\mathbb{M}_{n, m}$. A linear operator $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ is said to be a linear preserver (or strong linear preserver) of $\sim$ if $T X \sim T Y$ whenever $X \sim Y$ (or $T X \sim T Y$ if and only if $X \sim Y$ ). For
an $n \times m$ matrix $A$ we define the row sum vector $R(A)=\left(r_{1}(A), r_{2}(A), \ldots, r_{n}(A)\right)^{t}$ where $r_{i}(A)=\sum_{j=1}^{m} a_{i j}$ for $i=1, \ldots, n$. The set of all $n \times n$ permutation matrices is denoted by $\mathcal{P}_{n}$. A nonnegative matrix $R \in \mathbb{M}_{n, m}$ is called row stochastic if $\operatorname{Re}=e$ where $e=(1,1, \ldots, 1)^{t}$. An $n \times n$ matrix $D$ is called doubly stochastic if both $D$ and $D^{t}$ are row stochastic. The collection of all $n \times n$ doubly stochastic matrices is denoted by $\mathbb{D}_{n}$.

A real matrix $D \in \mathbb{M}_{n}$ is called even doubly stochastic if it is a convex combination of even permutation matrices. Let $v=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a vector in $\mathbb{R}^{n}$. The shift operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $T(v)=\left(v_{n}, v_{1}, \ldots, v_{n-1}\right)^{t}$. The circulant matrix associated to $v$ is the matrix whose $k$ th column is given by $T^{k-1} v\left(k \in \mathbb{N}_{n}\right)$, where $T$ is the shift operator. If $v=e_{i}$ for some $1 \leqslant i \leqslant n$, then the circulant matrix associated to $v$ is a permutation matrix which is called a circulant permutation matrix. In the present paper $Q_{1}$ is the circulant permutation matrix associated to $e_{2}$ and $Q_{k}=Q_{1}^{k}$ for every $k \in \mathbb{N}_{n}$. Up to now, various kinds of majorization have been introduced. All types of majorization that we are dealing with in this paper are summarized in the following definition:

Definition 1.1. Let $x, y \in \mathbb{R}^{n}$. We define:
(1) classicalmajorization: $x \prec y$ if $x=D y$ for some doubly stochastic matrix $D \in \mathbb{D}_{n} ;$
(2) evenmajorization: $x \prec_{e} y$ if $x=D y$ for some even doubly stochastic matrix $D \in \mathbb{D}_{n} ;$
(3) circulantmajorization: $x \prec_{c} y$ if $x=D y$ for some circulant doubly stochastic matrix $D \in \mathbb{D}_{n}$.

Now, we introduce the relation of row-sum majorization on $\mathbb{M}_{n, m}$ with respect to $\prec, \prec_{e}$ and $\prec_{c}$ as follows:

Definition 1.2. Let $A, B \in \mathbb{M}_{n, m}$. The matrix $A$ is said to be
(1) row-sum majorized by $B$ (denoted by $A \prec{ }^{\mathrm{rs}} B$ ) if $R(A) \prec R(B)$;
(2) row-sum evenmajorized by $B$ (denoted by $A \prec_{e}^{\mathrm{rs}} B$ ) if $R(A) \prec_{e} R(B)$;
(3) row-sum circulantmajorized by $B$ (denoted by $\left.A \prec_{c}^{\text {rs }} B\right)$ if $R(A) \prec_{c} R(B)$.

The main aim of this paper is to characterize all linear and strong linear preservers of row-sum majorization on $\mathbb{M}_{n, m}$ with respect to $\prec, \prec_{e}$ and $\prec_{c}$.

## 2. Row-SUM MAJORIZATION ON $\mathbb{M}_{n, m}$

In this section we characterize all linear operators that preserve (or strongly preserve) row-sum majorization on $\mathbb{M}_{n, m}$. First, we state the statements that we need to prove the main results of this paper. The following elementary properties of classical majorization are proved in [3].

Proposition 2.1. For all $x, y \in \mathbb{R}^{n}$ the following assertions are true.
(1) If $x \prec y$, then $\min y \leqslant \min x \leqslant \max x \leqslant \max y$, where $\max x$ and $\min x$ denote the maximum and minimum values of the components of a given real vector $x$, respectively.
(2) $x \prec y$ if and only if $(x, \alpha) \prec(y, \alpha)$, where $\alpha$ is the maximum value of the components of the vectors $x$ and $y$.

In [1], Ando characterized all linear preservers of classical majorization on $\mathbb{R}^{n}$. In fact he proved the following proposition.

