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Abstract. We consider the multiple ellipses detection problem on the basis of a data
points set coming from a number of ellipses in the plane not known in advance, whereby
an ellipse E is viewed as a Mahalanobis circle with center S, radius r, and some positive
definite matrix Σ. A very efficient method for solving this problem is proposed. The
method uses a modification of the k-means algorithm for Mahalanobis-circle centers. The
initial approximation consists of the set of circles whose centers are determined by means
of a smaller number of iterations of the DIRECT global optimization algorithm. Unlike
other methods known from the literature, our method recognizes well not only ellipses
with clear edges, but also ellipses with noisy edges. CPU-time necessary for running the
corresponding algorithm is very short and this raises hope that, with appropriate software
optimization, the algorithm could be run in real time. The method is illustrated and tested
on 100 randomly generated data sets.

Keywords: multiple ellipses detection problem; globally optimal k-partition; Lipschitz
continuous function; DIRECT; k-means

MSC 2010 : 65K05, 90C26, 90C27, 90C56, 90C57, 05E05

1. Introduction

Let A = {ai = (xi, yi)
⊤ ∈ R

2 : α1 6 xi 6 β1, α2 6 yi 6 β2, i = 1, . . . ,m} be a set
of data points coming from a number of ellipses in the plane not known in advance

that should be reconstructed or detected. Note thatA ⊂ [α, β] := [α1, β1]×[α2, β2] ⊂
R

2, α = (α1, α2), β = (β1, β2). There are several different approaches to solving this
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problem in the literature, but most of them cannot be used in real-time applications.

Let us mention some of them. In [1], simple and robust nonparametric algorithms

for the geometric fitting of ellipse is proposed. In [14], a novel ellipse fitting method

which is selective for digital and noisy elliptic curves is proposed. In [6], an ellipse is

viewed as a Mahalanobis circle with some positive definite matrix. Two methods for

solving this problem are proposed in this paper. The former method very success-

fully combines the well-known direct least square method and the RANSAC algo-

rithm with the realistic statistical model of multiple ellipses in the plane, while the

latter, less efficient method, is based on incremental clustering algorithms. Akinlar

and Topal [2] have proposed a real-time, parameter-free circle detection (Algorithm

EDCircles) with high detection rates that can also be applied to near-circular ellipses.

Ellipses are the most common nonlinear geometric objects that appear in the im-

ages as an approximation of real objects. They can be fully or partially visible,

and may appear as discrete random points. The multiple ellipses detection problem

appears in different areas of applied research as e.g. in problems in pattern recog-

nition and computer vision, pupil tracking, biological cell segmentation, agriculture,

elliptical anomalies in wireless sensors, astronomical and geological shape segmenta-

tion, applications in medicine, robotics, object detection, and other image processing

industrial applications, etc. [1], [2], [12], [14].

In our paper, we consider the multiple ellipses detection problem on the basis

of a data points set coming from a number of ellipses in the plane not known in

advance. For the purpose of solving the aforementioned problem, an efficient method

is proposed which is in fact a combination of the well-known DIRECT algorithm for

global optimization (see [4], [7], [8], [13], [17]) and a modification of the well-known

k-means algorithm [3]. The partition with the most appropriate number of clusters

with ellipses as centers is selected by using a modified Davies-Bouldin index. The

method is tested on and illustrated by 100 randomly generated sets of data points.

The paper is organized as follows. The next section gives basic terms referring

to the center-based clustering problem and ellipse interpretation as a Mahalanobis

circle. In Section 3, a precise statement of the problem is given as well as a detailed

description of the proposed method. The proposed method is tested and illustrated

in Section 4. Appropriate algorithms are also given in that section. Finally, some

conclusions are given in Section 5.

2. Multiple ellipses detection problem

In [18], a similar problem is considered as a center-based clustering problem, where

centers of clusters are circles. Based on this idea, in our paper we propose a new,

very efficient method for solving the multiple ellipses detection problem.
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First, let us mention a few basic terms about the hard clustering problem.

