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Abstract. General circle packings are arrangements of circles on a given surface such
that no two circles overlap except at tangent points. In this paper, we examine the optimal
arrangement of circles centered on concentric annuli, in what we term rings. Our motivation
for this is two-fold: first, certain industrial applications of circle packing naturally allow for
filled rings of circles; second, any packing of circles within a circle admits a ring structure
if one allows for irregular spacing of circles along each ring. As a result, the optimization
problem discussed herein will be extended in a subsequent paper to a more general setting.
With this framework in mind, we present properties of concentric rings that have common
points of tangency, the exact solution for the optimal arrangement of filled rings along
with its symmetry group, and applications to construction of aluminum-conductor steel
reinforced cables.

Keywords: optimization; minimal separation; dense packing
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1. INTRODUCTION

Circle packing in a circle is a two dimensional problem of packing n equal circles
into the smallest possible larger circle. In the cases of n = 7,19, 37,61, 91, the optimal
solution (n = 7 and 19, see [2]) or the conjectured optimal solution (n = 37,61 and 91,
see [3]) contain filled rings of circles as shown in Figure 1. Such an arrangement is
particularly useful when we want to arrange circles into layers. Here we explicitly
study the optimal packing of discs in filled rings with minimal separation.

One may consider minimal separation of rings with either disjoint or tangential
discs and for identical or unequal discs in separate rings. Optimal packing of discs
in rings with such variety of possible arrangements has an array of applications. For
example, optimal construction of submarine communication cables or high voltage
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(a)
Figure 1. The optimal arrangement of circles in a circle contains filled rings of circles for:
(a) n =19 (see [2]), (b) n = 37 (conjectured) (see [3]), and (c) n = 61 (conjec-

tured) (see [3]).

power cables may require cables composed of fiber optics in rings of tubes, or rings
of strands of steel and aluminum, each having a different radius [10], [11]. A circular
constellation diagram that represents a signal modulated by a digital modulation
scheme [4], [7] may require identifying the centers of disjoint discs that are on mini-
mally separated rings to improve the noise tolerance of the transmission. A sequential
or recursive circle packing problem on circles [8] may be solved as an optimal packing
of rings. Subsequently, the finding of minimally separated rings is an important class
of circle packing problems.

Packing equal circles into an annulus has been studied under packing with circular
prohibited areas [5], [9]. Generally, only the computational optimal solution is found
by using iteration schemes such as the Zoutendijk method, which generates improved
feasible directions at each iteration [12]. In this paper, we formulate the optimization
problem related to minimal separation of filled rings. We show that when the discs in
each ring are externally tangent, the exact solution can be found by solving an integer
optimization problem on a finite set of integers. As an example, we demonstrate
the application of the solution to the design of aluminum conductor steel-reinforced

(ACSR) cables.

1.1. Problem formulation. Define Ring(m,r, s) as the set of m > 3 congruent
discs with circular boundaries of radius r > 0, whose centers are regularly spaced on
a common core circle of radius s > r centered at a point O, and whose interiors are
disjoint; see both part (a) and part (b) of Figure 2. As indicated in part (b) of that
figure, although the interiors of the discs are disjoint, the discs may be externally
tangent to each other on their boundary circles, in which case we say the ring is
filled. In a filled ring, the core circle necessarily has radius r csc(n/m), as indicated
in part (b) of Figure 2, and thus we will write just Ring(m, r) for a filled ring. This
filled case is of primary interest in the current paper; however, certain geometric
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properties which are established in this paper hold for general rings which may not
be filled, and these will find further applications in a subsequent paper.
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(a)

Figure 2. (a) The set of m congruent discs of radius r with centers regularly spaced on
a core circle of radius s centered at O, denoted by Ring(m,r, s); here m = 5.

(b) A filled ring denoted by Ring(m,r), where the radius of the core circle is

r csc(n/m) and consecutive discs are externally tangent to each other; here m = 9.

Because the discs in Ring(m,r, s) have boundary circles and the circles likewise
bound discs, we will at times speak both of the discs of Ring(m,r,s) or the cir-
cles of Ring(m,r,s); if a sharp distinction is needed at any point, we will provide
clarification.

Consider two concentric rings Ring(m, r, s) and Ring(n, g, o) such that the inequal-
ity 0 > s holds. With this constraint, the core circle of Ring(n, g, o) lies outside of
the core circle of Ring(m,r,s). We say the two rings are arranged orderly if the
interiors of the discs from the two rings are disjoint, but there exists at least one
point of tangency between discs from the two rings; see Figure 3 which shows both
the general case in part (a) as well as the filled case in part (b).

