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Order-enriched solid functors

Lurdes Sousa, Walter Tholen

In memory of Věra Trnková

Abstract. Order-enriched solid functors, as presented in this paper in two ver-
sions, enjoy many of the strong properties of their ordinary counterparts, includ-
ing the transfer of the existence of weighted (co)limits from their codomains to
their domains. The ordinary version of the notion first appeared in Trnková’s
work on automata theory of the 1970s and was subsequently studied by others un-
der various names, before being put into a general enriched context by C. Anghel.
Our focus in this paper is on differentiating the order-enriched notion from the
ordinary one, mostly in terms of the functor’s behaviour with respect to specific
weighted (co)limits, and on the presentation of examples, which include functors
of general varieties of ordered algebras and special ones, such as ordered vector
spaces.

Keywords: ordered category; (strongly) order-solid functor; weighted (co)limit;
ordered algebra

Classification: 18A22, 18A30, 18B35, 06F99

1. Introduction

Inspired by E. Čech’s book [14] and M. Hušek’s article [23], in her work [44]
on Automata and Categories Věra Trnková defined a concrete category A (which
therefore comes with a faithful functor |-| : A → Set) to admit weak inductive
generation if for every possibly large (!) family (Di)i∈I of A-objects, equipped
with maps ξi : |Di| → X , i ∈ I, into a given set X , there exist an A-object A and
a map q : X → |A| such that

1. all maps q · ξi : |Di| → |A| underlie A-morphisms Di → A, and
2. the pair (q,A) is universal with this property, i.e. for every mapf : X → |B|

with B in A, such that all maps f · ξi : |Di| → |B| underlie A-morphisms
Di → B, there is a unique A-morphism t : A → B with |t| · q = f .

When q may always be chosen to be the identity map (so that A has underlying
set X), this gives precisely the notion of concrete topological category or, when one
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trades Set for any “base category” X, of (faithful) topological functor P : A → X,
see, for example, [1], [20]. This, as it turns out, self-dual notion was first intro-
duced (in dual form and under a different name) in G.C. L. Brümmer’s thesis
in [11]; V. Trnková, not aware of [11], calls A to admit inductive generation in
this case.

Other precursors to the notion of topological category or functor (first just
over Set, but then over any category X), such as [38], [8], [32], [47], [48], [30], [34],
[18], [45], [22], limited the concept of inductive generation and its dualization
to the consideration of small families, or even singleton-families (thus essentially
considering Grothendieck’s bifibrations), and then imposed smallness conditions
to effectively enable inductive generation for large families of data, such as asking
each fibre of the given functor (i.e. each category of A-objects with fixed under-
lying X-object) to form a small complete lattice, as it was done by O. Wyler in
his milestone papers [47], [48]. While credit for having elegantly introduced topo-
logicity of a concrete category using large families is due to [11], this approach
resonated with a wider audience only after the appearance of H. Herrlich’s im-
portant article [17], with its notions quickly expanded upon in other papers, such
as [39], [46], [40].

For small families and, more generally, for small cocones, the concept of weak
inductive generation was, without Trnková’s knowledge at the time, considered
earlier by R.-E. Hoffmann in [18], under a different name and in rather cumber-
some notation, and it appeared in published form only later, in [19]. Afterwards,
unaware of Trnková’s notion, the authors of [41], [43], [37], [42] undertook a sys-
tematic and coherent study of the X-based categories A admitting weak inductive
generation, showing their usefulness in the categorical investigation of a wide
range of mathematical structures. These papers reconcile many themes stud-
ied earlier in the more restrictive context of topological categories and therefore
call the functors involved (presenting the categories A as concrete over X) semi-
topological, a term that had been used somewhat hiddenly in [19]. Even though
every such functor may be presented as the composite of a full reflective em-
bedding followed by a topological functor, the occurrence of these functors is by
no means restricted to the realm of topology. Therefore, on Herrlich’s sugges-
tion, they were renamed as solid later on, a term adopted in [10], [1] and used
henceforth by others, for example in [35].

In his thesis [5], published and extended in [6], [7], C. Anghel takes the study
of the (then) semi-topological functors comprehensively to the level of enriched
category theory [25]. However, in order to do so, he needed to utilize the full range
of the theory and often to impose additional conditions on the categories at issue,
making it somewhat hard for the non-expert to apply his results. The purpose of
this article is therefore to present a largely self-contained theory of solid functors in
the easily presentable context of order-enriched categories and functors and their
applications, that is: in an environment that has gained considerable attention in
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recent years; see, for example, [3], [4], [12], [13], [21], [36].1 Explicitly then, the
hom-sets of our categories come equipped with a partial order that is preserved by
the composition of the category and by the hom-maps of any functors departing
from them, thus providing also an elementary 2-categorical context in which all 2-
cells are given by order. However, even in this very simplified context one quickly
arrives at subtleties that hinder a seamless transition of notions and results from
the ordinary to the enriched context.

Therefore, in Section 2 we first present a notion of solidity for ordered func-
tors, called strongly order-solid2, which on first sight seems to add only a minor
order-related condition to the ordinary notion. Nevertheless, it captures an ex-
tensive list of relevant examples, some of which appear in Section 3. It then turns
out that the seemingly mild additional condition which makes ordinarily solid
functors strongly order-solid already guarantees that they become solid as order-
enriched functors in Anghel’s sense in [6], called order-solid here. We present
these functors in Section 4 without assuming the reader’s familiarity with [25].
While strongly order-solid functors are easily seen to be order-solid, the converse
question, whether every order-solid functor is strongly order-solid, is still open.

A central goal of the paper is the characterization of strongly order-solid and of
order-solid functors in terms of their behaviour vis-a-vis weighted limits and colim-
its. In Theorem 2.6 we characterize strongly order-solid functors using inserters,
and in Theorem 4.5 we state that they “lift” the existence of weighted (co)limits
for diagrams of any given shape. We study the behaviour of order-solid functors
on weighted colimits in Section 5 and characterize order-solid functors when the
“base” category is tensored (Theorem 5.11). The list of examples in Section 3
culminates in a theorem on categories of general ordered algebras; Theorem 3.7
asserts that algebraic functors between them are always strongly order-solid as
soon as they admit free algebras over every ordered set. The category of ordered
vector spaces, considered as an ordered category via the positive cones of its ob-
jects, falls outside the scope of this theorem, but its positive-cone functor to the
category of partially ordered sets is still strongly order-solid. When considered as
a discretely ordered category, it serves as a resource to demonstrate that certain
conditions of our characterization theorems are essential.

1For the purpose of consistency with these papers, but at the price of divergence from other
works (such as [20], [16]), in this paper we understand “order” to mean what is generally referred
to as “partial order”. But we stress the fact that the theory presented here carries through
smoothly when “order” means just “preorder” in more common parlance, perhaps even more so
than in the partially ordered context. In fact, many general constructions lead from partially
ordered sets just to preordered sets, which at the end have to be subjected to the reflector to
enforce separation (= anti-symmetry), as demonstrated also by some of the examples presented
in Section 3.

2In this paper the easily defined strongly order-solid functors appear before the more natural,
but also slightly more complex, notion of order-solid functor, since we are not aware of examples
of the latter type of functors not already covered by the former.
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2. Strongly order-solid functors

We generally assume our categories and functors to be enriched in the Carte-
sian closed category Pos of (partially) ordered sets and their monotone (= order-
preserving) maps and simply call them ordered3. Hence, the hom-sets of an or-
dered category A carry an order which is preserved by composition with mor-
phisms from either side, and the hom-maps of an ordered functor P : A → X

preserve the order as well. In accordance with [25], whenever necessary for clar-
ity, we write Ao for the underlying ordinary category of an ordered category A,
and likewise for ordered functors.

Recall that the ordered functor P : A → X has a left adjoint F : X → A in the
order-enriched sense if there are order-isomorphisms

A(FX,B) ∼= X(X,PB)

that are natural in X ∈ obX and B ∈ obA; we call P order-right adjoint in
this case. For that to happen it suffices that for every X-object X , one finds
a (tacitly chosen) P -universal arrow e : X → PA with A ∈ obA, see [29], which
has the additional property of being order-P -epi(morphi)c, that is: whenever
Pr · e ≤ Ps · e for any morphisms r, s : A → B in A, then r ≤ s; equivalently, the
ordered functor P is right adjoint in the ordinary sense such that all adjunction
units are order-P -epic.

Given a (potentially large4) family D = (Di)i∈I of objects in A, we consider
the (potentially very large5) category D ↓ A whose objects are pairs (α,A) with
an A-object A and a family α = (αi)i∈I of A-morphisms αi : Di → A, shortly
written as α : D → A; a morphism t : (α,A) → (β,B) is given by an A-morphism
t : A → B satisfying t · αi = βi for all i ∈ I, shortly written as t · α = β. Of
course, D ↓ A and, likewise, PD ↓ X inherit the order from A and X, respectively,
making both categories ordered, as well as the P -induced functor

PD : (D ↓ A) → (PD ↓ X), (α,A) 7→ (Pα, PA).