2.1. Center-based clustering problem—basic terms. A hard partition of

a set A = {ai ∈ R
n : i = 1, . . . ,m} into k nonempty disjoint subsets π1, . . . , πk,

1 6 k 6 m will be denoted by Π(A) = {π1, . . . , πk} and the set of all such partitions
will be denoted by P(A; k). The elements π1, . . . , πk of the partition Π are called

clusters.

If d : R
n × R

n → R+, R+ = [0,∞〉, is some distance-like function (see e.g. [9]),
then with each cluster πj ∈ Π we can associate its center cj defined by

(2.1) cj := argmin
x∈conv(A)

∑

ai∈πj

d(x, ai).

After that, by introducing the objective function F : P(A; k) → R+, the quality of

a partition can be defined, and searching for a globally optimal k-partition comes

down to solving the optimization problem:

(2.2) argmin
Π∈P(A;k)

F(Π), F(Π) =

k∑

j=1

∑

a∈πj

d(cj , a),

where c = (c1, . . . , ck)
⊤.

Conversely, for a given set of points c1, . . . , ck ∈ R
n, by applying the minimal

distance principle, we can define the partition Π = {π(c1), . . . , π(ck)} of the set A
consisting of clusters

π(cj) = {a ∈ A : d(cj , a) 6 d(cs, a) ∀ s = 1, . . . , k}, j = 1, . . . , k.

Thereby, one has to take into account that every element of the set A occurs in one
and only one cluster. Hence, the problem of finding an optimal partition of the set A
can be reduced to the following global optimization problem (GOP) (see e.g. [21],

[9]):

(2.3) argmin
c∈conv(A)k

F (c), F (c) =

m∑

i=1

min
16j6k

d(cj , a
i).

The solutions of (2.2) and (2.3) coincide [20], [21].

2.2. An ellipse as a Mahalanobis circle. Generally, an ellipse in the plane

E(S, ξ, η, ϑ) can be defined as a set of all points (x, y) ∈ R
2 satisfying the equation

(see [5], [10], [14])

(2.4)
[(x− p) cosϑ+ (y − q) sinϑ]2

ξ2
+

[(x − p) sinϑ− (y − q) cosϑ]2

η2
= 1,
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where S = (p, q)⊤ is the center of the ellipse, ξ, η > 0 are the lengths of semi-axes

and ϑ is the angle between the semi-axis ξ and the positive direction of the abscissa.

Note that ellipse (2.4) can be written in parametric form as

(2.5)

[
x(t)

y(t)

]
= S + U(ϑ)

[
ξ cos t

η sin t

]
, U(ϑ) =

[
cosϑ − sinϑ

sinϑ cosϑ

]
,

where t ∈ [0, 2π], or as

(2.6) dm(u, S; Σ) = 1, u = (x, y)⊤,

where dm : R
2 × R

2 → R+ is a Mahalanobis distance-like function defined by

(2.7) dm(u, v; Σ) = ‖u− v‖2Σ = (u− v)⊤Σ−1(u− v),

and Σ ∈ R
2×2 is a symmetric positive definite matrix of the form

(2.8) Σ = U

[
ξ2 0

0 η2

]
U⊤.

Note that the ellipse semi-axes ξ, η correspond to the square roots of the eigenvalues

of the matrix Σ, and ϑ = arctan(u21/u11).

To ensure monotone decreasing of the function value in the implementation of the

k-means algorithm, in Subsection 3.1.1 we will define (see [11], [21]) the normalized

Mahalanobis distance-like function dM : R
2 × R

2 → R+,

(2.9) dM (u, v; Σ) :=
√
detΣ(u − v)⊤Σ−1(u − v) = ‖u− v‖2Σ.