In this paper we will be primarily interested in a set of filled rings Ring(m;,r;),
1 =1,2,...,p, such that r; 1 csc(n/m;t1) > rycsc(n/m;) foralli=1,...,p—1, and
where each successive pair Ring(m,,r;) and Ring(m;41,7;41) are arranged orderly.
We say the orderly packing has minimal separation with respect to a fixed initial
radius r; if the packing minimizes successive radii of the rings Ring(m;,r;), i =
2,...,p, over all such orderly packings.

Our problem is therefore to find orderly packings of filled rings that exhibit mini-
mal separation. To this end, the outline of the paper is as follows: In Section 2, we
prove initial geometric properties of concentric orderly packed pairs of rings, both

3



Figure 3. (a) An orderly packing of two concentric rings Ring(m,r,s) and Ring(n, g,0).
(b) An orderly packing of two filled rings Ring(m,r) and Ring(n, ).

filled and otherwise. In Section 3 we provide an exact solution for the problem of
minimizing the radius of an outer filled ring with respect to a fixed inner filled ring,
and determine the symmetry group of this optimal solution. In Section 4 we im-
plement this solution computationally to generate examples of minimally separated
orderly packed rings, in particular some that are relevant to the construction of high
voltage power line cables.

2. GEOMETRY OF CONCENTRIC RINGS

In this section we prove several observations of orderly packed concentric rings;
these hold for general rings, not just filled rings, except where noted. All of these
observations in and of themselves are basic, but nevertheless their combined effect
will allow the solution of our optimization problem in Section 3.

Proposition 2.1. Consider two fixed concentric orderly packed rings Ring(m,r, s)
and Ring(n, o, o) centered at a point O. Let C be a circle centered at a point X on
Ring(m,r, s). Then the following four statements are true:

1. No more than two circles from Ring(n, o, o) are tangent to C.

2. If two circles from Ring(n, o, 0) are tangent to C, those circles are consecutive
along their ring, and are reflections of each other in the line OX.

3. If any circle from Ring(m,r, s) centered at a point X; is tangent to a circle from
Ring(n, p,0) centered at a point Yj, then the central ZX,0Y; = 0 for a fixed
value 6 > 0 that is uniquely determined by r, s, o and o.



4. The points of tangency between any circles of the two rings are themselves on
a circle with center O.

Proof. The proof is a compass and straight-edge construction in Euclidean ge-
ometry. Fix a circle C' centered at a point X on Ring(m,r,s). Then OX is a fixed
value s. If a circle Cy centered at a point Y on Ring(n,e,0) is tangent to C at
a point P, then OY is a fixed value of 0 and XY is a fixed value, namely r + o.
This is shown in Figure 4, where Y must be both on a gray circle co of fixed radius
centered at O, and on a gray circle cx of fixed radius centered at X. Circles intersect
each other in at most two points, hence there are at most two points where Y can
occur, and these are reflections of each other through the line OX, as indicated by Y’
and Y’ in Figure 4. This establishes item 1.

CxX

co

Figure 4. There are only two points Y and Y’ which could be centers for the circle tangent
to C, and these are reflections of each other through the line OX.

Next, observe that if both the circle C'y centered at Y and the circle Cy- centered
at Y’ are tangent to C, with the latter tangent at a point P’, by the reasoning
in the above paragraph, Cy- is a reflection of Cy through the line OX, and P’ is
a reflection of P, as indicated by the circle Cy+ in Figure 5. Moreover, these circles
must be consecutive along Ring(n, 0,0), and in the case when the rings are filled,
have OX as a common tangent line as indicated in Figure 5. The reason for this is
as follows: if there were an intermediate circle along Ring(n, g, ) between these two
circles, its center would be along the subarc of ¢o which intersects the disc bounded
by cx. The points along this subarc have distance to X less than r + o, and thus
this intermediate circle with radius ¢ would be forced to intersect C at two points,
since the distance from X to C'is r; this contradicts the orderly packing of the two
rings. This establishes item 2.



Figure 5. Two circles tangent to C' are reflections of each other through the line OX and
consecutive in their ring.