Definition 2.1. An ordered functor P : A → X is strongly order-solid if the
functor PD is order-right adjoint for every family D of A-objects. Equivalently,
given any D, for every family ξ : PD → X in X there is a (tacitly chosen) family
α : D → A in A and an X-arrow q : X → PA such that

3As mentioned in the Introduction, and as will become apparent in Section 3, for many
purposes we may alternatively work with the Cartesian closed category Ord of preordered sets
and their monotone maps.

4That is: the size of the indexing system I may be as large as the size of the class of all
morphisms of A.

5We use the term “very large” informally, to refer to collections of (potentially proper)

classes, called conglomerates in [1]. A formalization of the term does not seem to be justified in
this paper, since one may, of course, avoid the formation of D ↓ A and PD ↓ X (the individual
objects of which may already be large), but one will then have to accept universal quantification
over these entities: see Definition 2.1.
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1. (α,A, q) is a P -extension of ξ, that is: Pα = q · ξ;
2. (α,A, q) is universal with respect to property 1, that is: for every family

β : D → B in A and every X-arrow f : X → PB with Pβ = f · ξ one has
a unique6 A-morphism t : A → B with t · α = β and Pt · q = f ;

3. q : X → PA is order-P -epimorphic.

The three properties together make (α,A, q) a strongly order-universal P -exten-
sion of ξ.

Remarks 2.2. (1) Just as order-right adjoint functors are in particular right-
adjoint ordinary functors, every strongly order-solid functor is in particular solid in
the ordinary sense and therefore faithful; see Lemma 3.2 of [41], the proof of which
uses a Cantor-type diagonal argument, as presented more generally in [9]. But if
P is faithful, given a family ξ : PD → X , any family β : D → B with Pβ = f · ξ is
already determined by B and f : X → PB. Hence, the existence requirement of
universal P -extensions for all D and ξ amounts precisely to Trnková’s admittance
of weak inductive generation, as recorded at the beginning of the Introduction,
to which we have only added the condition that all universal P -extensions be
order-P -epic to make the ordered functor P strongly order-solid.

To see that a strongly order-solid functor as defined in Definition 2.1 is faithful,
one in fact does not need to resort to the above argument, as a stronger property
may be shown easily: see Proposition 2.4 below.

(2) Being in particular solid in the ordinary sense, a strongly order-solid functor
P : A → X certainly enjoys all the “lifting properties” of solid functors, such as:
if X has all ordinary (co)limits (of diagrams of a specified shape), so does A,
see [41], [1]; if X is totally cocomplete (so that its Yoneda embedding has a left
adjoint in the ordinary sense), so is A, see [42].

(3) All fully faithful order-right adjoint functors are strongly order-solid, and
so are composites of strongly order-solid functors.

While we postpone the discussion of the behaviour of strongly order-solid func-
tors with respect to weighted (co)limits until Sections 4 and 5, here we consider
one (easy, but important) type of weighted limit since it helps clarifying the rela-
tionship of the notions of strongly order-solid functor and ordinarily solid functor.

Definition 2.3. (1) Recall that an inserter of a pair of morphisms r, s : A → B in
an ordered category A is a morphism u : U → A with r ·u ≤ s ·u that is universal
with this property: any v : V → A with r · v ≤ s · v factors (uniquely) as v = u · j;
moreover, u is required to be order mon(omorph)ic, so that u · h ≤ u · k always
implies h ≤ k.

(2) An ordered functor P : A → X is order-faithful if 1PA is order-P -epic for
all objects A in A, that is: Pr ≤ Ps for morphisms r, s : A → B in A always
implies r ≤ s.

6Uniqueness comes for free in the presence of condition 3, but only so because here we
understand “ordered” to entail anti-symmetry. This observation applies analogously to many
subsequent notions in this paper.
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Proposition 2.4. A strongly order-solid functor is solid in the ordinary sense,
as well as order-right adjoint and order-faithful, and it preserves (any existing)
inserters.

Proof: The first claim is obvious; see Remark 2.2 (1). Since, in Definition 2.1,
families are allowed to be empty, order-right adjointness follows. It is standard to
confirm the preservation of inserters (or any weighted limits) by order-right ad-
joint functors. So, only order-faithfulness of a strongly order-solid functor P
needs to be shown here. But given r, s : A → B in A with Pr ≤ Ps, let
(a : A → C, C, q : PA → PC) be a universal P -extension of the singleton family
(1PA : PA → PA). Then Pr and Ps must both factor through q, so that for some
r′, s′ : C → B one has Pr = Pr′ · q and Ps = Ps′ · q, as well as r = r′ · a and
s = s′ · a. Since q is order-P -epic, r′ ≤ s′ follows, which implies r ≤ s. �

Proposition 2.5. Let A have inserters. Then an ordered functor P : A → X is
strongly order-solid if and only if P is solid in the ordinary sense and order-faithful
and preserves inserters.

Proof: After Proposition 2.4, only the “if”-part needs proof. To this end, it
suffices to show that for the given families D and ξ : PD → X as in Defini-
tion 2.1, the universal Po-extension (α,A, q) with respect to the ordinary func-
tor Po : Ao → Xo serves also as a strongly order-universal P -extension, that is:
q : X → PA is necessarily order-P -epic. Hence, assuming Pr · q ≤ Ps · q for
r, s : A → B in A we form the inserter u : U → A of the pair r, s in A which, by
hypothesis, is preserved by P . So q factors as q = Pu ·f , with f : X → PU . Since
P (r · α) = Pr · q · ξ ≤ Ps · q · ξ = P (s · α) and P is order-faithful, r · α ≤ s · α
follows. Consequently, the inserter u makes the family α factor as α = u · β.
Since Pu · f · ξ = q · ξ = Pu · Pβ and Pu (as an inserter) is monic in X, one
obtains f · ξ = Pβ and therefore an A-morphism t : A → U with Pt · q = f . From
P (u · t) · q = Pu · f = q and q being (ordinarily) P -epic, one derives u · t = 1.
Since r · u ≤ s · u, this finally implies r ≤ s. �

Theorem 2.6. Let X have inserters. An ordered functor P : A → X is strongly
order-solid if and only if

(a) P is solid as an ordinary functor;
(b) A has inserters and P preserves them;
(c) P is order-faithful.

Proof: That the conditions (a–c) are sufficient for P to be strongly order-solid
has been confirmed in Proposition 2.5. Conversely, only the existence of inserters
in A still needs to be shown when X has them and P is strongly order-solid. To
this end, for any morphisms r, s : A → B in A we form the inserter k : X → PA
of Pr, Ps in X and then consider the family ξ of all pairs (D, x) with D ∈ obA
and x : PD → X an X-morphism such that there is a (necessarily unique) A-
morphism a : D → A with Pa = k · x. (Note that, as an ordinarily solid functor,
P is faithful.) With q : X → PU forming a universal P -extension of ξ we then see
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that k must factor as k = Pu · q with u : U → A in A. Since P (r ·u) · q = Pr · k ≤
Ps · k = P (s · u) · q and q is order-P -epic, r · u ≤ s · u follows.

Furthermore, by the inserter property of k, any v : V → A in A with r ·v ≤ s ·v
produces a morphism y : PV → X with k ·y = Pv. This makes (V, y) a member of
the family ξ, which implies that there is an A-morphism j : V → U with Pj = q ·y.
From P (u · j) = Pu · q · y = k · y = Pv one obtains u · j = v, as required. We note
that the same argumentation may also be applied to u in place of v; it produces
morphisms z : PU → X and t : U → U with k · z = Pu and Pt = q · z. Since k is
monic, from k · z · q = k one first obtains z · q = 1X , and then Pt · q = q · z · q = q
forces t = 1U since q is P -epic. Consequently, q · z = 1PU , so that q and z must
be isomorphisms in X.

It remains to be shown that u is order-monic. If u · c ≤ u · d with c, d : C → U
in A, applying P to the inequality we first obtain k · z · Pc ≤ k · z · Pd and then
Pc ≤ Pd, since k is order-monic and z an isomorphism. As P is order-faithful,
c ≤ d follows. �

We suppose that the existence assumptions regarding inserters are essential
in Proposition 2.5 and Theorem 2.6 but have not been able yet to confirm this
conjecture. However, preservation of inserters is: in Example 3.9 we exhibit
a solid and order-faithful functor P : A → X (thus satisfying conditions (a) and
(c) of the above theorem), with both X and A having inserters, but with P failing
to preserve them; in particular, P fails to be order-right adjoint and, a fortiori,
strongly order-solid. This still leaves open the following question:

Open Problem 2.7. Is a (ordinarily) solid, order-right adjoint and order-faithful
functor P : A → X strongly order-solid? Equivalently, when X has inserters, do
these conditions on P imply the existence of inserters in A?