Proposition 2.2 ([2], Corollary 2.7). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then $T$ preserves classical majorization if and only if one of the following holds:
(i) $T(x)=\operatorname{tr}(x) a$ for some $a \in \mathbb{R}^{n}$.
(ii) $T(x)=\alpha P x+\beta \rrbracket x$ for some $\alpha, \beta \in \mathbb{R}$, and $P \in \mathcal{P}_{n}$.

The following lemma that states an interesting fact about a vector $a \in \mathbb{R}^{n}$, is used to prove the main results.

Lemma 2.3. Let $a=\left(a_{1}, \ldots, a_{n}\right)^{t} \in \mathbb{R}^{n}$ and $P \in \mathcal{P}_{n}$. Then $2 a \prec a+P a$ if and only if $P a=a$.

Proof. The sufficiency is obvious. We prove the necessity by induction on $n$.
If $n=1$, it is clear that $P a=a$. If $n=2$, then $P=I$ or $P=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$. The case $P=I$ is clear, so assume that $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Since $2 a \prec a+P a,\binom{2 a_{1}}{2 a_{2}} \prec\binom{a_{1}+a_{2}}{a_{1}+a_{2}}$, and by Proposition 2.1, $a_{1}=a_{2}$ and hence $P a=a$.

Now, suppose that $n \geqslant 2$, and that for $k=1,2, \ldots, n-1$, the assertion has been proved. Let $P a=\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}\right)$ and let $a_{t}=\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The maximum value of the vector $a$ is $a_{t}$, therefore $2 a_{t} \geqslant a_{k}+a_{i_{k}}$, for every $k \in \mathbb{N}_{n}$. On the other hand $2 a \prec a+P a$ and by Proposition 2.1, $\max (2 a) \leqslant \max (a+P a)$. Therefore there exists $l \in \mathbb{N}_{n}$ such that $2 a_{t} \leqslant a_{l}+a_{i_{l}}$. Since $a_{t}$ is the maximum value of $a$, we have $a_{t}=a_{l}=a_{i_{l}}$. Then without loss of generality we may assume that the (l,l)-entry of $P$ is 1. Put $a^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{l-1}, a_{l+1}, \ldots, a_{n}\right)^{t} \in \mathbb{R}^{n-1}$ and $P^{\prime}=P_{[l]} \in \mathcal{P}_{n-1}$. Thus, $P^{\prime} a^{\prime}=\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{l-1}}, a_{i_{l+1}}, \ldots, a_{i_{n}}\right)$. Since $2 a \prec a+P a$, it follows from Proposition 2.1, that $2 a^{\prime} \prec a^{\prime}+P^{\prime} a^{\prime}$, and by the induction hypothesis, $P^{\prime} a^{\prime}=a^{\prime}$. Now, since the $(l, l)$-entry of $P$ is 1 , we have $P a=a$.

If $X \nprec^{\mathrm{rs}} Y$ and $Y \prec^{\mathrm{rs}} X$ (or $x \prec y$ and $y \prec x$ ), then we write $X \sim_{\text {rs }} Y$ (respectively $x \sim y$ ). It is well known that $x \sim y$ if and only if there exists a permutation matrix $P$ such that $x=P y$.

The following remark gives the relation between $R\left(T E_{i j}\right)\left(i \in \mathbb{N}_{n}, j \in \mathbb{N}_{m}\right)$ and $R\left(T E_{11}\right)$ when $T$ is a linear preserver of row-sum majorization.

Remark 2.4. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear preserver of row-sum majorization. It is clear that for every $i \in \mathbb{N}_{n}, j \in \mathbb{N}_{m}, E_{i j} \sim_{\mathrm{rs}} E_{11}$. So $T E_{i j} \sim_{\mathrm{rs}} T E_{11}$, therefore $R\left(T E_{i j}\right) \sim R\left(T E_{11}\right)$. Thus there exists $P_{i j} \in \mathcal{P}_{n}$ such that $R\left(T E_{i j}\right)=$ $P_{i j} R\left(T E_{11}\right)$.

Now, we state and prove the main theorem of this section.
Theorem 2.5. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ preserves row-sum majorization if and only if there exists $A \in \mathbb{M}_{n}$ such that $R(T X)=A R(X)$ for all $X \in \mathbb{M}_{n, m}$, and $A$ has one of the following forms:
(i) $A=(a|a| \ldots \mid a)$ for some $a \in \mathbb{R}^{n}$.
(ii) $A=\lambda P+\mu \rrbracket$ for some $\lambda, \mu \in \mathbb{R}$ and $P \in \mathcal{P}_{n}$.