Lemma 2.1. Ellipse E(S, ξ, η, ϑ) given by (2.4), i.e. (2.6), can be presented as an

M-circle

(2.10) E(S, r,Σ) = {x ∈ R
2 : dM (S, x; Σ) = r2},

where r2 =
√
detΣ = ξη, (see [10]).

Conversely, the M-circle E(S, r,Σ) corresponds to the ellipse E(S, ξ, η, ϑ), where

the semi-axes ξ, η and the angle ϑ are determined from the eigenvalue decomposition

(2.11) diag(ξ2, η2) = U
( r2√

detΣ
Σ
)
U⊤ and ϑ = arctan

u21

u11
.

666



P r o o f. The first statement is verified directly.

In order to prove the second statement, ellipse E(S, r,Σ) is written in the following

form:

1

r2
dM (S, x; Σ) = 1 ⇒

√
detΣ

r2
(S − x)⊤Σ−1(S − x) = 1

⇒ (S − x)⊤
( r2√

detΣ
Σ
)−1

(S − x) = 1.

The required statement is obtained by eigenvalue decomposition of the matrix(
r2√
detΣ

Σ
)
. �

R em a r k 2.1. The set {u ∈ R
2 : dM (u, S; Σ) = 1} represents a normalized

ellipse with the center in S and semi-axes ξ′, η′ whose product is ξ′η′ = 1.

Note also that the normalizing factor
√
det Σ is proportional to the area of the

ellipse (ξηπ), and the length of the “radius” r defined in this way is the geometric

mean of the semi-axes ξ, η of the ellipse.

3. A new method for solving the multiple ellipses detection problem

The method we propose in this paper is based on solving a special center-based

clustering problem. Data set A coming from a number of ellipses in the plane will be
grouped into k clusters π1, . . . , πk, whose centers are ellipses written in the form of

M-circles. Hence, it will be necessary to know how to solve the following problems:

(i) For the cluster πj , we should know how to determine its representative (center)

in the form of an M-circle.

(ii) By using the minimal distance principle we should know how to partition the

set A into k nonempty disjoint clusters whose centers are M-circles.

For solving both of the aforementioned problems it is necessary to define well the

distance from the point a ∈ A to the M-circle E. There are many ways of defining
the distance from the point a ∈ A to a circle that can be found in the literature (see
e.g. [5], [18], [6]). These definitions can be easily adjusted for the case of M-circles.

In our paper we use the algebraic distance from the point a ∈ A to the M-circle
E(S, r,Σ)

(3.1) D(E, a) = D(E(S, r,Σ), a) = (‖S − a‖2Σ − r2)2,

because this possibility occurs most frequently in applications.
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Problem (i): Searching for the best representative of the cluster πj in the form of

an M-circle can be defined as the following GOP:

(3.2) Ej = argmin
S∈R

2, r∈R,

Σ∈R
2×2

∑

a∈πj

D(E(S, r,Σ), a).

R em a r k 3.1. A solution to GOP (3.2) can be found by using some locally

optimization method (Nelder-Meade, Quasi-Newton), since for every j = 1, . . . , k

in the cluster πj we are able to determine a very favorable initial approximation

Êj(Ŝj , r̂j , Σ̂j). Namely, for Ŝj we can choose a centroid Ŝj = Mean[πj ] of the clus-

ter πj , because the Mahalanobis center of the cluster πj is also an ordinary mean of

the set πj , (see [11])

argmin
u∈R2

∑

a∈πj

dM (u, a; Σj) =
1

|πj |
∑

a∈πj

a.

Furthermore, for the matrix Σ̂j we can choose

Σ̂j =
1

|πj |
∑

a∈πj

(Ŝj − a)(Ŝj − a)⊤

(Kronecker product). Also, r̂j is determined from

(3.3) r̂2j =
1

|πj |
∑

a∈πj

‖Ŝj − a‖22,

because ∑

a∈πj

(‖Ŝj − a‖22 − r2j )
2 >

∑

a∈πj

(‖Ŝj − a‖22 − r̂2j )
2 ∀ rj ∈ R.