Remark 2.8. We recall from [41] (see Theorem 1.2 of [10] for a “direct” proof)
that an ordinary functor P : A → X is solid if and only if P is right adjoint and
there is a class E of morphisms in A such that

(A) all adjunction co-units lie in E;
(P) the pushout of a morphism in E along any morphism exists in A, and any

such lies in E;
(W) the wide pushout (= co-intersection) of a (possibly large) family of mor-

phisms in E with common domain exists in A, and any such lies in E.

For any morphism class E, the category A is said to be E-cocomplete if conditions
(P) and (W) hold. Note that (W) forces every morphism in E to be an epimor-
phism in A, see [9], [41]. Hence, the class E may be assumed to be a class of
epimorphisms a priori. Furthermore then, if A is E-cowellpowered, the consider-
ation of small (= set-indexed) families in (W) suffices.

Following the proof for the ordinary characterization theorem of Remark 2.8 as
given in Theorem 1.2 of [10], we easily arrive at the following characterization for
strongly order-solid functors, which entails the ordinary version as the discretely
ordered case.
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Theorem 2.9. An ordered functor P : A → X is strongly order-solid if and only
if P is order-right adjoint, and there exists a class E of order-epimorphisms in A

such that the (ordinary) conditions (A), (P), (W) hold.

Proof: If P is strongly order-solid, P is order-right adjoint. Like in the proof
for the ordinary case (see Theorem 2.1 of [10]) one considers the class E of all
those morphisms e : A → B in A for which Pe : PA → PB is part of a universal
P -extension of some family ξ : PD → PA. But here, being order-P -epimorphic,
such extension will make e order-epic, i.e., r · e ≤ s · e always implies r ≤ s.
Hence, E is a class of order-epimorphisms which, being chosen as in the ordinary
case, satisfies conditions (P) and (W). Furthermore, for the adjunction F ⊣ P
with unit η and co-unit ε, as in the ordinary case one has that for every ob-
ject A in A, PεA : PFPA → PA serves as a universal P -extension (of the pair
(ηPA : PA → PFPA, 1PFPA)); but here we have to confirm that PεA is order-P -
epic. Indeed, since PεA · ηPA = 1PA and P is order-faithful by Proposition 2.4,
for all r, s : A → B with Pr · PεA ≤ Ps · PεA one obtains Pr ≤ Ps and then
r ≤ s. Consequently, εA ∈ E, which shows (A).

Conversely, we know that conditions (A), (P), (W) make P solid as an ordinary
functor, with universal P -extensions (α,A, q = Pe · ηX : X → PA) constructed
in such a way that e : FX → A lies in the class E (see Theorem 2.1 of [10]). As
ηX is order-P -epic and e is order-epic, q must be order-P -epic, making it part of
a strongly order-universal P -extension. �

3. Examples of strongly order-solid functors

For many of our examples it is convenient to first consider them in a preorder-
enriched context, so that Pos gets replaced by the larger Cartesian closed category
Ord of preordered sets. We will freely use the terms introduced in Section 2
in this context and thus talk about preordered categories and functors, strongly
preorder-universal P -extensions and strongly preorder-solid functors, as well as
about preorder-P -epic morphisms and preorder-faithful functors, keeping in mind
that the latter two notions will no longer automatically imply that the morphisms
will be P -epic or the functors be faithful in the ordinary sense.

The following proposition turns out to be useful in many concrete situations.

Proposition 3.1. In the commutative diagram

A
�

� H
//

P

��

A′

P ′

��

X
�

�

J
// X′

of preordered functors, let H and J be full emdeddings, with H preorder-right
adjoint. If P ′ is strongly preorder-solid, then P is also strongly preorder-solid,
and trivially even strongly order-solid when it is an ordered functor.
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Proof: Being preorder-right adjoint, H is strongly preorder-solid, and so is its
composite with the strongly preorder-solid functor P ′ (see Remark 2.2). Quite
trivially now, as JP is strongly preorder-solid, with J being fully faithful, also
P is strongly preorder-solid. Explicitly then, one constructs a strongly preorder-
universal P -extension (α,A, q) of a P -cocone ξ : PD → X by composing a strongly
preorder-universal P ′-extension (α′, A′, q′) of Jξ : P ′HD → JX with (the P ′-
image of) a reflection r : A′ → HA into A:

JPD
Jξ

// JX

Jf
&&◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

q′
//

Jq

++

P ′A′

P ′t′

��
✤

✤

✤

P ′r
// P ′HA = JPA

JPt
vv

P ′HB = JPB

�

Example 3.2. The functor
S : Top0 → Pos

provides the underlying set of a T0-topological space A with the (dual of the)
specialization order, so that x ≤ y in SA means that the neighbourhood filter
of x is finer than that of y (or that the ultrafilter fixed at x converges to y).
With S, the category Top0 becomes order-enriched, that is: f ≤ g : A → B in
Top0 means f ≤ g : SA → SB in Pos, or f(x) ≤ g(x) in SB for all x ∈ A. We
show that S is strongly order-solid.

In fact, since the specialization preorder may be defined for all topological
spaces, so that S is the restriction of a preordered functor S′ as in the diagram

Top0
�

�

//

S

��

Top

S′

��

Pos
�

�

// Ord ,

and since Top0 is epireflective in Top, so that the surjective reflection morphisms
make the embedding order-right adjoint, by Proposition 3.1 it suffices to show
that S′ is strongly preorder-solid.

Indeed, given a preordered set (X,≤) and any family of monotone maps ξi :
SDi → (X,≤) defined on topological spaces Di, i ∈ I, we obtain a topology τ on
the set X by declaring open all those down-closed sets U ⊆ X for which the set
ξ−1
i (U) is open in Di for every i ∈ I. Then, obviously, idX : (X,≤) → S(X, τ)
is monotone and preorder-S-epic, and all maps ξi : Di → (X, τ) are continu-
ous. When we are given any monotone map f : (X,≤) → SB with a topological
space B, such that all maps f · ξi : Di → B are continuous, then f−1(V ) is
down-closed for every open set V of B and indeed open in (X, τ), thus making
f : (X, τ) → B continuous.
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As a particular consequence of S being strongly order-solid, with Theorem 4.5
and Proposition 5.1 below one concludes that Top0 has all (small-indexed) weight-
ed limits and colimits (as described in Section 4) since Pos has them (see Exam-
ples 5.7 (1)), as previously observed in [12] and [4]. Likewise for Top.

Example 3.3. Every frame (= complete lattice in which the binary meet dis-
tributes over arbitrary joins) A has an underlying meet-semilattice UA which
just forgets the existence of arbitrary joins; likewise, one may forget the informa-
tion that a homomorphism of frames preserves arbitrary joins and just keep the
information of preservation of finite meets, to obtain a functor

U : Frm → SLat.

With the order in both categories inherited from Pos, this functor is order-enriched
and right adjoint as such: for a meet-semilattice X , the adjunction unit ↓ : X →
UDX into the lattice DX of down-closed subsets of X (ordered by “⊆”) assigns
to x ∈ X the principal down-set ↓ x = {z ∈ X : z ≤ x} in X ; it is easily seen to be
order-U -epic since every down-closed subset of X is a join of principal down-sets.

In order to show that U is strongly order-solid, we consider a meet-semilatticeX
and a family of homomorphisms ξi : UCi → X , with frames Ci, i ∈ I. On the
frame DX , one lets “∼” be the least congruence relation such that

∀ i ∈ I, K ⊆ Ci

(

↓ ξi

(

∨

K
)

∼
⋃

a∈K

↓ ξi(a)

)

.

It is clear that, with the projection p : DX → A := DX/∼, all maps p · ↓ ·
ξi : Ci → A become frame homomorphisms. Furthermore, any meet-semilattice
homomorphism f : X → UB to a frame B, for which all maps f · ξi : Ci → B
are frame homomorphisms, gives us a frame homomorphism f ♯ : DX → B whose
induced congruence relation must contain “∼”. Consequently, f ♯ factors as f ♯ =
t · p with a frame homomorphism t : A → B. Since q := p · ↓ : X → UA is clearly
order-U -epic, this shows that q belongs to a strongly order-universal U -extension
of the family ξ, as desired.