Proof. If there exists $A \in \mathbb{M}_{n}$ such that $R(T X)=A R(X)$ for all $X \in \mathbb{M}_{n, m}$, and $A$ has one of the forms (i) or (ii), then it is easy to see that $A x \prec A y$, whenever $x \prec y$, by Proposition 2.2. Now, let $X \prec{ }^{\mathrm{rs}} Y$. Then $R(X) \prec R(Y)$, hence $A R(X) \prec$ $A R(Y)$. Thus $R(T X) \prec R(T Y)$, and therefore $T(X) \prec^{\mathrm{rs}} T(Y)$.

Conversely, assume that $T$ preserves row-sum majorization. Let $\alpha=R\left(T E_{11}\right)$. Since for every $i, j\left(i \in \mathbb{N}_{n}, j \in \mathbb{N}_{m}\right), E_{i j} \sim_{\text {rs }} E_{11}$ and $T$ preserves $\prec^{\text {rs }}$, we have $R\left(T E_{i j}\right)=P_{i j} \alpha$ for some $P_{i j} \in \mathcal{P}_{n}$. So $R(T X)=\sum_{i, j} x_{i j} P_{i j} \alpha$ where $P_{i j} \in \mathcal{P}_{n}$. Now, we show that for every $i \in \mathbb{N}_{n}, P_{i j} \alpha=P_{i k} \alpha$ for all $j, k \in \mathbb{N}_{m}$. Assume there exists $i \in \mathbb{N}_{n}$ such that $P_{i j} \alpha \neq P_{i k} \alpha$, for some $j, k \in \mathbb{N}_{m}$. Therefore $\alpha \neq P_{i j}^{t} P_{i k} \alpha$. Let $X=2 E_{i j}$ and $Y=E_{i j}+E_{i k}$. It is clear that $X \nprec^{\mathrm{rs}} Y$, so we have $T X \prec^{\mathrm{rs}} T Y$. It is clear that $R(T X)=2 P_{i j} \alpha$ and $R(T Y)=P_{i j} \alpha+P_{i k} \alpha$. Then

$$
T(X) \prec \prec^{\mathrm{rs}} T(Y) \Rightarrow R(T X) \prec R(T Y) \Rightarrow 2 P_{i j} \alpha \prec P_{i j} \alpha+P_{i k} \alpha \Rightarrow 2 \alpha \prec \alpha+P_{i j}^{t} P_{i k} \alpha
$$

and by Lemma 2.3, $P_{i j}^{t} P_{i k} \alpha=\alpha$, which is a contradiction. Therefore $P_{i j} \alpha=P_{i k} \alpha$ for every $i \in \mathbb{N}_{n}$ and $j, k \in \mathbb{N}_{m}$. Set $P_{i}=P_{i 1}$, for every $i \in \mathbb{N}_{n}$. Therefore $P_{i} \alpha=P_{i 1} \alpha=P_{i j} \alpha$ for every $j \in \mathbb{N}_{m}$. Thus,

$$
R(T X)=\sum_{i, j} x_{i j} P_{i j} \alpha=\sum_{i=1}^{n} r_{i}(X) P_{i} \alpha .
$$

Put $A=\left[P_{1} \alpha\left|P_{2} \alpha\right| \ldots \mid P_{n} \alpha\right]$ and hence $R(T X)=A R(X)$.
Now, define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(x)=A x$. First, we show that $S$ is a linear preserver of $\prec$. Let $x \prec y$. Then

$$
\begin{aligned}
x \prec y & \Rightarrow(x|0| 0|\ldots| 0) \prec^{\text {rs }}(y|0| 0|\ldots| 0) \\
& \Rightarrow T(x|0| 0|\ldots| 0) \prec^{\text {rs }} T(y|0| 0|\ldots| 0) \\
& \Rightarrow R(T(x|0| 0|\ldots| 0)) \prec R(T(y|0| 0|\ldots| 0))
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A R(x|0| 0|\ldots| 0) \prec A R(y|0| 0|\ldots| 0) \\
& \Rightarrow A x \prec A y \Rightarrow S(x) \prec S(y)
\end{aligned}
$$

Thus $S$ is a linear preserver of $\prec$ and hence by Proposition $2.2, A$ is of the form (i) or (ii).

Corollary 2.6. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ preserves row-sum majorization if and only if $R\left(T E_{i j}\right)$, for every $i \in \mathbb{N}_{n}$ and $j \in \mathbb{N}_{m}$, has one of the following forms:
(i) $R\left(T E_{i j}\right)=a$ for some $a \in \mathbb{R}^{n}$.
(ii) $R\left(T E_{i j}\right)=(\alpha P+\beta \rrbracket) e_{i}$ for some $\alpha, \beta \in \mathbb{R}$ and $P \in \mathcal{P}_{n}$.