Finally, nothing special was assumed for C, and the above two paragraphs show
that the construction in Figure 4 is in fact generic for any point of tangency P
between circles on Ring(m,r,s) and circles on Ring(n, g,0), and only depends on
the fixed lengths OX = s, OY = o, and XY = r + p. Thus, any point of tangency
between circles in the two rings will look precisely like that in Figure 4 after some
series of rigid transformations which fix O. As a result, there is only one magnitude
for any resulting central angle ZXOY, and only one distance from O to points of
tangency P, and this establishes items 3 and 4. O

For a given collection of orderly packed rings, we will denote by S the symmetry
group of the packing, namely the group of isometries of R? which keep the packing
fixed. Rings are bounded subsets of R? and can be invariant under reflections and
rotations. Recall that the dihedral group is denoted by D,,, which is the symmetry
group of a regular n-gon, made up of n rotations and n reflections. We thus have
the following basic lemma, whose proof we provide for completeness.

Lemma 2.1. Consider a single ring Ring(m, r, s) centered at a point O.

1. The rotations which fix Ring(m,r, s) are precisely those around O which are
integer multiples of 2r/m.

2. The reflections that fix a filled Ring(m,r) are precisely across those m lines
which contain O as well as either the center of a circle on Ring(m,r) or a point
of tangency between two circles on Ring(m,r).

3. The symmetry group S of a filled Ring(m,r) is D,,, the dihedral group of
order 2m.



Proof. For item 1 we observe that the m circles which comprise Ring(m,r, s)
all have the same radii, and their m centers are regularly spaced along the core
circle of the ring with angular separation 27/m between successive centers. Thus,
the rotations that take centers of congruent circles to centers of congruent circles,
and hence fix Ring(m,r, s), are precisely those that are integer multiples of 21/m.

For item 2 we consider two cases, namely when m is even or odd. When m is
even, the line OX, which passes through the center X of a circle on Ring(m,7),
must also extend through O to a diameter of the core circle that intersects an an-
tipodal center X’ of a circle on Ring(m,r); see part (a) of Figure 6. This line then
divides Ring(m,r) evenly in half and is a line of reflection, and there are m/2 such
distinct lines. Similarly, the line OP which passes through a point of tangency be-
tween two consecutive circles must extend through O to a diameter of the core circle
that intersects an antipodal point of tangency P’ on the opposite side of the filled
Ring(m, r); see part (b) of Figure 6. This line then divides Ring(m,r) in half and is
a line of reflection, and there are m/2 such distinct lines, yielding a total of m lines
of reflection.

Figure 6. Lines of reflection for a filled ring Ring(m,r). Parts (a) and (b) are for the case
of m even, and part (c) is for the case of m odd.

When m is odd, the line OX which passes through the center X of a circle on
Ring(m, r) can be extended through O to a diameter which intersects the core circle
halfway between the centers of two circles on Ring(m,r), and hence passes through

a point of tangency P; see part (c) of Figure 6. A reflection across OX P thus fixes
Ring(m, r), and there are m such lines, one for each center of a circle on Ring(m, r).

Finally, no other lines of reflection exist, as any other line which passes through O
but does not intersect a center or a point of tangency, will intersect some circle in
a non-diameter chord. Reflection across the chord yields two points of intersection of
that circle with its image, hence does not fix the ring. This proves items 2 and 3. O

We now consider the symmetry group for two orderly packed rings.



Lemma 2.2. Let Ring(m, r, s) and Ring(n, g, o) be two concentric orderly packed
rings centered at a point O. Let S be the symmetry group of the packing, and also
let k = ged(m,n).

1. S contains as its rotations precisely all rotations about O by integer multiples
of the angle 2n/k, hence exactly k rotations.

2. For filled rings Ring(m,r) and Ring(n, o), the reflections in the group S are
precisely through those lines which pass through the center O, and which contain
either a center of a circle or a point of tangency between circles on Ring(m, ),
as well as either a center of a circle or a point of tangency between circles on
Ring(n, o).

3. The symmetry group S for the orderly packing of filled rings Ring(m,r) and
Ring(n, o) contains at most k reflections.

Proof. For item 1, observe that since k|m and k|n, we have k¥ = m/m’ and
k =n/n’ for some m/,n’ € N. Therefore, 2n/k = m' - 2n/m =n'-21/n, so by item 1
in Lemma 2.1, a rotation of 2r/k about O fixes both Ring(m,r, s) and Ring(n, g, o).
Thus, the symmetry group S contains all rotations about O by multiples of 2rt/k,
hence at least k rotations. Moreover, by Lemma 2.1 item 3 and Lagrange’s theorem
for finite groups, this rotational subgroup of S must be a subgroup of both the m
rotations in D, and the n rotations in D,,, and thus its order must divide both m
and n. Since k = ged(m, n), there are at most k rotations in S, and item 1 follows.