Problem (ii): Determining the cluster πj of the partition Π = {π1, . . . , πk} by
applying the minimal distance principle can be written as follows:

(3.4) πj := πj(Ej) = {a ∈ A : D(Ej(Sj , rj ,Σj), a)

6 D(Es(Ss, rs,Σs), a) ∀ s 6= j}, j = 1, . . . , k.

3.1. Searching for an optimal k-partition. Searching for an optimal k-

partition Π∗ = {π∗
1 , . . . , π

∗
k} with M-circle-centers Ej(Sj , rj ,Σj), where Sj =

(pj , qj)
⊤ and Σj =

[
uj vj
vj tj

]
, j = 1, . . . , k boils down to searching for optimal
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parameters (p∗j , q
∗
j , r

∗
j , u

∗
j , v

∗
j , t

∗
j ), j = 1, . . . , k, which give a solution to the GOP

(cf. (2.3))

(3.5) argmin
(pj ,qj)∈[α,β], rj∈[0,R],

Σj∈M2

m∑

i=1

min
16j6k

{D(Ej(Sj , rj ,Σj), a
i)},

where R = 1
2 min{β1 − α1, β2 − α2}, M2 is the set of positive definite symmetric

matrices of second order and D(Ej(Sj , rj ,Σj), a
i) represents the distance from the

point ai ∈ A to the M-circle Ej(Sj , rj ,Σj).

Note that (3.5) is a GOP with 6k independent variables. If we apply the global

optimization algorithm DIRECT to this GOP, we will see that the necessary CPU-

time will be unreasonably long, since the algorithm will search for all k! solutions.

Thus for solving this GOP we propose the following procedure:

(1) Find a good initial approximation for GOP (3.5).

(2) Apply a modification of the k-means algorithm for M-circle-centers to this initial

approximation.

3.1.1. The adaptive Mahalanobis k-closest M-circle-centers algorithm.

As predicted by the new algorithm, a globally optimal solution of (3.5) will be ob-

tained by applying the Adaptive Mahalanobis k-closest M-circle-centers algorithm

(KMCC), where an initial approximation is chosen in accordance with the previous

subsection. This algorithm is the well-known k-means algorithm (see e.g. [9], [15])

adapted for searching for a locally optimal partition with M-circles as cluster-centers

(see [6], [10]). The algorithm can be described in two steps which are repeated

iteratively:

Algorithm 3.1 (The adaptive Mahalanobis k-closest M-circle-centers algorithm

(KMCC))

Step A. (Assignment step) For each set of mutually different M-circles E1(S1, r1,

Σ1), . . . , Ek(Sk, rk,Σk), the set A should be divided into k disjoint unempty
clusters π1, . . . , πk by using the minimal distance principle (3.4);

Step B. (Update step) Given a partition Π = {π1, . . . , πk} of the set A, one can
define the corresponding M-circle-centers Êj(Ŝj , r̂j , Σ̂j), j = 1, . . . , k, by

solving GOP (3.2) for each j = 1, . . . , k.

R em a r k 3.2. The k-means algorithm for searching for a locally optimal parti-

tion whose cluster-centers are ordinary circles is developed similarly. The algorithm

can be found in [18] as the k-closest circles algorithm (KCC).
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3.1.2. The new algorithm for searching for an optimal k-partition.

For the purpose of constructing a better initial approximation for the solution of

GOP (3.5), we will conduct a numerical experiment described in the following

example.

E x am p l e 3.1. Let B = {bi ∈ [α, β] ⊂ R
2 : i = 1, . . . ,mB} be a set of data

points coming from a known ellipse in the plane (see Fig. 1 (a)). The best circle-

representative C∗(S∗, r∗) of the set B is obtained by solving GOP

(3.6) argmin
S∈[α,β],r∈[0,R]

F (S, r), F (S, r) =

mB∑

i=1

(‖S − bi‖22 − r2)2.