UCi

ξi
// X

↓
//

f
""❋

❋

❋

❋

❋

❋

❋

❋

q

''

UDX
p

//

f♯

��
✤

✤

✤

UA

t
{{

UB

The above construction raises the question of how to “compute” the least
congruence relation C on a frame A containing a given relation R on A—even
though an answer is actually not needed in the proof above. In any case, the
reader may consult [31] to see that the underlying set of A/C may be taken to
contain all elements of A that are saturated with respect to R, that is: every
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s ∈ A such that for all a, b, c ∈ A, aR b implies (a∧ c ≤ s ⇐⇒ b∧ c ≤ s). In this
way, A/C becomes a frame, with the map π : A → A/C that assigns to x ∈ A
the infimum of all saturated elements s with x ≤ s, acting as the quotient map;
π satisfies the condition (aR b ⇒ π(a) = π(b)) and is universal with respect to it,
that is: any frame homomorphism g : A → B with (aR b ⇒ g(a) = g(b)) factors
as g = h · π with a frame homomorphism h : A/R → B.

Example 3.4. That also the forgetful functor

V : SLat → Pos

is strongly order-solid may be shown analogously to the previous example. Its left
adjoint E is described as follows: for an ordered set X , one takes EX to contain
the up-closures ↑F of all finite subsets F ⊆ X , ordered by reverse inclusion “⊇”.
Since (↑F ) ∪ (↑G) =↑ (F ∪ G), this makes EX a meet-semilattice and the map
↑ : X → V EX, x 7→↑x, monotone and, in fact, as one easily sees, the unit of an
adjunction, since ↑ F =

⋃

x∈F ↑ x, i.e., every element in EX is a finite meet of
“generic” elements.

Given a family of monotone maps ξi : V Ci → X with meet-semilattices Ci,
i ∈ I, one considers the least congruence relation “∼” on EX satisfying the
condition

∀ i ∈ I, a, b ∈ Ci

(

↑ (ξi(a ∧ b)) ∼↑ ξi(a)∪ ↑ ξi(b) and ↑ ξi(⊤i) ∼ ∅
)

,

where ⊤i denotes the top element in Ci. By definition of “∼”, with the pro-
jection p : EX → A = EX/∼, one obtains meet-semilattice homomorphisms
p · ↑ · ξi : Ci → A for all i ∈ I. Since “∼” is contained in the congruence re-
lation induced by the canonical extension f ♯ : EX → B of any monotone map
f : X → V B to a meet-semilattice B making all f · ξi homomorphisms, f factors
uniquely through p · ↑ : X → V A. That this map is order-V -epic follows again
from the presentation ↑F =

⋃

x∈F ↑x of elements in EX .

As in Example 3.2, from Examples 3.3 and 3.4 we can draw the conclusion that
SLat and Frm have all (small-indexed) weighted (co)limits.

Example 3.5. By an ordered Abelian monoid A we understand a commutative
monoid object in the category Pos, that is: A is a commutative monoid equipped
with a partial order that makes its binary operation +: A × A → A monotone.
The morphisms of the resulting category AbMon(Pos) are monotone monoid ho-
momorphisms. With the order of the hom-sets of AbMon(Pos) inherited from Pos,
we want to show that the forgetful functor W : AbMon(Pos) → Pos is strongly
order-solid. For that, in consideration of the commutative diagram

AbMon(Pos)
�

�

//

W

��

AbMon(Ord)

W ′

��

Pos
�

�

// Ord ,



564 L. Sousa, W. Tholen

by Proposition 3.1 it suffices to show that the forgetful functorW ′:AbMon(Ord) →
Ord of preordered Abelian monoids (which, in comparison to ordered Abelian
monoids, are missing only the anti-symmetry) is strongly preorder-solid, and that
the top-row full inclusion functor is preorder-right adjoint. But the latter fact
is easily guaranteed by General-Adjoint-Functor-Theorem-type arguments (see,
for example, [1], [20]), since AbMon(Pos) is closed under point-separating families
in AbMon(Ord), so that we can focus on the former and first show that W ′ is
preorder-right adjoint.

To this end, since we are not aware of a proof presented in the specific situation
considered here (see [16] and the literature cited in there), we rely on general
principles to confirm that W ′, as an ordinary functor, is right adjoint, and apply
the construction provided by O. Wyler’s Taut Lift theorem in [47]. Hence, for
a preordered setX , we consider all monotone maps f : X → Af whose codomain is
any preordered Abelian monoid, and denote by f ♯ : FX → Af the homomorphism
that extends f to the free Abelian monoid FX over the set X ; it consists of
all formal sums

∑

x∈X nxx (with nonnegative integers nx, all but finitely many

being 0), and f ♯ sends them to
∑

x∈X nxf(x). With

a ≤ b :⇐⇒ ∀ f : X → Af

(

f ♯(a) ≤ f ♯(b)
)

,

it is easy to see that FX becomes a preordered Abelian monoid, making the
insertion δX : X → W ′FX a W ′-universal arrow, which turns out to be also
order-W ′-epic.

To finally see thatW ′ is strongly preorder-solid, given a family ξ = (ξi : W
′Ci →

X)i∈I of monotone maps from preordered Abelian monoids Ci, i ∈ I, to a pre-
ordered set X , we consider the least monoid congruence relation “∼” on FX
which, with the projection p : FX → FX/∼, makes all maps p · δX · ξi monoid
homomorphisms. We must now define a preorder on FX/∼, in such a way that
FX/∼ becomes a preordered Abelian monoid with monotone projection p. To
this end, let us call a monotone map f : X → Af ξ-admissible if f · ξi : Ci → Af

is a monotone homomorphism for all i ∈ I and then define for all a, b ∈ FX ,

p(a) ≤ p(b) :⇐⇒ ∀ f : X → Af ξ-admissible
(

f ♯(a) ≤ f ♯(b)
)

.

Since “∼” is generated by the pairs (δX(ξi(c+d)), δX(ξi(c))+δX(ξi(d))), c, d ∈ Ci,
i ∈ I, one sees that this preorder is well defined and has the desired properties.

Categories of ordered algebras, of which AbMon(Pos) is an example, have
gained the attention of several authors; see, for instance, [26] and the references
given there. Hence, in what follows, we extend the previous example and consider
any variety of any (possibly infinitary) type of general algebras instead of Abelian
monoids. These are sets that come equipped with a class of (possibly infinitary)
operations (instead of one binary and one nullary operation for monoids), which
are required to satisfy certain equations (instead of the associativity, neutrality
and commutativity requirements). Moreover, we must assume that one can form
the free (pre)ordered general algebra of that type over a (pre)ordered set, with the
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insertion of generators being order-(−)1-epic; here, as we explain next, (−)1 de-
notes the forgetful functor from the category of (pre)ordered general algebras of
the given type and their monotone homomorphisms to the category Pos (or Ord).

In the following theorem we formulate these facts in terms of Lawvere–Linton
(infinitary) algebraic theories (as originally introduced in [27], [28]; for a modern
treatment in the finitary case, see [2]). Explicitly then, paraphrasing [28] in the
spirit of [2], by an (infinitary) algebraic theory T we mean a category whose class
of objects is the class of cardinal numbers, such that every cardinal n is the
n-fold power of 1 in T. An ordered T-algebra A is a product-preserving functor
A : T → Pos; its underlying ordered set is the value of A at 1. When we denote the
value of A at n more suggestively by An, then A assigns to every n-ary term t of T,
i.e., to every morphism t : n → 1 in T, an n-ary monotone operation At : An → A1,
written more conveniently as tA.

7 A monotone T-homomorphism f : A → B of
ordered T-algebras is simply a natural transformation; its underlying monotone
map is the component of the transformation at 1, which must commute with the
n-ary operations t; that is, when we write the underlying map of f as f again,
f · tA = tB · fn. With the order on its hom-sets inherited from Pos, this defines
the ordered category Alg(T,Pos), as a full subcategory of the ordered functor
category PosT . By replacing Pos by Ord one obtains the category of preordered
T-algebras and the commutative diagram

Alg(T,Pos)
�

�

//

(−)1

��

Alg(T,Ord)

(−)1

��

Pos �
�

// Ord

of preordered functors. We call the algebraic theory T preorder-varietal if the
functor (−)1 : Alg(T,Ord) → Ord is preorder-right adjoint and obtain, as in Ex-
ample 3.5, the following quite general result:

Theorem 3.6. For every preorder varietal algebraic theory T, the forgetful func-
tor

UT : Alg(T,Pos) → Pos, A 7→ A1,

is strongly order-solid, and likewise when Pos is traded for Ord.

We do not give the proof of the theorem, not only since it follows the same
argumentation as that of Example 3.5, but also since the theorem is a special
case of Theorem 3.7, the proof of which we sketch in sufficient detail, albeit with
a variation which avoids the use of Wyler’s theorem.