For item 2, we observe that by Lemma 2.1 item 2 any line containing O as well as
either a center of a circle or a point of tangency on the filled Ring(m, ), and either
a center of a circle or a point of tangency on the filled Ring(n, 0), will be a line of
reflection for the packing. Moreover, again by Lemma 2.1 item 2, these are the only
possible lines of reflection. This establishes item 2 of the current lemma.

For item 3, again by Lemma 2.1 item 3 the symmetry group S for the orderly
packing of filled rings Ring(m, ) and Ring(n, ¢) must be a subgroup of both dihedral
groups D,,, and D,,, so again by Lagrange’s theorem the order of S must divide both
2m and 2n. We know that ged(2m, 2n) = 2k, with the result that S can contain at
most 2k elements. By item 1 in the current lemma we know S already has exactly k
rotations; it must then have at most k reflections, and this establishes item 3. ([

In the next section we will formulate and solve the optimization problem related
to the orderly arrangement of two concentric filled rings, Ring(m, r) and Ring(n, o),
with center O such that g csc(n/n) > rcsc(n/m). To do so, by Lemma 2.2 item 1, we
only need to consider the minimization problem over a circular sector with a central
angle of 21/k. We therefore conclude this section by establishing notation as well as
an initial lemma before formalizing the minimization problem in the next section.
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Referring to Figure 7, we denote the centers of the circles in Ring(m,r) and
Ring(n, ) by Xo,...,Xm—1 and Yp,...,Y,_1, respectively, in a cyclic counterclock-
wise ordering along their respective rings. Let X and Yy be the centers of two circles
which share a point of tangency P, with X positioned on the polar axis, and Yj
positioned at a central angle 6, which we may assume is non-negative after possibly
reflecting both rings in OXy. We emphasize we are not claiming this is a line of re-
flection for the symmetry group, just that the solution to our minimization problem
will not depend on this initial setup.

Figure 7. The rotationally invariant sector of angle 2n/k.

Consider the half-open infinite circular sector ® having vertex at the origin and
with central angle 2rt/k, which contains all points having polar angles ¢ € [0, 2n/k),
with X positioned at ¢ = 0. We then have the following initial lemma.

Lemma 2.3. In the sector ® described above, we have /X,0Yy = 6 < n/m.

Proof. We think of r,m, o and n as all fixed and examine the local configuration
of the circles centered at X,, X1 and Yj,; we consider what values of 6 can be
geometrically realized for these circles in an orderly packing while maintaining the
point of tangency P between the circles centered at Xy and Y. To this end we refer
to part (a) of Figure 8 which shows local configuration. The centers Xy and X3
are on their core circle indicated in dashed gray, and by hypothesis we must have
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a point of tangency P between the circle centered at X and the gray circle centered
at Yy, at some angle 6 which a priori could be as small as zero. In order to maintain
this point of tangency, we require Yy to be on a dotted black circle ¢ of radius
r + o centered at Xy. Thus, any possible increase in € in this local configuration
is effectively accomplished by rolling the gray circle centered at Yy counterclockwise
along the circle centered at Xy, as indicated in the movement from part (a) to
part (b) in Figure 8, keeping all other aspects of the figure fixed. At § = n/m the
gray circle centered at Yy will have its center on the line containing the point of
tangency between the circles centered at Xy and Xi, and by the construction in
Proposition 2.1 the gray circle centered at Yy will then have the second point of
tangency P’ with the circle centered at X, as indicated in part (b) of Figure 8.
It is then evident that # can no longer increase, since doing so would roll the gray
circle further counterclockwise so as to intersect the circle centered at X; twice, thus
breaking the orderly packing. Hence, 6 < n/m. O

Figure 8. Possible increase of § while maintaining the point of tangency P.

3. MINIMAL SEPARATION OF FILLED ORDERLY PACKED RINGS

Here we formulate and solve the optimization problem related to the orderly ar-
rangement of two filled rings, Ring(m,r) and Ring(n, ¢), with center O such that
ocsc(n/n) > resc(n/m). If the rings are arranged orderly, from Proposition 2.1
we have at most min{2m, 2n} tangent points between them. For given r,m and n,
consider the minimization of the objective function f(p) = o constrained by finitely
many tangent points between the rings. Since f’(¢) = 1, from the first order nec-
essary conditions (see [6]), any optimal solution is a boundary point. Subsequently,
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the constrained set is given by
(3.1) 0 < |Ring(m,r) N Ring(n, o)| < min{2m, 2n}

with at least one constraint active (at least one tangent point).

With k£ = ged(m, n), as discussed in the end of Section 2 we only need to consider
the minimization problem over the circular sector ® with a central angle of 2x/k.
Using the notation and positioning described in Figure 7, we then have the following
initial proposition which shows in our minimization problem we will necessarily have
multiple points of tangency between rings within the sector ®.