Here, we characterize all linear operators on $\mathbb{M}_{n, m}$ that strongly preserve rowsum majorization. The following example shows that not every linear operator that strongly preserves $\prec^{\text {rs }}$, is necessarily invertible.

Example 2.7. Let $m \geqslant 2$ and let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be defined by $T(X)=X \mathbb{J}$.
Let $X, Y \in \mathbb{M}_{n, m}$. Therefore

$$
T(X)=X J=\left(\begin{array}{ccc}
r_{1}(X) & \ldots & r_{1}(X) \\
r_{2}(X) & \ldots & r_{2}(X) \\
\vdots & & \vdots \\
r_{n}(X) & \ldots & r_{n}(X)
\end{array}\right)
$$

and hence $R(T X)=n R(X)$. Assume that $X \prec^{\mathrm{rs}} Y$, then

$$
\begin{aligned}
X \prec{ }^{\mathrm{rs}} Y \Leftrightarrow R(X) \prec R(Y) & \Leftrightarrow n R(X) \prec n R(Y) \\
& \Leftrightarrow R(T X) \prec R(T Y) \Leftrightarrow T(X) \prec{ }^{\mathrm{rs}} T(Y)
\end{aligned}
$$

Then $T$ strongly preserves $\prec^{\text {rs }}$. Since $m \geqslant 2, T(X)=0$ for some $X \neq 0$, which implies that $T$ is not invertible.

In [1], [4], the authors characterized the structure of all strong linear preservers of $\prec$ on $\mathbb{R}^{n}$ as follows:

Proposition 2.8. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then $T$ strongly preserves classical majorization if and only if there exist $\alpha, \beta \in \mathbb{R}$, and a permutation matrix $P \in \mathcal{P}_{n}$ such that $T(x)=\alpha P x+\beta \rrbracket x$ for all $x \in \mathbb{R}^{n}$ and $\alpha(\alpha+n \beta) \neq 0$.

Theorem 2.9. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ strongly preserves row-sum majorization if and only if there exist $\alpha, \beta \in \mathbb{R}, P \in \mathcal{P}_{n}$ such that $\alpha(\alpha+n \beta) \neq 0$ and $R(T X)=(\alpha P+\beta J) R(X)$ for all $X \in \mathbb{M}_{n, m}$.

Proof. If $R(T X)=(\alpha P+\beta \rrbracket) R(X)$ for some permutation matrix $P \in \mathcal{P}_{n}$ and $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha+n \beta) \neq 0$, then it is clear that $T$ is a strong linear preserver of row-sum majorization by Proposition 2.8. Conversely, let $T$ strongly preserve row-sum majorization. By Theorem 2.5, there exists $A \in \mathbb{M}_{n}$ such that $R(T X)=A R(X)$. Now, define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(x)=A x$. First we show that $S$ is a strong linear preserver of $\prec$. Let $x \prec y$. Then we have

$$
\begin{aligned}
x \prec y & \Leftrightarrow(x|0| 0|\ldots| 0) \prec^{\text {rs }}(y|0| 0|\ldots| 0) \\
& \Leftrightarrow T(x|0| 0|\ldots| 0) \prec^{\text {rs }} T(y|0| 0|\ldots| 0) \\
& \Leftrightarrow R(T(x|0| 0|\ldots| 0)) \prec R(T(y|0| 0|\ldots| 0)) \\
& \Leftrightarrow A R(x|0| 0|\ldots| 0) \prec A R(y|0| 0|\ldots| 0) \\
& \Leftrightarrow A x \prec A y \Leftrightarrow S(x) \prec S(y) .
\end{aligned}
$$

Thus $S$ is a strong linear preserver of $\prec$ and by Proposition 2.8, $A=\alpha P+\beta \rrbracket$ for some $P \in \mathcal{P}_{n}$ and $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha+n \beta) \neq 0$.

## 3. Row-SUM EVEN AND CIRCULANT MAJORIZATION

In this section we consider the concepts of even and circulant majorization on $\mathbb{R}^{n}$ and then we characterize the linear and strong linear preservers of row-sum majorization of these relations on $\mathbb{M}_{n, m}$. Here, we give some necessary prerequisites. The following lemma gives the relation between two vectors $x, y \in \mathbb{R}^{n}$ when $x \sim_{e} y$. This lemma is used to find the structure of linear preservers of $\prec_{e}^{\mathrm{rs}}$.

Lemma 3.1. Let $x, y \in \mathbb{R}^{n}$ and $x \sim_{e} y$. Then there exists an even permutation matrix $P \in \mathcal{P}_{n}$ such that $x=P y$.