7For example, the morphisms t : n → m of the theory T of Abelian monoids may be taken

to be the homomorphisms t : Fm → Fn of the free Abelian monoids on m and n generators.
Hence, for m = 1, t just picks an element in Fn, that is: an n-ary formal term, to which an
algebra A as defined here assigns the actual n-ary operation tA on its underlying set. Likewise
for any other general algebraic structures admitting free algebras.
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While Theorem 3.6 covers Examples 3.4 and 3.5, a generalization of Exam-
ple 3.3 requires the consideration of algebraic functors, induced by morphisms of
algebraic theories. Recall that a morphism K : S → T of algebraic theories S,T
is simply a functor that maps objects identically and preserves their status as
direct products. For example, the embedding of the theory of meet-semilattices
into the theory of frames is a morphism of algebraic theories. Any morphism K
of algebraic theories gives rise to the ordered algebraic functor

Alg(T,Pos) → Alg(S,Pos), A 7→ AK,

which, for convenience, we denote by K again. In the example just mentioned,
this then is the forgetful functor Frm → SLat as considered in Example 3.3.

Theorem 3.7. The (pre)ordered algebraic functor induced by any morphism of
preorder-varietal algebraic theories is strongly (pre)order-solid.

Proof: (Sketch) As in Example 3.5, by Proposition 3.1 it suffices that the (anal-
ogously defined) preordered functor K ′ of the commutative diagram

Alg(T,Pos) �
�

//

K

��

Alg(T,Ord)

K′

��

Alg(S,Pos)
�

�

// Alg(S,Ord)

is strongly preorder-solid. With the notation for ordered algebras used also in the
preordered case, the algebraic functor K ′ commutes with the forgetful functors of
the algebraic categories, that is: USK ′ = UT . Assuming that both UT and US

are preorder-right adjoint, we first show that K ′ is also preorder-right adjoint. To
this end, we note that, according to Dubuc’s adjoint triangle theorem, see [15],
the left adjoint L of the ordinary functor K ′ may be constructed with the help of
the left adjoints FT ⊣ UT, FS ⊣ US and their adjunction units η and co-units ε.
An inspection of the proof of Dubuc’s theorem reveals that the unit κ : 1 → K ′L
of L ⊣ K ′ makes the diagram

FSUS εS
//

µUS

��

1

κ

��

K ′FTUS

K′π

// K ′L

commute; here µ : FS → K ′FT is the mate of ηT : 1 → US(K ′FT) = UTFT ,
and π : FTUS → L is a (pointwise) regular epimorphism in Alg(T,Ord). Now
we can easily see that for every preordered S-algebra B, the unit κB is preorder-
K ′-epic. Indeed, for r, s : LB → A in Alg(T,Pos) with K ′r · κB ≤ K ′s · κB, the
commutativity of the diagram gives K ′(r · πB1) · µB1 ≤ K ′(s · πB1) · µB1 , where
B1 = USB. But the mate µB1 of ηTB1 satisfies USµB1 · ηSB1 = ηTB1 , so that with
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USK ′ = UT we obtain

UT(r · πB1) · ηTB1 ≤ UT(s · πB1) · ηTB1 .

Since ηTB1 is preorder-UT-epic and πB1 surjective, r ≤ s follows.
Let ξ = (ξi : K

′Ci → B)i∈I be a family of monotone S-homomorphisms from
preordered T-algebras Ci, i ∈ I, to a preordered S-algebra B. Largely neglect-
ing to write down forgetful functors now, on the T-algebra LB we consider the
least congruence relation “∼” which makes the S-homomorphisms p · κB · ξi T-
homomorphisms, where p : LB → LB/∼ is the projection map. As in Example 3.5,
we equip LB/∼ with the preorder defined by

p(a) ≤ p(b) :⇐⇒ ∀ f : B → Af ξ-admissible
(

f ♯(a) ≤ f ♯(b)
)

,

for all a, b ∈ LB; here f runs through all monotone S-homomorphisms into
some preordered T-algebra, and the ξ-admissibility of f means that all maps
f · ξi : Ci → A need to be monotone T-homomorphisms; f ♯ : LB → A denotes the
T-homomorphism with f ♯ · κB = f . This makes LB/∼ an object of Alg(T,Ord)
and p · κB belong to a preorder-universal K-extension of ξ. �

Theorem 3.6 appears as a special case of Theorem 3.7 when one chooses for S
the initial algebraic theory, given by the dual of the full subcategory of Set with
object class of all cardinal numbers, i.e. a skeleton of Set.

We continue with an important example of a strongly order-solid functor of
a category of a generalized type of ordered algebras which, however, is not covered
by Theorem 3.7, since only some of the algebraic operations are assumed to be
monotone and, more importantly, since the order of the homomorphisms is not
taken to be given pointwise by universal quantification over all elements of their
common domain, but only over a part of it.

Example 3.8. By an ordered vector space V we understand a real vector space
that comes equipped with a partial order for which the (binary) addition and
all unary operations given by multiplication with any nonnegative scalar λ are
monotone. Such V defines the positive cone PV = {v ∈ V : v ≥ 0}, and a linear
map f : V → W is said to be positive if it maps PV into PW ; equivalently, if
f : V → W is monotone. Given another positive linear map g : V → W , one
writes

f ≤ g :⇐⇒ ∀ v ≥ 0 (f(v) ≤ g(v)).

But to make sure that this preorder is anti-symmetric, we must assume that the
positive cone PV is generating, that is, V = PV + (−PV ). Hence, we denote by
OVec the category of all ordered vector spaces V whose positive cone is generating,
and their positive linear maps. We obtain the ordered functor P : OVec → Pos,
and claim that P is strongly order-solid.

As in Example 3.5, we use Proposition 3.1. We note that it suffices to show
that the analogously defined functor P ′ of preordered vector spaces with generating



568 L. Sousa, W. Tholen

positive cones, which extends P as in the diagram

OVec �
�

//

P

��

POVec

P ′

��

Pos
�

�

// Ord ,

is strongly preorder-solid, since it is easy to see that any such preordered vector
space V admits a surjective reflection into OVec: just consider V/U , where U =
{v ∈ V : v ≤ 0 ≤ v}.

Proving first that P ′ is preorder-right adjoint, given a preordered set X , one
extends its preorder “≤” and considers the least preorder “≤” of the free real
vector space FX with basis X satisfying

1. if x ≤ y in X , then 0 ≤ x ≤ y in FX ;
2. if u ≤ v in FX and w ∈ FX , λ ≥ 0, then λu + w ≤ λv + w in FX .

In this way the positive cone of FX becomes generating and the insertion ηX :
X →֒ FX a P ′-universal arrow, which is also preorder-P ′-epimorphic. Now, given
a family of monotone maps ξi : P

′Vi → X with preordered vector spaces Vi, i ∈ I,
we consider all the vector space quotients q : FX → FX/Kq, where the preorder of
FX/Kq is such that it makes the quotient a preordered vector space, q a positive
map and all gi = q ·ηX · ξi positively linear, so that gi(λu+µw) = λgi(u)+µgi(w)
for all v, w ∈ PVi and λ, µ ≥ 0. For K the intersection of all the subspaces Kq,
the vector space FX/K comes then equipped with the preorder given by

v +K ≤ w +K :⇐⇒ ∀ q (v +Kq ≤ w +Kq).

This way we obtain a quotient p : FX → FX/K and monotone maps p · ηX · ξi.
Since for each i, PVi is generating in Vi, every p·ηX ·ξi has a unique linear extension
αi : Vi → FX/K (because we may obtain a base contained in the positive cone).
The monotone map p · ηX together with the family α forms the desired strongly
preorder-universal P ′-extension of ξ. We leave all details to the reader and refer
to the literature, such as [24] or [33].

In the next example, we consider ordered vector spaces again, but now take
the order of the hom-sets to be given by the pointwise order over the entire vector
space, not just over the positive cone. Then the order becomes necessarily discrete
and, although we still obtain an order-faithful forgetful functor to Pos that is solid
in the ordinary sense, it fails to be strongly order-solid. This shows in particular
that, in Theorem 2.6, we cannot omit condition (b).

Example 3.9. Let OVec= be the category of ordered real vector spaces and
linear maps which preserve the order. Given a pair of morphisms f, g : V → U ,
since the inequality f(u) ≤ g(u) implies g(−u) ≤ f(−u), imposing the inequality
f(v) ≤ g(v) for all v ∈ V forces f = g. Hence, OVec= is trivially order-enriched
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via the discrete order, and the forgetful ordered functor

R : OVec= → Pos

is order-faithful. We show that R is also solid in the ordinary sense but fails to
be strongly order-solid.

In order to show that R is solid, we can follow a path completely analogous to
the one used in the previous example when we showed that P is strongly order-
solid, including the use of Proposition 3.1 in its non-enriched version (that is,
with the discrete order between morphisms). Here, to show that the forgetful
functor into Ord is a right-adjoint, we change condition 1 of the description of the
preorder on the freely generated vector space FX of Example 3.8, by replacing
0 ≤ x ≤ y with x ≤ y.

As a solid ordinary functor, R has a left adjoint H , but the adjunction units
X →֒ RHX will generally fail to be order-R-epic. Indeed, for X the 2-chain
{a < b}, let the real valued maps f ♯, g♯ : HX → R be determined by the monotone
maps f, g : X → R with 0 = f(a) < g(a) = f(b) = 2 < g(b) = 3. Then, for
u = b − a, f ♯(u) 6≤ g♯(u). Consequently R is not strongly order-solid.