Proposition 3.1. If P is the only point of tangency in the circular sector @,
then o is not minimized for the orderly packing.

Proof. We examine the entire orderly packing under the condition that only one
point of tangency occurs in the circular sector ®; we do this examination first for fixed
r, m, o and n, and then show that in fact ¢ is not minimized and can be decreased
while maintaining the orderliness of the packing. To this end, by Lemma 2.2 item 1
we know there will be precisely k points of tangency over the entire packing, namely
one each in their own circular sector that is rotationally symmetric to ® by rotations
that are integer multiples of 2rt/k. By Proposition 2.1, all of these points of tangency
must occur on a circle of fixed radius R from O, where R is determined by the
construction in the proof of that proposition, which in turn depends only on the
fixed values r,m, o and n. Furthermore, no circle in the packing has two points of
tangency on it, and if a point of tangency occurs between a circle with center X; and
a circle of center Yj, then ZX;0Y; = 0.

We therefore consider how the circle of radius R around O intersects both rings.
We imagine the circles in Ring(n, ¢) as bounding discs colored in light gray, and
the circles in Ring(m,r) as bounding discs colored in darker gray, as in part (a)
of Figure 9; there the points of tangency are indicated by P’s, and the circle C' of
radius R containing these points of tangency is indicated as well. We first consider
the case when 6 > 0, which is depicted in Figure 9; once establishing this case, that
of 6 = 0 will follow quickly.

In the case of # > 0, referring back to Figure 8 it is clear we will have that
o(ese(n/n) — 1) < R < r(1 4 csc(n/m)), meaning that the circle C' will intersect
Ring(m,r) in m dark gray arcs aq, ..., am, one for each disc in Ring(m,r), and C
will intersect Ring(n, ¢) in n light gray arcs f1, . .., Bn, one for each disc in Ring(n, o).
These arcs are shown in part (b) of Figure 9, where circle C' has been magnified for
ease of visualization. The only places where the arcs are not disjoint are the points of
tangency P, and since no circle has two points of tangency, these points occur at most
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Figure 9. Making room to decrease g in the case where only one point of tangency occurs
in each sector.

once for each arc, in particular at most once for the arcs f1,..., 8,. Furthermore, if
we think of each arc as oriented in the direction of increasing polar angle ¢, each arc
has a front endpoint at greater p-value, and a back endpoint at lesser p-value. This
has the following consequence: First, recall that if a circle centered at Y; in Ring(n, o)
is tangent to a circle centered at X; in Ring(m,r), then Yj is at greater polar angle
relative to X;. Therefore, the corresponding light gray arc 3; will necessarily intersect
the dark gray arc a; at /3;’s back endpoint. Therefore on C, every front endpoint of 3;
is disjoint from Ring(m,r), and there exists an € > 0 such that rotating Ring(n, )
about O for € radians will induce rotation on §; so as to keep the lengths of all j;
fixed, but rotate them to be entirely disjoint from Ring(m,r); this is indicated in
the movement from part (b) to part (c¢) in Figure 9. As a result, the new rotated
Ring(n, p) will be entirely disjoint from Ring(m,r), since any point of intersection
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between the two rings necessarily includes points on C' by construction, with fixed p.
With this new rotated Ring(n, 0) disjoint from Ring(m,r), o can be decreased, along
with the radius gcsc(n/n) of the core circle, to obtain a new orderly packing with
smaller p.

Finally, when 6 = 0, the above argument applies, but where each arc a; and 3; is
in fact just a point; as a result there is still room to rotate Ring(n, o) forward so as
to make the two rings disjoint, and then decrease o. O

We can now formulate the precise minimization problem. Returning to Figure 7,
the polar coordinates of the centers in the sector ®, which includes all angles in the
closed interval ¢ € [0, 2n/k], are given by

2
Xiz(rcscl,—ni), 1=0,1,2,...,
m’ m

, and

- 1.

