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UNIT-REGULARITY AND REPRESENTABILITY
FOR SEMIARTINIAN ∗-REGULAR RINGS

Christian Herrmann

Abstract. We show that any semiartinian ∗-regular ring R is unit-regular;
if, in addition, R is subdirectly irreducible then it admits a representation
within some inner product space.

1. Introduction

The motivating examples of ∗-regular rings, due to Murray and von Neumann,
were the ∗-rings of unbounded operators affiliated with finite von Neumann algebra
factors; to be subsumed, later, as ∗-rings of quotients of finite Rickart C∗-algebras.
All the latter have been shown to be ∗-regular and unit-regular (Handelman [5]).
Representations of these as ∗-rings of endomorphisms of suitable inner product
spaces have been obtained first, in the von Neumann case, by Luca Giudici (cf. [7]),
in general in joint work with Marina Semenova [9]. The existence of such repre-
sentations implies direct finiteness [8]. In the present note we show that every
semiartinian ∗-regular ring is unit-regular and a subdirect product of representables.
This might be a contribution to the question, asked by Handelman (cf. [3, Problem
48]), whether all ∗-regular rings are unit-regular. We rely heavily on the result of
Baccella and Spinosa [1] that a semiartinian regular ring is unit-regular provided
that all its homomorphic images are directly finite. Also, we rely on the theory
of representations of ∗-regular rings developed by Florence Micol [12] (cf. [9, 10]).
Thanks are due to the referee for a timely, concise, and helpful report.

2. Preliminaries: Regular and ∗-regular rings

We refer to Berberian [2] and Goodearl [3]. Unless stated otherwise, rings will be
associative, with unit 1 as constant. A (von Neumann) regular ring R is such that
for each a ∈ R there is x ∈ R such that axa = a; equivalently, every right (left)
principal ideal is generated by an idempotent. The socle Soc(R) is the sum of all
minimal right ideals. A regular ring R is semiartinian if each of its homomorphic
images has non-zero socle; that is, R has Loewy length ξ + 1 for some ordinal ξ.
A ring R is directly finite if xy = 1 implies yx = 1 for all x, y ∈ R. A ring R is
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unit-regular if for any a ∈ R there is a unit u of R such that aua = a. The crucial
fact to be used, here, is the following result of Baccella and Spinosa [1].

Theorem 1. A semiartinian regular ring is unit-regular provided all its homomor-
phic images are directly finite.

A ∗-ring is a ring R endowed with an involution r 7→ r∗. Such R is ∗-regular
if it is regular and rr∗ = 0 only for r = 0. A projection is an idempotent e such
that e = e∗; we write e ∈ P (I) if e ∈ I. A ∗-ring is ∗-regular if and only if for any
a ∈ R there is is a projection e with aR = eR; such e is unique and obtained as aa+

where a+ is the pseudo-inverse of a. In particular, for ∗-regular R, each ideal I is a
∗-ideal, that is, closed under the involution. Thus, R/I is a ∗-ring with involution
a+ I 7→ a∗ + I and a homomorphic image of the ∗-ring R. In particular, R/I is
regular; and ∗-regular since aa+ + I is a projection generating (a+ I)(R/I).

If R is a ∗-regular ring and e ∈ P (R) then the corner eRe is a ∗-regular ring
with unit e, operations inherited from R, otherwise. For a ∗-regular ring, P (R) is a
modular lattice, with partial order given by e ≤ f ⇔ fe = e, which is isomorphic
to the lattice L(R) of principal right ideals of R via e 7→ eR. In particular, eRe
is artinian if and only if e is contained in the sum of finitely many minimal right
ideals.

A ∗-ring is subdirectly irreducible if it has a unique minimal ideal, denoted by
M(R). Observe that Soc(R) 6= 0 implies M(R) ⊆ Soc(R) since Soc(R) is an ideal.
For the following see Lemma 2 and Theorem 3 in [6].

Fact 2. If R is a subdirectly irreducible ∗-regular ring then eRe is simple for all
e ∈ P (M(R)) and R a homomorphic image of a ∗-regular sub-∗-ring of some
ultraproduct of the eRe, e ∈ P (M(R)).

3. Preliminaries: Representations

We refer to Gross [4] and Sections 1 of [9], 2–4 of [10]. By an inner product
space VF we will mean a right vector space (also denoted by VF ) over a division
∗-ring F , endowed with a sesqui-linear form 〈. | .〉 which is anisotropic (〈v | v〉 = 0
only for v = 0) and orthosymmetric, that is, 〈v | w〉 = 0 if and only if 〈w | v〉 = 0.
Let End∗(VF ) denote the ∗-ring consisting of those endomorphisms ϕ of the vector
space VF which have an adjoint ϕ∗ w.r.t. 〈. | .〉.

A representation of a ∗-ring R within VF is an embedding of R into End∗(V ). R
is representable if such exists. The following is well known, cf. [11, Chapter IV.12]

art
Fact 3. Each simple artinian ∗-regular ring is representable.