In conclusion, the functor R fulfils conditions (a) and (c) of Theorem 2.6, that
is, R is ordinarily solid and order-faithful, but does not fulfil (b), since R fails to
preserve inserters. Indeed, in OVec= inserters are just equalizers, since the order
between morphisms is discrete, but not so in Pos.

The above arguments also show that, analogously, we have a preorder-faithful
functor which is solid but not strongly preorder-solid, and which does not preserve
inserters.

4. Order-enriched solid functors

Following Anghel’s lead [5], [6] we now look at notions of universal P -extension
and solidity for order-enriched functors from the general enriched categorical per-
spective. An ordered diagram (of shape D) in an ordered category A is an ordered
functor D : D → A; we do not restrict the size of the ordered category D. For
a given D and an object A in A, when there is no risk of confusion we denote
the constant functor D → A with value A again by A; a morphism t : A → B is
then treated as a natural transformation of constant functors. A weight for an
ordered diagram of shape D is an ordered functor W : Dop → Ord. (Note that,
in forming D

op, one turns around the arrows of D while maintaining their order.)
Every object B in A gives the weight

A(D−, B) =
(

D
op Dop

−−→ A
op A(−,B)

−−−−−→ Pos
)

, i 7→ A(Di,B),

and an A-morphism t : A → B then becomes a natural transformation A(D−, t) :
A(D−, A) → A(D−, B), i.e., a morphism in the (potentially very large) ordered
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category PosD
op

of weights forD, the morphisms of which are ordered component-
wise. Pushing things even further, we note that, of course, A(D−, B) is functorial
in B, i.e., one has the hom-functor

HW
D : A → POS, B 7→ PosD

op

(W,A(D−, B)),

whose codomain may be very large8.
To fix our notation and terminology, we recall the notion of weighted colimit

in both, elementary “pointwise” form and standard terms of enriched category
theory, before proceeding similarly for the enriched notion of order-solidity.

Remarks 4.1. (1) A weighted cocone α : D → A over an ordered diagram
D : D → A of weight W : Dop → Pos (briefly referred to as a W -weighted co-
cone over D) is given by its vertex A ∈ obA and a natural transformation
α : W → A(D−, A), that is, a family of A-morphisms αu

i : Di → A, i ∈ obD,
u ∈ Wi, satisfying the conditions

◦ ∀ i ∈ obD, u, v ∈ Wi (u ≤=⇒ αu
i ≤ αv

i );

◦ ∀ d : i → j in D, v ∈ Wj (αv
j ·Dd = α

Wd(v)
i ).

D is the shape of the cocone.
(2) A W -weighted colimit of D is given by a W -weighted cocone α : D → A

such that

◦ α : D → A is universal amongst all W -weighted cocones β : D → B, i.e.,
any such β factors through α, so that there is a unique9 A-morphism
t : A → B with β = t · α; that is,

∀ i ∈ obD, u ∈ Wi (βu
i = t · αu

i );
◦ α : D → A is order-epic, so that for all r, s : A → B in A one has the

implication
∀ i ∈ obD, u ∈ Wi (r · αu

i ≤ s · αu
i ) =⇒ r ≤ s;

we write more economically (r · α ≤ s · α =⇒ r ≤ s) for this implication.

It is easy to check that this equivalently means that HW
D is representable, i.e.,

HW
D

∼= A(A,−) as POS-valued functors, making HW
D in effect Pos-valued.

(3) A weighted cocone α : D → A whose weight W = 1 : Dop → Pos maps the
D-objects constantly to the terminal ordered set 1 is simply an ordinary cocone
over the ordinary diagram Do. Consequently, a 1-weighted cocone α : D → A is
a weighted colimit precisely when it is an ordinary colimit of Do and order-epic.
Such weighted colimits are usually called conical.

(4) A weighted cocone in A over an empty diagram is just an object of A.
By (3), a weighted colimit over the empty diagram is just an ordinary colimit,
i.e., an initial object of the category A.

8The objects of POS are the partially ordered classes. Concerning the informal term “very
large” and the formation of POS, the same comment as the one made before Definition 2.1 (as
footnote 5) applies here.

9Uniqueness is automatically guaranteed by the subsequent condition of α being order-epic.
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(5) A diagram D in A over the terminal (ordered) category D = 1 can be
viewed as an object D of A; likewise, a weight W with domain 1 is to be consid-
ered as an ordered set W . A W -weighted cocone with vertex A ∈ obA is then
a monotonely W -indexed family of morphisms αu : D → A in the ordered cate-
gory A, so that αu ≤ αv whenever u ≤ v in W . If it is even a weighted colimit,
A is usually written as a tensor product W ⊗D, so that then the colimit property
is described by the existence of order-isomorphisms

A(W ⊗D,B) ∼= Pos(W,A(D,B)),

naturally in B ∈ obA. The category A is tensored if W⊗D exists for all D ∈ obA
and W ∈ obPos.

(6) Of particular interest is also the discretely ordered category D = {a, b :
0 → 1} with exactly two objects and exactly two non-identical arrows, together
with the weight W : Dop → Pos defined by

W1 = 1 = {∗}, W0 = 2 = {u < v}, Wa(∗) = u, Wb(∗) = v,

sometimes referred to as the Walking Two. A diagram D : D → A is simply a pair
f, g : C → B of morphisms in A, and a W -weighted colimit of that diagram is
called a co-inserter for f, g, i.e., it is an order-epic arrow e : B → A, universal
with respect to the property e · f ≤ e · g, so that any h : B → E with h · f ≤ h · g
factors as h = t · e.

(7) Weighted limits in A are, by definition, weighted colimits in Aop.

Definition 4.2.

(1) For an ordered functor P : A → X and a W -weighted cocone ξ : PD → X
in X, we call the triple (α,A, q), consisting of a W -weighted cocone α : D → A
in A and an X-morphism q : X → PA, a P -extension of ξ if q · ξ = Pα; that is,
if q · ξui = Pαu

i for all i ∈ obD, u ∈ Wi.
(2) (α,A, q) is an order-universal P -extension of the W -weighted cocone ξ :

PD → X if

1. (α,A, q) is a P -extension of ξ;
2. (α,A, q) is universal with respect to property 1, that is, for every P -

extension (β,B, f) of ξ there is a (unique) A-morphism t : A → B with
t · α = β and Pt · q = f ;

3. (α,A, q) is order-P -epi(morphi)c, that is, for all r, s : A → B in A one has
the implication

Pr · e ≤ Ps · e, r · α ≤ s · α =⇒ r ≤ s.

(3) An ordered functor P : A → X is order-solid if every weighted cocone
ξ : PD → X with any ordered diagram D : D → A of any weight W : Dop → Pos
has an order-universal P -extension.

Remarks 4.3. (1) It is important to observe the difference of condition 3 in
Definitions 2.1 and 4.2: if the X-morphism q : X → PA with A ∈ obA is order-P-
epic, so is the P -extension (α,A, q), but not necessarily conversely. Reconciliation
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of this difference is the main aim of Theorem 4.5 below, but the Open Problem 4.6
remains.

(2) A P -extension (α : D→A, q : X→PA) of a 1-weighted cocone ξ : PD→X
is an order-universal P -extension if it is a universal Po-extension (previously called
P -semi-final, see [41]). Consequently, order-solid functors are solid in the ordinary
sense.

(3) For a P -extension (α,A, e : X → PA) of a weighted cocone ξ : PD → X
over an empty diagram to be order-universal means more than having just a Po-
universal arrow at X (in the sense of [29]): in addition, the morphism e : X → PA
(with the specified object A ∈ obA) needs to be order-P -epic and therefore serve
as an adjunction unit in the enriched sense. Consequently, order-solid functors
are order-right adjoint.

(4) (α,A, q) is an order-universal P -extension of the W -weighted cocone ξ :
PD → X if and only if the following diagram is a pullback, formally to be formed
in the very large10 category POS, even though its top row always lies in Pos:

t
✤ // Pt

✤ // Pt · q

t
❴

��
t · α

A(A,B)

��

PA,B
// X(PA,PB)

(−)·q
// X(X,PB)

��

PosD
op

(W,A(D−, B))
PW
D,B

// PosD
op

(W,X(PD−, PB))

f
❴

��

f · ξ

β
✤ // Pβ

(5) By (4) one has

PosD
op

(W,A(D−, B)) ×PosD
op

(W,X(DP−,PB)) X(X,PB) ∼= A(A,B)

in POS, naturally so with respect to B. Hence, considering the left-hand side
as a functor A → POS in B, we see that the existence of an order-universal
P -extension of ξ is equivalent to the representability of that functor. A precur-
sor of this statement for ordinary categories is contained in [18], [19], and its
generalization to the general enriched context in [5], [6].