=3 =3

2
Vi =(oese 2,55 46), j=0.1,2,...,
n n

Since £X,;0Y; = 2nj/n—2ni/m+ 6, by applying the cosine rule for AOX;Y;, we get

T T T T 2n 2m
2 4 p%csc? = — 2rpcesc — csc — cos(—j -—+ 9(@)).
m n m n n m

(r+ 0)* < r?esc

For the special case of AOXyYy this will in fact be an equality, namely

T T T T
(r+0)? = r*csc® — 4 p? csc? — — 2rpcsc — csc — cos 0(0).
m n m n

Then the minimization problem can be formulated as:
(3.2)  minimize f(0) = o,

(3.3) subject to pcsc T > rcesc i,
n m

(3.4) 0<0(p) < 1, (by Lemma 2.3)
m
(3.5) (r + 0)? = r? csc? T + 0% esc? T 2rpcsc T ese L cos 0(p),
m n m  n
(3.6) (r+ 0)* < r?csc? T4 0% csc? Iy
m n
2y 2m
— 2rocsc T oese X cos(—m _ + 9(@)) ,
m  n n m
m n
Vi=12,...,—, j=0,1,2,..., - — 1.
Z ) ) ) k ? J ? ) ? ? k

Next we show that the solution can be found by solving a linear integer programing
problem.
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Theorem 3.1. The solution for the minimization problem (3.2)—(3.6) with
n,m > 2 is given by (3.5) with 0 = n(io/m — jo/n), where (ig, jo) is the solution to:

. ?
minimize; ; —
’ m

Sl 3~

subject to  — —L >0, ie1,2,..., 2 jeo,1,..., 21
m k k

Proof. Throughout this proof we utilize the fact that 0 < n/n,n/m < /2.
Claim 1: argmin f (o) = argmax 6(p). Differentiating (3.5) with respect to g gives
0 )

dd _r+o- ocsc?(n/n) + resc(n/m) esc(n/n) cosf
do rocsc(n/m) cse(n/n) siné '

Suppose df/dg = 0. Then r + o — gcsc?(n/n) + 7 csc(n/m) csc(n/n) cos§ = 0 and we
have

(3.7) (r + 0)%sin® I 0% csc? T2 ese?
n n

T o026 — 2rpcsc T ese = cosh.

m m n

We observe (refer back to Figure 2 part (b)) that all the consecutive tangent points of
Ring(m, r) are on a circle of radius r cot(n/m). If p cot(n/n) = r csc(r/m), Ring(n, o)
contains the core circle of Ring(m,r). Then with the rings viewed as collections of
discs, Ring(m,r) N Ring(n, ) is infinite, which contradicts (3.1). We therefore must
have gcot(n/n) > rcsc(n/m). Subtracting equation (3.7) from equation (3.5) and
using the fact that 0 < n/n < /2 and pcos(n/n) > rcsc(n/m) sin(n/n),

. . T T 0 T
sinf = sin — [ cos — + = cos —
m nor n

. T e . T i
> sin — | cos — + Sin — ¢sC —
m n n m

. I s . T . T
> sm—(cos— —|—sm—) > sin —.
m n n m

Since 0 € 6 < n/m < 1/2 by Lemma 2.3, we have a contradiction. We conclude that
df/dp # 0 in the feasible region.
When 6 = 0 and n > 2, we have that r csc(n/m) = pcsc(n/n) —r — o and

T+Q—QCSCQE+TCSC£CSCE:(T+Q)<1—CSCE) < 0.
n m  n n

Then gh%l+ df/dp = —oco. Hence df/dp < 0 for all 0 < § < n/m, which concludes
—
the proof of the claim.
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Claim 2: i/m < j/n or 0 < 0 < n(i/m — j/n), with equality holding for at most
one pair of i, j in the feasibility region.

First, we show that for any given parameter set (n,m,r, 0), at most one of the
set of inequality constraints given by (3.6) is active. That is, we have at most two
tangency points between rings over the circular sector with a central angle of 27/k.
For any two tangent circles with centers at X; and Yj, by Proposition 2.1 item 3 we
know that ZX;0Y; = 2nj/n — 2ni/m + 6 = £6. If 2rj/n — 2ni/m + 6 = 6, then
j/i=n/m=(n/k)/(m/k). Since (n/k)/(m/k) is an irreducible fraction, along with
0<j<n/kand 0 < i< m/k, there is no integer pair (4, j) satisfying the equation.
We can only have

2nj  2m

(3.8) +0=—0.

n m
If there are two pairs of integers (i1,71) and (i, j2) satisfying (3.8), then (ji; — ja2)/
(i1 —i2) = (n/k)/(m/k). The same argument as above shows that there are no such
two pairs. We must have at most one pair (4,j), and hence one active inequality
constraint, satisfying (3.8).