The following two facts are consequences of Propositions 13 and 25 in [9] (cf.
Micol [12, Corollary 3.9]) and, respectively, [8, Theorem 3.1] (cf. [6, Theorem 4]).

Fact 4. A ∗-regular ring is representable provided it is a homomorphic image of a
∗-regular sub-∗-ring of an ultraproduct of representable ∗-regular rings.

Fact 5. Every representable ∗-regular ring is directly finite.
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4. Main results

Theorem 6. If R is a subdirectly irreducible ∗-regular ring such that Soc(R) 6=
0, then Soc(R) = M(R), each eRe with e ∈ P (M(R)) is artinian, and R is
representable.

Proof. Consider a minimal right ideal aR. As R is subdirectly irreducible, M(R)
is contained in the ideal generated by a; that is, for any 0 6= e ∈ P (M(R)) one
has e =

∑
i riasi for suitable ri, si ∈ R, riasi 6= 0. By minimality of aR, one has

asiR = aR and riasiR = riaR is minimal, too. Thus, e ∈
∑
i riaR means that eRe

is artinian. By Facts 3, 2, and 4, R is representable.
It remains to show that Soc(R) ⊆M(R). Recall that the congruence lattice of

L(R) is isomorphic to the ideal lattice of R ([13, Theorem 4.3] with an isomorphism
θ 7→ I such that aR/0 ∈ θ if and only if a ∈ I. In particular, since R is subdirectly
irreducible so is L(R). Choose e ∈M(R) with eR minimal. Then for each minimal
aR one has eR/0 in the lattice congruence θ generated by aR/0. Since both
quotients are prime, by modularity this means that they are projective to each
other. Thus, aR/0 is in the lattice congruence generated by eR/0 whence a is in
the ideal generated by e, that is, in M(R). �

Theorem 7. Every semiartinian ∗-regular ring R is unit-regular and a subdirect
product of representable homomorphic images.

Proof. Consider an ideal I of R. Then I =
⋂
x∈X Ix with completely meet irre-

ducible Ix, that is, subdirectly irreducible R/Ix. Since R is semiartinian one has
Soc(R/Ix) 6= 0, whence R/Ix is representable by Theorem 6 and directly finite by
Fact 5. Then R/I is directly finite, too, being a subdirect product of the R/Ix. By
Theorem 1 it follows that R is unit-regular. �

5. Examples

It appears that semiartinian ∗-regular rings form a very special subclass of the
class of unit-regular ∗-regular rings, even within the class of those which are subdi-
rect products of representables. E.g. the ∗-ring of unbounded operators affiliated
to the hyperfinite von Neumann algebra factor is representable, unit-regular, and
∗-regular with zero socle. On the other hand, due to the following, for every simple
artinian ∗-regular ring R and any natural number n > 0 there is a semiartinian
∗-regular ring having ideal lattice an n-element chain and R as a homomorphic
image.

Proposition 8. Every representable ∗-regular ring R embeds into some subdirectly
irreducible representable ∗-regular ring R̂ such that R ∼= R̂/M(R̂). In particular, R̂
is semiartinian if and only if so is R.

The proof needs some preparation. Call a representation ι : R→ End∗(VF ) large
if for all a, b ∈ R with im ι(b) ⊆ im ι(a) and finite dim(im ι(a)/ im ι(b))F one has
im ι(a) = im ι(b).

Lemma 9. Any representable ∗-regular ring admits some large representation.
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Proof. Inner product spaces can be considered as 2-sorted structures VF with sorts
V and F . In particular, the class of inner product spaces is closed under formation
of ultraproducts. Representations of ∗-rings R can be viewed as R-F -bimodules
RVF , that is as 3-sorted structures, with R acting faithfully on V . It is easily
verified that the class of representations of ∗-rings is closed under ultraproducts cf.
[9, Proposition 13].

Now, given a representation η of R in WF , form an ultrapower ι, that is SVF ′ ,
such that dimF ′F is infinite (recall that F ′ is an ultrapower of F ). Observe that
End∗(VF ′) is a sub-∗-ring of End∗(VF ) and dim(U/W )F is infinite for any subspaces
U ⊇W of VF ′ . Also, S is an ultrapower of R with canonical embedding ε : R→ S.
Thus, ε ◦ ι is a large representation of R in VF . �

Proof of Proposition 8. In view of Lemma 9 we may assume a large representa-
tion ι of R in VF . Identifying R via ι with its image, we have R a ∗-regular sub-∗-ring
of End∗(VF ). Let I denote the set of all ϕ ∈ End(VF ) such that dim(imϕ)F is finite.
According to Micol [12, Proposition 3.12] (cf. Propositions 4.4(i), (iii) and 4.5 in
[10]) R + I is a ∗-regular sub-∗-ring of End∗(VF ), with unique minimal ideal I. By
Theorem 6 one has I = Soc(R+ I). Moreover, R∩ I = {0} since the representation
ι of R in VF is large. Hence, R ∼= (R+ I)/I. �
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