Proof. Let $x, y \in \mathbb{R}^{n}$ and $x \sim_{e} y$. It is clear that even majorization implies multivariate majorization, so we have $x \sim y$. Therefore there exists a permutation matrix $P \in \mathcal{P}_{n}$ such that $x=P y$. On the other hand $x \prec_{e} y$, and by the definition of even majorization there exists an even doubly stochastic matrix $D$ such that $x=D y$. Since $D$ is even doubly stochastic, there exist even permutations $P_{i_{1}}, \ldots, P_{i_{k}} \in \mathcal{P}_{n}$ and scalars $c_{1}, \ldots, c_{k} \in \mathbb{R}^{+}$such that $\sum_{i=1}^{k} c_{j}=1$ and $D=\sum_{i=1}^{k} c_{j} P_{i_{j}}$. Thus, $x=$ $\sum_{i=1}^{k} c_{j} P_{i_{j}} y$. Without loss of generality assume that $c_{1} \neq 0$. If $c_{1}=1$, then $x=P_{i_{1}} y$ and the assertion holds trivially. If $c_{1} \neq 1$, put

$$
z=\frac{1}{1-c_{1}} \sum_{j=2}^{k} c_{j} P_{i_{j}} y
$$

and hence $P y=c_{1} P_{i_{1}} y+\left(1-c_{1}\right) z$. By the triangle inequality we have

$$
\|y\|=\|P y\| \leqslant c_{1}\|y\|+\left(1-c_{1}\right)\|z\| \leqslant\|y\| .
$$

Since equality occures in the triangle inequality, there is a scalar $\alpha$ such that $z=\alpha P_{i_{1}} y$. Thus, $P y=\left(c_{1}+\alpha\left(1-c_{1}\right)\right) P_{i_{1}} y$ and this implies that $\alpha=1$. Therefore $x=P_{i_{1}} y$, as desired.

We use the following matrices throughout this section:

$$
\begin{gathered}
P_{1}=I, \quad P_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad P_{1}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
P_{2}^{\prime}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad P_{3}^{\prime}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Here, we mention the structure of all linear preservers of $\prec_{e}$ on $\mathbb{R}^{n}$.
Proposition 3.2 ([2], Theorem 2.2). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator and let $n \geqslant 4$. Then $T$ preserves even majorization if and only if one of the following holds:
(i) $T(x)=\operatorname{tr}(x) a$ for some $a \in \mathbb{R}^{n}$.
(ii) $T(x)=\alpha P x+\beta \rrbracket x$ for some $\alpha, \beta \in \mathbb{R}$, and a permutation matrix $P \in \mathcal{P}_{n}$.

Proposition 3.3 ([2], Proposition 2.4). Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator. Then $T$ preserves even majorization if and only if one of the following holds:
(i) $T(x)=\operatorname{tr}(x) a$ for some $a \in \mathbb{R}^{3}$.
(ii) $T(x)=\alpha P_{1} x+\beta P_{2} x+\gamma P_{3} x$ for some $\alpha, \beta, \gamma \in \mathbb{R}$.
(iii) $T(x)=\alpha P_{1}^{\prime} x+\beta P_{2}^{\prime} x+\gamma P_{3}^{\prime} x$ for some $\alpha, \beta, \gamma \in \mathbb{R}$.

The next theorem characterizes the structure of all linear operators $T: \mathbb{M}_{n, m} \rightarrow$ $\mathbb{M}_{n, m}$ preserving $\prec_{e}^{\mathrm{rs}}$.

Theorem 3.4. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ preserves row-sum even majorization if and only if there exists $A \in \mathbb{M}_{n}$ such that $R(T X)=$ $A R(X)$ for all $X \in \mathbb{M}_{n, m}$, and one of the following statements holds:
(a) $n \geqslant 4$, and $A$ has one of the following forms:
(i) $A=(a|a| \ldots \mid a)$ for some $a \in \mathbb{R}^{n}$,
(ii) $A=\lambda P+\mu J$ for some $\lambda, \mu \in \mathbb{R}$ and $P \in \mathcal{P}_{n}$,
(b) $n=3$, and $A$ has one of the following forms:
(i) $A=(a|a| \ldots \mid a)$ for some $a \in \mathbb{R}^{n}$,
(ii) $A=\alpha P_{1}+\beta P_{2}+\gamma P_{3}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$,
(iii) $A=\alpha P_{1}^{\prime} x+\beta P_{2}^{\prime} x+\gamma P_{3}^{\prime}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$.