It is easy to see that for order-faithful functors, order-solidity is equivalent to
strong order-solidity. For that let us first note:

Lemma 4.4. For an order-faithful functor P : A → X, if (α,A, q) is an order-
universal P -extension of the weighted cocone ξ : PD → X , then the morphism
q : X → PA is P -epimorphic.

Proof: Assuming Pr · q ≤ Ps · q with r, s : A → B, one has P (α · r) = Pr · q · ξ ≤
Ps · q · ξ = P (α · s) and then r · α ≤ s · α when P is order-faithful. Since (α,A, q)
is order-P -epic, r ≤ s follows. �

10See footnote 5.
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Theorem 4.5. An ordered functor P : A → X is strongly order-solid if and only
if it is order-solid and order-faithful. In this case, if X has all weighted limits of
a given shape D, so does A.

Proof: For the first statement, if P : A → X is order-solid and order-faithful, the
morphism q of any order-universal P -extension of a weighted cocone ξ is order-
P-epic, by Lemma 4.4. This holds particularly when ξ is a 1-weighted cocone
over a discrete diagram, as needed to satisfy Definition 2.1. Conversely, let P
be strongly order-solid. By Proposition 2.4, P is order-faithful. Furthermore,
in order to construct an order-universal P -extension of any W -weighted cocone
ξ : PD → X with D : D → A, one considers ξ = (ξui : Di → X)i∈obD,u∈Wi as
a discretely indexed family of morphisms for which we have a strongly universal
P -extension (α = (αu

i : Di → A)i,u, A, q), by hypothesis. Since P is order-faithful,
from u ≤ v in Wi and, hence, Pαu

i = ξui ·q ≤ ξvi ·q = Pαu
i , one concludes α

u
i ≤ αv

i ;

and, analogously, for d : i → j in D, the faithfulness of P implies αv
j ·Dd = α

Wd(v)
i .

This makes (α,A, q) an order-universal P -extension of the W -weighted cocone ξ.
For the second statement (on the existence of weighted limits), one proceeds

analogously to the proof of Theorem 2.6 which deals with the special case of
inserters. �

In the ordinary case, that is, when the categories are ordered discretely, the
notions of solid and strongly solid are equivalent, since, as proved in [41], every
solid functor is faithful. But we have not been able to decide whether order-
faithfulness is an essential condition in Theorem 4.5:

Open Problem 4.6. Is every order-solid functor order-faithful?

5. Order-solid functors and weighted colimits

For the study of the behaviour of order-solid functors with respect to weighted
colimits, we first consider order-universal P -extensions of individual cocones,
without the universal quantification over all such data. An easy, but nevertheless
fundamental, observation in this regard is that, in generalization of a well-known
property of the ordinary notions, the order-universal P -extension of a weighted
colimit of PD gives a weighted colimit of D, as stated in the next proposition.
In Remark 5.5 we recall some important types of weighted colimits and some of
their properties.

Proposition 5.1. For an ordered functor P : A → X, an ordered diagram D :
D → A and a weight W : Dop → Ord, let ξ : PD → X be a W -weighted colimit
of PD in X. Then:

(1) If (α : D → A, A, q : X → PA) is an order-universal P -extension of ξ,
then α is a W -weighted colimit of D in A.

(2) If α : D → A is a W -weighted colimit of D and q : X → PA the comparison
morphism induced by ξ, then (α,A, q) is an order-universal P -extension of ξ.
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Proof: (1) The colimit property of ξ makes Pβ for any cocone β : D → B,
factor as Pβ = f · ξ, with f : X → PB in X. Order-universality of (α,A, q) gives
t : A → B in A with Pt · q = f and t · α = β. For any morphisms r, s : A → B
with r · α ≤ s · α, order preservation by P gives (Pr · q) · ξ ≤ (Ps · q) · ξ, whence
Pr · q ≤ Ps · q follows since ξ is order-epic. With (α,A, q) being order-P -epic, we
conclude r ≤ s.

(2) The proof proceeds similarly to the proof of (1). �

Corollary 5.2. Let the ordered functor P : A → X admit order-universal P -
extensions for all weighted cocones of shape D. Then, if X has weighted colimits
for diagrams of shapeD, so doesA; likewise for conical colimits instead of weighted
colimits.

Corollary 5.3. If P : A → X is order-solid and X has weighted colimits of
shape D, so does A.

Corollary 5.4. If the ordered functor P : A → X admits order-universal P -
extensions for all weighted cocones of shape 1 and X is tensored, so is A.

Remarks 5.5. (1) Recall that for morphisms f : A → B, g : A → C in an ordered
category A, a cocomma object for (f, g) is given by an object D and morphisms
p : B → D, q : B → D in A with p · f ≤ q · g

A
g

//

f ≤
��

C

q

��

B
p

// D

and (p, q) is universal with that property (so that any pair (k, l) with common
codomain E and k · f ≤ l · g must factor through (p, q) by a morphism t : D → E;
moreover, the pair (p, q) is required to be jointly order-epic.

(2) Similarly to co-inserters, also cocomma objects are easily recognized as
weighted colimits: instead of the discretely ordered diagram shape with a parallel
pair, consider a span and define the weight of its domain and codomains as for
the Walking Two (see Remark 4.1 (7)).

(3) It is easy to see that one may construct the cocomma object of (f, g) as
in (1) by forming the conical coproduct B + C with injections i, j and then the
co-inserter c : B + C → D of (f · i, g · j).

(4) Conversely to (3), having cocomma objects at one’s disposal, one may
construct the co-inserter c : B → C of a pair (f, g : A → B) by forming their
cocomma object (p, q : B → D) and then the conical coequalizer e : D → C of the
pair (p, q).

(5) As a consequence of (3) and (4), in the presence of finite conical colimits,
the existence of cocomma objects is equivalent to the existence of co-inserters.

(6) It is well known (see Lemma 3.13 of [4] in the dual situation) that the tensor
product W ⊗ A may be constructed with conical copowers and co-inserters, as
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follows: presenting the order of W as a subset W1 of W0 × W0, with W0 the
underlying set of W , which comes with projections d1, d2 : W1 → W0, one forms
the conical copowers W1 ⊗ A, W0 ⊗ A (which are, in fact tensor products with
discretely ordered sets) and then the co-inserter of the induced morphisms d1⊗A,
d2 ⊗A : W1 ⊗A → W0 ⊗A.

(7) A standard result of enriched category theory (see Theorem 3.73 of [25])
guarantees the existence of all weighted colimits of small shape in A when A has
tensor products, conical coproducts and conical coequalizers. Taking the preced-
ing remarks into account, one obtains: The ordered category A has all weighted
colimits of small shape if and only if it has small-indexed conical coproducts, con-
ical coequalizers and at least one—and then all—of the following types of weighted
colimits: tensor products, co-inserters, or cocomma objects.

With Remark 5.5 (2), Proposition 5.1 gives:

Corollary 5.6. If the ordered functor P : A → X admits order-universal P -
extensions of cocones of finite shape and X has cocomma objects (respectively,
co-inserters), so does A.

We return to the examples presented in Section 3.

Examples 5.7. (1) Conical colimits in Pos are given by ordinary colimits. The
tensor product W ⊗ A may be given as W × A, ordered like the direct product.
The cocomma object of (f : A → B, g : A → C) has as its underlying set the
union B∪C, which may be assumed to be disjoint; one then maintains the orders
of its subsets B and C and adds to that the condition that y ≤ z holds for y ∈ B
and z ∈ C if y ≤ f(x) and g(x) ≤ z for some x ∈ A.

(2) In SLat, the (conical) copower of A indexed by a set W0, denoted A(W0), is
the sub-semilattice of the power AW0 whose elements have all but finitely many
coordinates equal to the top element ⊤; each injection pw maps every a to (au) ∈
AW0 with aw = a and au = ⊤ for u 6= w. The tensor product A ⊗ W is the
quotient A(W0)/∼ where W0 is the underlying set of W and “∼” is the least
congruence containing the pairs (pu(a) ∧ pv(a), pu(a)) for all a ∈ A and u ≤ v
in W . Given f : A → B and g : A → C in SLat, let B × C be the product in
Pos (then also the conical product and conical coproduct in SLat); the cocomma
object of (f, g) is the quotient B×C/∼, where “∼” is the least congruence relation
with (f(a), r) ∼ (f(a), s) for all a ∈ A and r, s ≥ g(a).

(3) The characterization of weighted colimits in Frm is more involved. Con-
cerning the conical coproduct, if we first take it in SLat and then form the order-
universal U -extension of the corresponding U -sink using the construction of Ex-
ample 3.3, we obtain precisely the description of the coproduct given in [31]. We
can proceed in an analogous way for coequalizers (see also [31]), tensor products,
co-inserters and cocomma objects.