This problem is easy to solve by using some locally optimization method using a very

good initial approximation C0(S0, r0), where (see also Remark 2.1)

(3.7) S0 = Mean[B], r0 =
1

mB

∑

bi∈B
‖S0 − bi‖2.

For the example given in Fig. 1 (a) we obtain C0((4.923, 5.006), 3.489) and C
∗((5.135,

4.864), 3.499).

2 4 6 8 10

2

4

6

8

10

(a) The best circle-representative.

2 4 6 8 10

2

4

6

8

10

(b) Distance d(S̃(r̃), S∗).

Figure 1. Data originating from a known ellipse and the center of the best circle-
representative.

Furthermore, the best circle-representative of the given radius r̃ > 0 for the set B
can be obtained by solving the GOP

(3.8) argmin
S∈[α,β]

F̃ (S), F̃ (S) =

mB∑

i=1

(‖S − bi‖22 − r̃2)2,

with the initial approximation S0 as in (3.7).
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In order to monitor the movement of the optimal center S̃(r̃) of the best circle-

representative C̃(C̃, r̃) for different values of r̃ > 0, GOP (3.8) will be solved for r̃ =

10−0.1(i−1), i = 1, . . . , 100, and for every S̃(r̃) obtained, d(S̃(r̃), S∗) = ‖S̃(r̃)−S∗‖2
will be calculated (see Fig. 1 (b)).

It can be seen that S̃(r̃) ≈ S∗ for each r̃ < r∗ (see Fig. 1 (b)), which means that

the position of the center of the requested ellipse can be approximated well by simply

using the arithmetic mean of the set B.

The numerical experiment from Example 3.1 indicates that a good approxima-

tion of the positions of centers S1, . . . , Sk of ellipses with multiple ellipses detection

problem (3.5) can be searched for by solving a simple GOP with 2k independent

variables

(3.9) argmin
p,q∈[α,β]k

F (p,q), F (p,q) =

m∑

i=1

min
16j6k

‖(pj , qj)− ai‖22,

where Sj = (pj , qj)
⊤.

Since the function from (3.9) is a Lipschitz-continuous function [16], [19], by ap-

plying a smaller number of iterations (say 10 to 20) of the DIRECT algorithm to

GOP (3.9) we will obtain a sufficiently good initial approximation for ellipse centers

Ŝ1, . . . , Ŝk.

In order to be able to apply the DIRECT algorithm to GOP (3.9), the objec-

tive function F : [α, β]2k → R will be transformed to function f : [0, 1]2k → R,

f(x) = (F ◦ T−1)(x), where the mapping T : [α1, β1]
k × [α2, β2]

k → [0, 1]2k is given

by

(3.10) T (x) = D(x− u),

D = diag
( 1

β1 − α1
,

1

β2 − α2
, . . . ,

1

β1 − α1
,

1

β2 − α2

)
∈ R

2k×2k,

u = (α1, β1, . . . , α1, β1)
⊤ ∈ R

2k.

An initial approximation x̂ ∈ [0, 1]2k for the GOP

(3.11) argmin
x∈[0,1]2k

f(x), f(x) = (F ◦ T−1)(x)

will be determined by using a smaller number of iterations (say, 10 to 20) of the

DIRECT algorithm. The criterion for determining the number of iterations of the

DIRECT algorithm can be an absolute relative value of the objective function f .

Since (p̂, q̂) = T−1(x̂), in this way we obtain a good initial approximation for ellipse

centers Ŝ1, . . . , Ŝk.
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Searching for an optimal k-partition will be conducted by using Algorithm 3.2

which was constructed in the following way. After transforming problem (3.9) into

a unit hypersquare, in the second step of Algorithm 3.2 we look for a good initial

approximation of ellipse centers Ŝ1, . . . , Ŝk by means of the DIRECT algorithm.