Proof. First, assume that $n \geqslant 4$ (or $n=3$ ), and there exists $A \in \mathbb{M}_{n}$ such that $R(T X)=A R(X)$ for all $X \in \mathbb{M}_{n, m}$ and $A$ has one of the forms (i) or (ii) of the case (a) (respectively (i) or (ii) or (iii) of the case (b)). Now, let $X \prec_{e}^{\mathrm{rs}} Y$. Then $R(X) \prec_{e} R(Y)$, and it is clear that $A R(X) \prec_{e} A R(Y)$ by Proposition 3.2 (or Proposition 3.3). Thus $R(T X) \prec_{e} R(T Y)$ and therefore $T(X) \prec_{e}^{\mathrm{rs}} T(Y)$.

Conversely, assume that $T$ preserves row-sum even majorization and let $\alpha=$ $R\left(T E_{11}\right)$. It is clear that for every $i, j\left(i \in \mathbb{N}_{n}, j \in \mathbb{N}_{m}\right), R\left(E_{i j}\right) \sim_{e} R\left(E_{11}\right)$, so $R\left(T E_{i j}\right)=P_{i j} \alpha$, for some even permutation $P_{i j} \in \mathcal{P}_{n}$, by Lemma 3.1. Thus $R(T X)=\sum_{i, j} x_{i j} P_{i j} \alpha$. We claim that for every $i \in \mathbb{N}_{n}, P_{i j} \alpha=P_{i k} \alpha$ for all $j, k \in \mathbb{N}_{m}$. Assume there exists $i \in \mathbb{N}_{n}$ such that $P_{i j} \alpha \neq P_{i k} \alpha$, for some $j, k \in \mathbb{N}_{m}$. Therefore $\alpha \neq P_{i j}^{t} P_{i k} \alpha$. Let $X=2 E_{i j}$ and $Y=E_{i j}+E_{i k}$. It is clear that $X \prec_{e}^{\mathrm{rs}} Y$, so we have $T X \prec_{e}^{\mathrm{rs}} T Y$. Then

$$
\begin{aligned}
T X \prec_{e}^{\mathrm{rs}} T Y & \Rightarrow R(T X) \prec_{e} R(T Y) \Rightarrow 2 P_{i j} \alpha \prec_{e} P_{i j} \alpha+P_{i k} \alpha \\
& \Rightarrow 2 \alpha \prec_{e} \alpha+P_{i j}^{t} P_{i k} \alpha \Rightarrow 2 \alpha \prec \alpha+P_{i j}^{t} P_{i k} \alpha,
\end{aligned}
$$

and by Lemma 2.3, $P_{i j}^{t} P_{i k} \alpha=\alpha$, which is a contradiction. So $P_{i j} \alpha=P_{i k} \alpha$ for every $i \in \mathbb{N}_{n}$ and $j, k \in \mathbb{N}_{m}$. Set $P_{i}=P_{i 1}$ for every $i \in \mathbb{N}_{n}$. So $P_{i} \alpha=P_{i 1} \alpha=P_{i j} \alpha$ for every $j \in \mathbb{N}_{m}$ and hence,

$$
R(T X)=\sum_{i, j} x_{i j} P_{i j} \alpha=\sum_{i=1}^{n} r_{i}(X) P_{i} \alpha .
$$

Put $A=\left[P_{1} \alpha\left|P_{2} \alpha\right| \ldots \mid P_{n} \alpha\right]$, therefore $R(T X)=A R(X)$. Now, define $S$ : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(x)=A x$. Now we show that $S$ is a linear preserver of $\prec_{e}$. Let $x \prec_{e} y$. Then

$$
\begin{aligned}
x \prec_{e} y & \Rightarrow(x|0| 0|\ldots| 0) \prec_{e}^{\mathrm{rs}}(y|0| 0|\ldots| 0) \\
& \Rightarrow T(x|0| 0|\ldots| 0) \prec_{e}^{\mathrm{rs}} T(y|0| 0|\ldots| 0) \\
& \Rightarrow R(T(x|0| 0|\ldots| 0)) \prec_{e} R(T(y|0| 0|\ldots| 0)) \\
& \Rightarrow A R(x|0| 0|\ldots| 0) \prec_{e} A R(y|0| 0|\ldots| 0) \\
& \Rightarrow A x \prec_{e} A y \Rightarrow S(x) \prec_{e} S(y) .
\end{aligned}
$$

Thus $S$ is a linear preserver of $\prec_{e}$ and by Proposition 3.2 (or Proposition 3.3) for $n \geqslant 4$ (or $n=3$ ), the case (a) (or (b)) holds and $A$ is of the form (i) or (ii) (respectively (i) or (ii) or (iii)), as desired.