From equation (3.5) and inequalities (3.6) we obtain cos§ > cos(2nj/n—2mi/m+0)
for all 4,5. We know 6 € [0,1/2), but the argument in the cosine function on the
right-hand side of this inequality could be positive or negative; as a result we obtain

Sl or 0<9<1‘c<——l).
n m n

)
m
However, i/m # j/n, which completes the proof of the claim.
Since pcot(n/n) > rcsc(n/m), inequality constraint (3.3) is inactive. Let [0, 6p]
be the feasibility region for 8. Then from Claim 2 and inequality constraint (3.4),

0,60]= ) [o,min{iz‘ _ Iy EH
i/m—3j/n>0 m nem
We have max 6§ = 6y. From Proposition 3.1 we know there are at least two tangency
points between rings over the circular sector with a central angle of 2r/k. Subse-
quently, the feasible region is completely characterized by constraints (3.5)—(3.6).
From Claim 2 and Proposition 3.1, 8y = n(¢/m — j/n) for exactly one positive (i, j)
pair given by the integer optimization problem in the theorem statement. From
Claim 1, the optimal solution for the minimization problem (3.2)—(3.6) is given
by (3.5) with 6 = 6,. O

As an immediate consequence we can confirm that this optimal solution for the
orderly packing of two concentric rings has the symmetry of a dihedral group.

15



Proposition 3.2. Let Ring(m,r) and Ring(n, ¢) be two concentric filled orderly
packed rings centered at a point O, with minimal separation. Let k = gcd(m,n).
Then the symmetry group S of this minimal packing is Dy, the dihedral group of
order 2k.

Proof. By Lemma 2.2 item 1 we already know that S contains precisely k rota-
tions. Furthermore, by Lemma 2.2 item 3 we also know that S contains at most k
reflections. We thus need to show that there are at least k distinct lines of reflection.

To see this, consider the following: From Theorem 3.1 we know that in each
of the k copies of the rotationally invariant sector ® there are exactly two points
of tangency between Ring(m,r) and Ring(n, g), with the first point of tangency
(proceeding counterclockwise) occurring for an angle ZX,0Y, = 6 and the second
occurring for an angle ZX;0Y; = —0, for some 6 > 0. As a result, the ray v which
extends from O and bisects £/ XoOX; must also bisect £Y,0Y}; see Figure 10.

Figure 10. Identifying rays which lie on lines of reflection.

Since v bisects ZXoOX; between the centers of two circles on Ring(m,r), by the
individual rotational symmetry of Ring(m,r) we know that v must intersect either
a center of a circle or a point of tangency between circles on Ring(m,r), depending
on whether an odd or even number of circles occur along Ring(m,r) between the
circles corresponding to Xy and X;. Likewise since vy bisects ZY;0Y;, it must also
intersect either a center of a circle on Ring(n, 0) or a point of tangency between
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circles on Ring(n, o). As a result, by Lemma 2.2 item 2 the ray v must lie on a line
of reflection for the packing. This gives at least k distinct rays which lie on lines of
reflection for the packing.

We require a bit more to show that there are at least k lines of reflection. We con-
tinue further along both rings, and now consider the sector of the rings which begins
at the ZX;0Y; = —0 described above, and then proceeds further counterclockwise
to the next point of tangency which will be at an angle AX{OYJ-’ = 0; again refer to
Figure 10. Again, there is now a ray 4’ which extends from O and bisects ZX,;0X]
as well as AYjOYj' , and thus by the exact same reasoning as in the above paragraph,
~" must lie on a line of reflection for the packing. We thus obtain at least 2k distinct
rays which lie on lines of reflection for the packing, hence at least k distinct lines of
reflection, and this concludes the proof of the proposition. O

4. RESULTS AND APPLICATIONS

Here we discuss several examples of finding ¢ for the orderly packing with minimal
separation of filled Ring(m, r) and Ring(n, o), where m,n € N and r are given. From
equation (3.5), the optimal p is given by the quadratic equation

(4.1) 0? cot? T 2rg<1 + csc T ese = cos 90) + 72 cot? I _ 0,
n m n m

where 6 is the optimal 8 given in Theorem 3.1. The larger solution is achieved when
Ring(n, o) is outside of Ring(m,r).

In packing problems, the general objective is to obtain a packing of the greatest
possible density, calculated as the ratio of the total area occupied by circles to the
container area. For two orderly packed rings Ring(m,r) and Ring(n, ¢), a higher
number of tangency points between rings results in a more compact packing. In this
example, we numerically demonstrate the local optimality of the density when every
circle in Ring(m,r) has at least one point of tangency with the circles of Ring(n, o).
Below we identify two such groups of orderly packed rings with minimal separation.