Algorithm 3.2 (Searching for an optimal k-partition)

Input: A ⊂ [α, β]2 {Data set}; k > 2;

1: Define the mapping T−1 : [0, 1]2k → [α, β]k, T−1(x) = D−1x+u and the objective

function f = F ◦ T−1, where T and F are given by (3.10) and (3.9), respectively;

2: By using the DIRECT algorithm find the initial approximation of vector centers

Ŝ = (Ŝ1, . . . , Ŝk) ∈ [0, 1]2k by solving GOP (3.11);

3: By using the minimal distance principle find the clusters π̂1, . . . , π̂k;

4: For each cluster π̂j and the corresponding center Ŝj determine r̂j from (3.3);

5: By using the KMCC algorithm with the initial approximation (Ŝj , r̂j/2, I2), j =

1, . . . , k, determine M-circles C∗
j (S

∗
j , r

∗
j ,Σ

∗
j ), j = 1, . . . , k;

Output: {k, C∗
j (S

∗
j , r

∗
j ,Σ

∗
j ), j = 1, . . . , k}.

In Step 3 of Algorithm 3.2, we apply the minimum distance principle to the

obtained centers in order to obtain the corresponding clusters π̂1, . . . , π̂k, and in

Step 4, for every cluster we determine the approximation of the radius r̂j from (3.3)

(see Remark 2.1).

After that, in Step 5, we apply the KMCC algorithm with the initial approxima-

tion (Ŝj , r̂j/2, I2), j = 1, . . . , k, where I ∈ R
2×2 is the identity matrix of the second

order. In the implementation of Algorithm 3.2, it was shown that the KMCC algo-

rithm converges quickly to the solution if the initial circles Ĉj , j = 1, . . . , k, have

a slightly smaller radius than that given by (3.3). This is consistent with the remarks

mentioned in Example 3.1.

Fig. 2 shows initial approximations for sets of data points given in Fig. 3, obtained

by using the DIRECT algorithm in Step 2 of Algorithm 3.2. Figures of the obtained

optimal partitions are not given as they correspond to Fig. 3. Table 1 gives an

average CPU-time used for carrying out Step 2 (the DIRECT algorithm) and Step 5

(the KMCC algorithm) for searching for 2, 3, 4, and 5-partitions.

R em a r k 3.3. Due to the symmetry property of function (3.9), in Step 2 of

Algorithm 3.2, the DIRECT algorithm searches for all k! solutions, but since in

this case the minimizing function is simple, this procedure does not require a lot of

CPU-time.
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Figure 2. Initial approximations for four selected examples obtained by the DIRECT algo-
rithm.

3.2. Determining an optimal partition with the most appropriate num-

ber of clusters. For searching for an optimal partition with the most appropriate

number of clusters we will use a modified Davies-Bouldin index [11], [22].

A specially modified variant of this index for an optimal k-partition Π∗
k =

(π∗
1 , . . . , π

∗
k) with M-circle-centers E

∗
j (S

∗
j , r

∗
j ,Σ

∗
j ), j = 1, . . . , k, can be seen in [6]:

(3.12) DBE(Π∗
k) =

1

k

k∑

j=1

max
s=1,...,k

s6=j

V (π∗
j ) + V (π∗

s )

δ4(E∗
j , E

∗
s )

,

where

V (π∗
j ) =

1

|π∗
j |

∑

a∈π∗

j

D(a,E∗
j (S

∗
j , r

∗
j ,Σ

∗
j )),

and δ(E∗
j , E

∗
s ) is the Hausdorff distance between M-circle-centers E

∗
j and E∗

s . The

Davies-Bouldin index for an optimal k-partition Π∗
k = (π∗

1 , . . . , π
∗
k) with ordinary

circle-centers C∗
j (S

∗
j , r

∗
j ), j = 1, . . . , k, is proposed in [18], where a special formula
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is derived for the distance between two circles, which has eliminated a complicated

procedure of calculating the Hausdorff distance between two circles.