(4) In OVec, given morphisms f, g : V → W , we describe the co-inserter of
(f, g). Let C be the cone given by the sum of PW with the cone S = {g(v) −
f(v) : v ∈ PV }, so C = PW + S = {u + w : u ∈ PW, w ∈ S}. The intersection
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U = C ∩ (−C) is a subspace of W . Let W/U be the quotient space of W whose
order has positive cone P (W/U) = {w + U : w ∈ C}. Then the co-inserter of
the pair (f, g) is precisely the projection W → W/U . With this charaterization
of the co-inserters, it is easy to obtain similar descriptions for tensor products
and cocomma objects, using the fact that conical coproducts in OVec are just the
usual direct sums of spaces with the positive cone given by the sum of the positive
cones of the components of the sum; see Remark 5.5 (3) and (6).

Guided by Anghel’s Theorem 2.2.8 in [6], we now give a step-by-step analysis
of what may be needed to construct an order-universal P -extension (α : D → A,
A, q : X → PA) of a given W -weighted cocone ξ : PD → X with D : D → A,
assuming that we have some particular weighted colimits and a certain order-
universal P -extension over an obD-indexed discrete diagram at our disposal.

Step 1: For every i ∈ obD, we assume that the tensor products (λu
i : Di →

Wi ⊗ Di)u∈Wi and (κu
i : PDi → Wi ⊗ PDi)u∈Wi with comparison morphisms

ci : Wi ⊗ PDi → P (Wi ⊗ Di) exist in A and X, respectively. (Of course, by
Corollary 5.4, the former tensor product may be obtained from the latter by an
order-universal P -extension.) For every i, we let ξi : Wi ⊗ PDi → X be the
induced X-morphism satisfying ξi · κu

i = ξui for all u ∈ Wi.
Step 2: We assume that in X there exists the conical generalized pushout dia-

gram

Wi⊗ PDi
ci

//

ξi

��

P (Wi⊗Di)

ξi
��

X
p

// X

(which, of course, one may construct by first forming the conical pushout (ξ′i, c
′
i)

of each pair (ξi, ci) and then the conical wide pushout (= co-intersection) of
(c′i)i∈obD).

Step 3: We assume that the (discretely) obD-indexed and 1-weighted cocone
(ξi : P (Wi⊗Di) → X)i∈obD has an order-universal P -extension (αi : Wi⊗Di →
A)i∈obD, A, qo : X → PA).

We set q := qo ·p : X → PA and αu
i := αi ·λu

i : Di → A for all i ∈ obD, u ∈ Wi,
and prove:

Proposition 5.8. Under the assumptions of Steps 1–3, and when (the ordi-
nary functor) P is faithful, one obtains a W -weighted cocone α = (αu

i )i,u which,
together with q, gives an order-universal P -extension of the given W -weighted
cocone ξ.

Proof: Clearly, from λu
i ≤ λu′

i one obtains αu
i ≤ αu′

i for all u ≤ u′ ∈ Wi,

i ∈ obD. Also, from ξvj · PDd = ξ
Wd(v)
i one obtains P (αv

j · Dd) = P
(

α
Wd(v)
i

)

and then, when (the ordinary functor) P is faithful, αv
j · Dd = α

Wd(v)
i for all

d : i → j in D and v ∈ Wj. Hence, α is a W -weighted cocone, obviously satisfying
Pα = q · ξ.
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Given any W -weighted cocone β : D → B in A and an X-morphism f : X →
PB with Pβ = f · ξ, we consider the obD-indexed cocone (βi)i with βi · λ

u
i = βu

i

for all u ∈ Wi, i ∈ obD. Then, from Pβi · ci · κu
i = f · ξi · κu

i for all u one derives
Pβi · ci = f · ξi for all i. The generalized pushout now gives an X-morphism
g : X → PB with g · p = f and g · ξi = Pβi for all i. Order-universality of the
discrete cocone (αi)i together with qo finally produces an A-morphism t : A → B
with Pt · qo = g and t · αi = βi for all i ∈ obD, from which one easily deduces
Pt · q = f and t · α = β.

To show that (α,A, q) is order-P -epic, we consider A-morphisms r, s : A → B
with Pr · q ≤ Ps · q, r · α ≤ s · α. The latter inequality gives r · αi ≤ s · αi for
every i ∈ obD since the cocone (λu

i )u of the tensor product Wi⊗Di is order-epic,
while the first inequality and the cocone (κu

i )u of the tensor product Wi ⊗ PDi

being order-epic give Pr · qo · ξi ≤ Ps · qo · ξi. Since also the conical generalized
pushout is order-epic, with Pr · qo · p ≤ Ps · qo · p one obtains Pr · qo ≤ Ps · qo. In
conjunction with r · αi ≤ s · αi for every i ∈ obD one can finally conclude r ≤ s
since the order-universal P -extension ((αi)i∈obD, A, qo) is order-P -epic. �

Remarks 5.9. (1) For any A ∈ obA, W ∈ obPos, such that the respective tensor
products inA and X exist, we call the canonical morphism c : W⊗PA → P (W⊗A)
a tensor comparison morphism. In order to perform Step 2 it suffices that X has
conical generalized pushouts of tensor comparison morphisms; more precisely, the
conical pushout of a tensor comparison morphism along any morphism exists in X,
and the conical wide pushout of any family of such pushouts exists as well.

(2) If A has tensor products preserved by P , then the needed tensor products
and pushouts in X as described in (1) trivially exist and are conical since then, by
definition of preservation, all tensor comparison morphisms are isomorphisms, so
that by putting X = X , ξi = ξi · c

−1
i , p = 1X one obtains the needed generalized

pushout diagram of Step 2.
(3) While, when tensor products exist in X, Corollary 5.4 guarantees their

existence also in A if P admits order-universal P -extensions of weighted cocones
over diagrams of shape 1, these will generally not be preserved by P , even when
P is strongly order-solid. For instance, let A be the 2-chain 2 = {0 < 1}, and
let W be the discrete 2-element poset, thus W ⊗ A is just a conical copower. In
SLat, it is the diamond poset, but in Pos it is just the disjoint union of two copies
of 2. Hence, the strongly order-solid functor V of Example 3.4 does not preserve
tensor products.

(4) If one tightens the condition of Proposition 5.8 that P be faithful to P
being order-faithful, then the construction leads us more generally from an (op)lax
cocone ξ to an (op)lax cocone α, as the beginning of the proof of the proposition
shows. (Recall that an (op)lax W -weighted cocone α : D → A is given by an
(op)lax natural transformation α : W → A(D−, A), so that the identities αv

j ·Dd =

α
Wd(v)
i of Remarks 4.1 (1) get traded for the inequalities αv

j ·Dd ≤ α
Wd(v)
i (“≥”

in the op-lax case).) Consequently, with Propositions 5.1, 5.8, the construction
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leads from (op)lax colimits (= universal (op)lax cocones) in X to (op)lax colimits
in A when P is order-faithful.

With the Remarks 5.9 we obtain from Proposition 5.8 the following corollary:

Corollary 5.10. For an ordered functor P : A → X and any ordered cate-
gory D, all weighted cocones ξ : PD → X with D : D → A have order-universal
P -extensions if

(a) all 1-weighted and discrete obD-indexed cocones (ξi : PDi → X)i have
order-universal P -extensions;

(b) A has tensor products and P preserves them;
(c) as an ordinary functor, P is faithful.

We can now combine some of the previous statements and formulate a charac-
terization of order-solid functors:

Theorem 5.11. For the ordered functor P : A → X, assume that X has all tensor
products W ⊗ PD (with W in Pos and D in A), as well as conical generalized
pushouts of arbitrary families of tensor comparison morphisms. Then P is order-
solid if and only if A is tensored and P admits order-universal P -extensions for
all 1-weighted cocones of discrete shape. The assumption on X is particularly
satisfied when A is tensored and P preserves tensor products.

Proof: When P is order-solid, by Proposition 5.1 (1), the existence of tensor
products of the form W ⊗PD in X is sufficient to make A tensored; also, trivially,
the specified weighted cocones have order-universal P -extensions. Conversely, the
existence of the specified order-universal P -extensions suffices to make the ordi-
nary functor P solid and, hence, faithful. With our assumptions on X, Proposi-
tion 5.8 now guarantees that P is order-solid.

The additional claim follows from Remark 5.9 (2). �
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Campus Politécnico Santa Maria, 3504-510 Viseu, Portugal

E-mail: sousa@estv.ipv.pt

W. Tholen:
Department of Mathematics and Statistics, York University, 4700 Keele St,
Toronto, Ontario, M3J 1P3, Canada

E-mail: tholen@mathstat.yorku.ca

(Received December 28, 2018, revised March 12, 2019)


		webmaster@dml.cz
	2020-11-23T16:01:17+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