Corollary 3.5. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ preserves row-sum even majorization if and only if for every $i \in \mathbb{N}_{n}$ and $j \in \mathbb{N}_{m}, R\left(T\left(E_{i j}\right)\right)$ has one of the following forms:
(a) $n \geqslant 4$, and one of the following holds:
(i) $R\left(T E_{i j}\right)=a$ for some $a \in \mathbb{R}^{n}$,
(ii) $R\left(T E_{i j}\right)=(\alpha P+\beta \rrbracket) e_{i}$ for some $\alpha, \beta \in \mathbb{R}$ and $P \in \mathcal{P}_{n}$,
(b) $n=3$, and one of the following holds:
(i) $R\left(T E_{i j}\right)=a$ for some $a \in \mathbb{R}^{n}$,
(ii) $R\left(T E_{i j}\right)=\alpha P_{1}+\beta P_{2}+\gamma P_{3}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$,
(iii) $R\left(T E_{i j}\right)=\alpha P_{1}^{\prime} x+\beta P_{2}^{\prime} x+\gamma P_{3}^{\prime}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$.

The linear operators strongly preserving $\prec_{e}$ on $\mathbb{R}^{n}$ have been characterized as follows:

Proposition 3.6 ([2], Theorem 2.4). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator and let $n \geqslant 4$. Then $T$ strongly preserves even majorization if and only if $T$ has the form $T(x)=\alpha P x+\beta \rrbracket x$, where $P \in \mathcal{P}_{n}$ and $\alpha, \beta \in \mathbb{R}$ are such that $\alpha(\alpha+n \beta) \neq 0$.

Proposition 3.7 ([2], Theorem 2.4). Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator. Then $T$ strongly preserves even majorization if and only one of the following holds:
(i) $T(x)=\alpha P_{1} x+\beta P_{2} x+\gamma P_{3} x$,
(ii) $T(x)=\alpha P_{1}^{\prime} x+\beta P_{2}^{\prime} x+\gamma P_{3}^{\prime} x$, where $\alpha, \beta, \gamma \in \mathbb{R}$ with $\alpha^{3}+\beta^{3}+\gamma^{3} \neq 3 \alpha \beta \gamma$.

The following example shows that in general a linear operator that strongly preserves $\prec_{e}^{\text {rs }}$ is not invertible.

Example 3.8. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be defined by $T(X)=X \mathbb{J}$. Then $T$ strongly preserves row-sum even majorization but is not invertible.

Theorem 3.9. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ strongly preserves row-sum even majorization if and only if there exists $A \in \mathbb{M}_{n}$ such that $R(T X)=A R(X)$ for all $X \in \mathbb{M}_{n, m}$, and one of the following holds:
(i) $n \geqslant 4$, and $A=\alpha P+\beta \rrbracket$ for some permutation matrix $P \in \mathcal{P}_{n}$ and $\alpha, \beta \in \mathbb{R}$;
(ii) $n=3$, and $A=\alpha P_{1}+\beta P_{2}+\gamma P_{3}$ or $A=\alpha P_{1}^{\prime}+\beta P_{2}^{\prime}+\gamma P_{3}^{\prime}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha^{3}+\beta^{3}+\gamma^{3} \neq 3 \alpha \beta \gamma$.

Proof. The sufficiency is clear by Propositions 3.6 and 3.7. So, we only prove the necessity. Let $T$ strongly preserve row-sum even majorization. By Theorem 3.4, there exist $A \in \mathbb{M}_{n}$, such that $R(T X)=A R(X)$. Now, define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(x)=A x$. Here, we show that $S$ is a strong linear preserver of $\prec_{e}$. Let $x \prec_{e} y$. Then

$$
\begin{aligned}
x \prec_{e} y & \Leftrightarrow(x|0| 0|\ldots| 0) \prec_{e}^{\mathrm{rs}}(y|0| 0|\ldots| 0) \\
& \Leftrightarrow T(x|0| 0|\ldots| 0) \prec_{e}^{\mathrm{rs}} T(y|0| 0|\ldots| 0) \\
& \Leftrightarrow R(T(x|0| 0|\ldots| 0)) \prec_{e} R(T(y|0| 0|\ldots| 0))
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow A R(x|0| 0|\ldots| 0) \prec_{e} A R(y|0| 0|\ldots| 0) \\
& \Leftrightarrow A x \prec_{e} A y \Leftrightarrow S(x) \prec_{e} S(y) .
\end{aligned}
$$

Thus $S$ is a strong linear preserver of $\prec_{e}$. If $n \geqslant 4$, by Proposition 3.6, $A$ is of the form (i). If $n=3$, by Proposition 3.7, $A$ is of the form (ii), as desired.

In the remainder of the paper we consider the circulant majorization and we find the linear operator preserving row-sum circulant majorization on $\mathbb{M}_{n, m}$. The following proposition characterizes the linear operators preserving circulant majorization on $\mathbb{R}^{n}$.