In our paper, by observing an ellipse as an M-circle (see Section 2.2) analo-

gously to [18] for an optimal k-partition Π∗
k = (π∗

1 , . . . , π
∗
k) with M-circle-centers

E∗
j (S

∗
j , r

∗
j ,Σ

∗
j ), j = 1, . . . , k, we define the variance V (π∗

j ), the distance δ(E
∗
j , E

∗
s )

between two ellipses and the Davies-Bouldin index as follows:

V (π∗
j ) =

1

|π∗
j |

∑

a∈π∗

j

√
D(E∗

j , a), δ(E∗
j , E

∗
s ) = ‖S∗

j − S∗
s‖2 + |r∗j − r∗s |,(3.13)

DBE(Π∗
k) =

1

k

k∑

j=1

max
s=1,...,k

s6=j

V (π∗
j ) + V (π∗

s )

δ2(E∗
j , E

∗
s )

.(3.14)

Note that the distance δ(E∗
j , E

∗
s ) between two ellipses was viewed as the distance

between two M-circles. Let us also note that in the definition of index (3.14) the

property of non-dimensionality has been retained, since the nominators and denom-

inators have the same dimension (of squared length). The most appropriate number

of M-circle-centers corresponds to the minimal DBE-index.

4. Numerical experiments

The described method for solving the multiple ellipses detection problem will be

implemented through Algorithm 4.1 and Algorithm 3.2 given below and tested on 100

randomly generated data sets1.

4.1. Generating sets of data points. A data set A originating from k ellipses

will be defined in the following way. First, we choose k ∈ U(2, 5) and k centers

S1, . . . , Sk ∈ [1.5, 8.5]2 whose mutual distance is at least 2.5. Semi-axes ξj , ηj of every

ellipse will be taken from U(0.5, 2.5), and the angle of rotation ϑj from ∈ U(− π

2 ,
π

2 ).

This yields k ellipses Ej(Sj , ξj , ηj , ϑj), j = 1, . . . , k, given parametrically by (2.5).

On the ellipseEj we choosemj ∈ U(180, 220) uniformly distributed points (see [6]),
and at any point in the direction of the normal a random point ai ∈ N (0, σ2),

σ2 = 0.05 (see [1], [6]). In this way we have defined the data set A and its partition
Π = {π1, . . . , πk}, where πj is a set of data coming from ellipse Ej .

1All evaluations were done on the basis of our own Mathematica-modules freely available
at https://www.mathos.unios.hr/images/homepages/scitowsk/ELLIPSES-AM.rar, and
were performed on the computer with a 2.90 GHz Intel(R) Core(TM)i7-75000 CPU with
16 GB of RAM.
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Note that the ellipse Ej need not be the center of the cluster πj . Therefore, to the

set A we will apply the KMCC-algorithm (see Section 3.1.1) with initial M-circle-
centers (Sj ,

√
ξjηj , I), where I2 is the identity matrix of second order. This yields

the ellipse Êj as the center of the cluster πj , which is slightly different from the

original ellipses.

In this way, we will define 100 sets of such ellipses and the corresponding data on

which our method will be tested. The selected four examples with 2, 3, 4, 5 ellipses

are shown in Fig. 3.
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Figure 3. Four selected examples with 2, 3, 4, and 5 ellipses.

4.2. Algorithm for searching for an optimal partition with the most ap-

propriate number of clusters. Assuming that the number of ellipses searched for

is not greater than kmax, searching for an optimal partition with the most appropri-

ate number of clusters will be conducted by using Algorithm 4.1. The algorithm is

run as long as the value of the DBE index is decreased and the number of clusters in

the partition is less than kmax. This practically means Algorithm 3.2 will be invoked
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at most kmax times. It is clear that it may happen that the DBE index does not

decrease monotonically and that this will not yield a globally optimal partition. In

order to minimize the CPU-time, we take this risk consciously. A possible alternative

is always to find all kmax optimal partitions and, among them, select the one with

the least value of the DBE index.