(1) Suppose n =pm, p € N. Then k = m and the symmetry group of the packing
is Dy,. We have : = 1 and j = 0,1,...,p — 1. Angle 6 is maximized when
j=p—1and 0y = n/n. The circles with centers X, and Yy and the circles with
centers X; and Y,_; are tangent (see Figure 7). With rotational symmetry for
every angle 2n/m, every circle in Ring(m, r) has exactly two points of tangency
with the circles of Ring(n, 0). See Figure 11 for some examples.

(2) Suppose m = 2p and n = (2¢+1)p, where p,q € N. Then k = p and the symme-
try group of the packing is D,. We have i =1,2 and j =0,1,...,2¢. Angle §
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is maximized when ¢ = 1 and j = ¢, and the maximum is 6y = nt/[2p(2q + 1)].
Every disk in Ring(m,r) has exactly one point of tangency with the discs of
Ring(n, o). See Figure 12 for some examples.

5 51 51
0 ot ol
-5 -5t 5t

-5 0 5 5 0 5 -5 0 5

Figure 11. Minimally separated orderly packed rings, Ring(m,r) and Ring(n, o), with (a)
m=>5n=5r=1and p=3.217, (b) m=5,n =10, r =1 and o = 1.1415,
and (¢) m=5,n=15,r =1 and p = 0.6895.

6t 6t
4+ 4t
2t 2t
0t 0t
_9t _9l
—4t —4t
g 0 5 05 0 5

Figure 12. Minimally separated orderly packed rings, Ring(m,r) and Ring(n, o), with (a)
m=6,n=9,r=1and p=15312, (b) m=6,n=15,r=1, and o = 0.7813
and (¢) m=6,n=21,r =1 and p = 0.5232.

Figure 13 illustrates the highest density of two orderly packed rings, Ring(m,1)
and Ring(n, ), in an annulus of inner and outer radius csc(n/m) — 1 and g x
(csc(n/n) + 1), respectively. The peaks in each plot represent local maxima and
occur when n/m =p/2, p=2,3,4,...

Orderly packed rings are useful in high voltage power cable designs. Aluminum
conductor steel-reinforced (ACSR) cable is a high-capacity, high-strength stranded
conductor used in overhead power lines. The outer strands are aluminum, chosen for
its high conductivity, and the center strands are steel, chosen to increase the strength
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Figure 13. Ratio n/m versus density for two orderly packed rings with minimal separation,
Ring(m, 1) and Ring(n, g), for (a) m = 4,6, 8,10 (the lowest curve corresponds
to m =4), (b) m = 12,14, 16, 18,20, and (c) m = 22, 24, 26, 28, 30.

of the cable. Each strand has a circular cross section. High strand packing density
is achieved by placing the wires in rings (see Figure 14).

Figure 14. Strands in high voltage power cables. Steel strands are shown in black and
aluminum strands are shown in light gray.

Strand conductor rings are often compressed to reduce the diameter. After com-
pression, the aluminum strands no longer have precisely circular cross sections. In
practice, it is appropriate to choose a radius that is slightly smaller than the opti-
mal radius for aluminum strands to allow for compression. For orderly packed rings
Ring(m, 1) and Ring(m +6, o), the inner radius of the outer ring is at most the outer
radius of the inner ring, with the result

cse(n/m) + 1

(42) es cse(n/(m+6)) — 1’
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the right-hand side is monotone decreasing for m > 1. From Theorem 3.1 we can
obtain the optimal ¢ as 1 for m = 6. Combined with inequality (4.2), we obtain
1 < 0 < 1.04 for minimal separation given m > 6.

In ACSR cables, a sequence of orderly packed rings, Ring(m + 6i,0;), i =
1,..., N, can be effectively constructed using equal radius aluminum strands. Since
rcsc(n/6) = 2r, we can orderly pack Ring(6, 1) on a disk with radius 1. Subsequently,
1, 7, or 19 equal radius steel strands for the steel core, combined with 20 (7 and 13
orderly packed rings with minimal separation), 24 (9 and 15), 26 (10 and 16), 30 (12
and 18), or 45 (9, 15, and 21) equal radius aluminum strands in two or three rings,
are all appropriate configurations. Most of these configurations are already used in
commercial designs of ACSR cables. See [1] for technical data on AcuTech™ ACSR
conductors. We can expand this list to many other configurations. Note that among
all possible sequences of rings, two sequences, 6,12,18,24,... and 9,15,21,27,. ..,
have the highest number of tangent points when minimally separated and possibly
provide the most compact configurations for the aluminum rings. Figure 15 illus-
trates possible configurations along with the density. Upon request, the authors can
provide a set of MATLAB programs to find the optimal ¢ and 6y and to plot the
orderly packed rings with minimal separation.
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