Proposition 3.10 ([2], Theorem 2.6). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then $T$ preserves circulant majorization if and only if there exist a vector $a \in \mathbb{R}^{n}$ and an integer $k \in \mathbb{N}_{n}$, such that $T x=\left(a\left|Q_{k} a\right| \ldots \mid Q_{k}^{n-1} a\right) x$ for all $x \in \mathbb{R}^{n}$.

Lemma 3.11 ([2], Lemma 2.1). Let $x, y \in \mathbb{R}^{n}$ and $x \sim_{c} y$. Then there exists a circulant permutation matrix $P \in \mathcal{P}_{n}$ such that $x=P y$.

By using Proposition 3.10, Lemma 3.11 and arguments similar to those used in the proofs of Theorems 3.4 and 3.9 we can prove the following results.

Theorem 3.12. A linear operator $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ preserves row-sum circulant majorization if and only if there exist a vector $a \in \mathbb{R}^{n}$ and an integer $k \in \mathbb{N}_{n}$, such that for all $X \in \mathbb{M}_{n, m}$,

$$
R(T X)=\left(a\left|Q_{k} a\right| \ldots \mid Q_{k}^{n-1} a\right) R(X)
$$

Corollary 3.13. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ preserves row-sum circulant majorization if and only if for every $i \in \mathbb{N}_{n}$ and $j \in \mathbb{N}_{m}$, there exist a vector $a \in \mathbb{R}^{n}$ and an integer $k \in \mathbb{N}_{n}$, such that $R\left(T\left(E_{i j}\right)\right)=\left(a\left|Q_{k} a\right| \ldots \mid\right.$ $\left.Q_{k}^{n-1} a\right) e_{i}$.

In the following theorems, $\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)^{t}$ is the first column of the matrix $A$ and $\varepsilon=\mathrm{e}^{2 \pi \mathrm{i} / n}$. The strong linear preservers of $\prec_{c}$ and $\prec_{c}^{\mathrm{rs}}$ are as follows:

Proposition 3.14 ([2], Theorem 2.8). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then $T$ strongly preserves circulant majorization if and only if there exists a matrix $A \in \mathbb{M}_{n}$ such that $T x=A x$ for all $x \in \mathbb{R}^{n}$, and $A Q_{1}=Q_{k} A$ for some $k \in \mathbb{N}_{n}$ and $\prod_{l=0}^{n-1}\left(\sum_{k=0}^{n-1} \varepsilon^{k l} \alpha_{k}\right) \neq 0$.

By using Proposition 3.14 and applying the arguments used in the previous results we can obtain the following theorem.

Theorem 3.15. Let $T: \mathbb{M}_{n, m} \rightarrow \mathbb{M}_{n, m}$ be a linear operator. Then $T$ strongly preserves row-sum circulant majorization if and only if there exist a matrix $A \in \mathbb{M}_{n}$ and an integer $k \in \mathbb{N}_{n}$ such that $A Q_{1}=Q_{k} A$ and $\prod_{l=0}^{n-1}\left(\sum_{k=0}^{n-1} \varepsilon^{k l} \alpha_{k}\right) \neq 0$ and $R(T X)=$ $A R(X)$ for all $X \in \mathbb{M}_{n, m}$.

## References

[1] T. Ando: Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl. 118 (1989), 163-248.
zbl MR doi
[2] A. Armandnejad, H. Heydari: Linear preserving $g d$-majorization functions from $M_{n, m}$ to $M_{n, k}$. Bull. Iran. Math. Soc. 37 (2011), 215-224.
[3] R. Bhatia: Matrix Analysis. Graduate Texts in Mathematics 169, Springer, New York, 1997.
[4] A.M.Hasani, M. Radjabalipour: The structure of linear operators strongly preserving majorizations of matrices. Electron. J. Linear Algebra 15 (2006), 260-268.
zbl MR doi
[5] S. M. Motlaghian, A. Armandnejad, F. J. Hall: Linear preservers of Hadamard majorization. Electron. J. Linear Algebra 31 (2016), 593-609.
zbl MR doi
zbl MR doi
[6] M. Soleymani, A. Armandnejad: Linear preservers of circulant majorization on $\mathbb{R}^{n}$. Linear Algebra Appl. 440 (2014), 286-292.
zbl MR doi
[7] M. Soleymani, A. Armandnejad: Linear preservers of even majorization on $M_{n, m}$. Linear Multilinear Algebra 62 (2014), 1437-1449.
zbl MR doi

Authors' address: Farzaneh Akbarzadeh, Ali Armandnejad, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P. O. Box 7713936417 , Rafsanjan, Iran, e-mail: f.akbarzadeh@stu.vru.ac.ir, armandnejad@vru.ac.ir.