Finally, the obtained M-circles will be transformed into ellipses by Lemma 2.1.

Algorithm 4.1 (Searching for an optimal partition with the most appropriate num-

ber of clusters)

Input: A ⊂ [α, β]2 {Set of data points}; k > 2; kmax = 5;

1: Define the mapping T−1 : [0, 1]2k → [α, β]k, T−1(x) = D−1x+u, and the objective

function f = F ◦ T−1, where T and F are given by (3.10) and (3.9), respectively;

2: Set k = 2;

3: Call Algorithm 3.2 and denote the obtained partition by Π0;

4: According to (3.14), calculate the Davies-Bouldin Index vdb0 = DBE(Π0);

5: while

Set k = k + 1;

Call Algorithm 3.2 and denote the obtained partition by Π1;

According to (3.14), calculate the Davies-Bouldin Index vdb1 = DBE(Π1);

vdb1 < vdb0 & k < kmax,

6: vdb0 = vdb1; Π
0 = Π1;

7: end while

8: Set Π∗ = (π∗
1 , . . . , π

∗
κ) = Π0, where the center of π∗

j is the ellipse E
∗
j (S

∗
j , r

∗
j ,Σ

∗
j );

9: Compute eigenvalue decomposition of the matrices
(

r∗2j√
detΣ∗

j

Σ∗
j

)
, j = 1, . . . , κ,

denote eigenvalues by ξ∗j , η
∗
j , j = 1, . . . , κ, the corresponding orthogonal matrix

by Uj and calculate ϑj = arctanu
(j)
21 /u

(j)
11 , j = 1, . . . , κ;

Output: {E∗
j (S

∗
j , ξ

∗
j , η

∗
j , ϑ

∗
j ), j = 1, . . . , κ}.

Table 1 shows results of Algorithm 4.1 applied to 100 data sets generated as de-

scribed previously. It can be noticed that Algorithm 4.1 fully recognized 2-partitions

and 3-partitions, but somewhat less 4-partitions and 5-partitions. The total percent-

age of recognition is 92%. This happened, because the DBE index did not always

monotonically decrease. As can be seen in Table 1, if the smallest value of the DBE

index is searched for, the total percentage of recognition is better (95%).

CPU-time required for running the algorithm is very short (see Table 1), and this

raises hope that, with appropriate software optimization, the algorithm could be run

in real time.
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k = 2 k = 3 k = 4 k = 5 Σ

Number of examples 25 22 28 25 100

Detected partitions (Algorithm 4.1) 25 22 24 21 92

Detected partitions (smallest DBE) 25 22 26 22 95

Average DIRECT-CPU-time (sec) 0.03 0.075 0.22 0.95 –

Average KMCC-CPU-time (sec) 0.678 1.36 2.66 5.90 –

Table 1. Number of detected partitions and necessary CPU-time in seconds.

5. Conclusions

The multiple ellipses detection problem plays an important role in different areas

of application. It is therefore important to have a method that would recognize

ellipses in the figure well, but it is almost equally important to have the possibility

of running the corresponding algorithm as close to real time as possible.

Our method recognizes ellipses with clear edges very well, but also ellipses with

noisy edges, and since CPU-time required for running the algorithm is very short,

this raises hope that, with appropriate software optimization, the algorithm could

be run in real time.

It has been shown that in order to better recognize a partition with the most

appropriate number of clusters, it would be necessary to carry out an additional

analysis of the application of the DBE index.

Compared to the method given in [6], our method achieves approximately the

same degree of recognition, but the necessary CPU-time is considerably shorter.

The advantage of our method in relation to the EDCircles Algorithm [2] is that it

recognizes the ellipses with noisy edges very well, which EDCircles is not capable of.
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