## Czechoslovak Mathematical Journal

Xue-Gang Chen
A note on the double Roman domination number of graphs

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 1, 205-212

Persistent URL: http://dml.cz/dmlcz/148050

## Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# A NOTE ON THE DOUBLE ROMAN DOMINATION NUMBER OF GRAPHS 

Xue-Gang Chen, Beijing

Received April, 27, 2018. Published online September 18, 2019.

Abstract. For a graph $G=(V, E)$, a double Roman dominating function is a function $f: V \rightarrow\{0,1,2,3\}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least two neighbors assigned 2 under $f$ or one neighbor with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must have at least one neighbor with $f(w) \geqslant 2$. The weight of a double Roman dominating function $f$ is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a double Roman dominating function on $G$ is called the double Roman domination number of $G$ and is denoted by $\gamma_{\mathrm{dR}}(G)$. In this paper, we establish a new upper bound on the double Roman domination number of graphs. We prove that every connected graph $G$ with minimum degree at least two and $G \neq C_{5}$ satisfies the inequality $\gamma_{\mathrm{dR}}(G) \leqslant\left\lfloor\frac{13}{11} n\right\rfloor$. One open question posed by R. A. Beeler et al. has been settled.

Keywords: double Roman domination number; domination number; minimum degree
MSC 2010: 05C69, 05C35

## 1. Introduction

Graph theory terminology not presented here can be found in [2]. Let $G=(V, E)$ be a graph with $|V|=n$. The degree, neighborhood and closed neighborhood of a vertex $v$ in the graph $G$ are denoted by $d_{G}(v), N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. If the graph $G$ is clear from context, we simply write $d(v), N(v)$ and $N[v]$, respectively. The minimum degree and the maximum degree of the graph $G$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The graph induced by $S \subseteq V$ is denoted by $G[S]$. A cycle on $n$ vertices is denoted by $C_{n}$.

A set $S \subseteq V$ in a graph $G$ is called a dominating set if $N[S]=V$. The domination number $\gamma(G)$ equals the minimum cardinality of a dominating set in $G$. A dominating set of $G$ with cardinality $\gamma(G)$ is called a $\gamma$-set of $G$.

Let $f: V \rightarrow\{0,1,2\}$ be a function having the property that for every vertex $v \in V$ with $f(v)=0$, there exists a neighbor $u \in N(v)$ with $f(u)=2$. Such a function is called a Roman dominating function. The weight of a Roman dominating function is given by the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on $G$ is called the Roman domination number of $G$ and is denoted $\gamma_{R}(G)$. Roman domination was defined and discussed by Stewart in [8]. It was developed by ReVelle and Rosing in [7] and Cockayne et al. in [3].

The original study of Roman domination was motivated by the defense strategies used to defend the Roman Empire during the reign of Emperor Constantine the Great. In order to provide a level of defense that is both stronger and more flexible at a cheaper cost, Beeler et al. in [2] initiated the study of double Roman domination.

A function $f: V \rightarrow\{0,1,2,3\}$ is a double Roman dominating function on a graph $G$ if the following conditions are met. Let $V_{i}$ denote the set of vertices assigned $i$ by the function $f$.
(i) If $f(v)=0$, then the vertex $v$ must have at least two neighbors in $V_{2}$ or one neighbor in $V_{3}$.
(ii) If $f(v)=1$, then the vertex $v$ must have at least one neighbor in $V_{2} \cup V_{3}$.

The double Roman domination number $\gamma_{\mathrm{dR}}(G)$ equals the minimum weight of a double Roman dominating function on $G$, and a double Roman dominating function of $G$ with weight $\gamma_{\mathrm{dR}}(G)$ is called a $\gamma_{\mathrm{dR}}$-function of $G$.

Beeler et al. in [2] showed the relationship between domination and double Roman domination as follows.

Proposition $1.1([2])$. For any graph $G, 2 \gamma(G) \leqslant \gamma_{\mathrm{dR}}(G) \leqslant 3 \gamma(G)$.
A theorem of McQuaig and Shepherd in [4] proves that with the exception of seven graphs, every connected graph $G$ having minimum degree at least two satisfies, $\gamma(G) \leqslant \frac{2}{5} n$. Beeler et al. in [2] posed the following open question.

Question 1.2 ([2]). With the exception of seven graphs, every connected graph $G$ having minimum degree at least two satisfies $\gamma_{\mathrm{dR}}(G) \leqslant \frac{6}{5} n$. Can this bound be improved?

Similarly, a theorem of Reed in [6] proves that every connected graph $G$ having minimum degree at least three satisfies the inequality $\gamma(G) \leqslant \frac{3}{8} n$. Beeler et al. in [2] posed the following open question.

Question 1.3 ([2]). Every connected graph $G$ having minimum degree at least three satisfies the inequality $\gamma_{\mathrm{dR}}(G) \leqslant \frac{9}{8} n$. Can this bound be improved?

Ahangar Abdollahzadeh et al. in [1] gave the affirmative answer to Question 1.3. They proved that every connected graph $G$ having minimum degree at least three satisfies the inequality $\gamma_{\mathrm{dR}}(G) \leqslant n$.

In this paper, we establish a new upper bound on the double Roman domination number of graphs. We prove that every connected graph $G$ with minimum degree at least two and $G \neq C_{5}$ satisfies the inequality $\gamma_{\mathrm{dR}}(G) \leqslant\left\lfloor\frac{13}{11} n\right\rfloor$. Question 1.2 has been settled.

## 2. Main results

A cover of vertex disjoint paths of $G$, or simply a vdp-cover, is a set of vertex disjoint paths $P_{1}, \ldots, P_{k}$ such that $V(G)=V\left(P_{1}\right) \cup \ldots \cup V\left(P_{k}\right)$. A path $P$ is called a 0 -, 1- or 2-path if $|V(P)|$ is congruent to 0,1 or $2 \bmod 3$, respectively. For a vdp-cover $S$ of $G$, let $S_{i}(i=0,1,2)$ be the set of $i$-paths in $S$. If $P=P^{\prime} x P^{\prime \prime}$, where $P^{\prime}$ is an $i$-path and $P^{\prime \prime}$ is a $j$-path (and $x$ is on neither of those paths), then we say $x$ is an $(i, j)$-vertex of $P$. Let $P \in S$ and $x$ be an endpoint of $P$. We say that $x$ is an outendpoint if it has a neighbor which is not on $P$. If $P$ is a 2-path, we say that $x$ is a $(2,2)$-endpoint if it is not an outendpoint and is adjacent to some $(2,2)$-vertex of $P$.

From now on, let $G$ be a graph on $n$ vertices with $\delta(G) \geqslant 2$. We may assume that $G$ is connected (for otherwise we apply the result to each component of the graph). As in [6], choose a vdp-cover $S$ of $G$ such that
(1) $2\left|S_{1}\right|+\left|S_{2}\right|$ is minimized.
(2) Subject to (1), $\left|S_{2}\right|$ is minimized.
(3) Subject to (2), $\sum_{P_{i} \in S_{0}}\left|V\left(P_{i}\right)\right|$ is minimized.
(4) Subject to (3), $\sum_{P_{i} \in S_{1}}\left|V\left(P_{i}\right)\right|$ is minimized.

By the virtue of (1)-(4), the following assertion holds (for the proof, see [6], Observations 1-3).

Assertion 2.1. Let $x$ be an outendpoint of $P_{i} \in S_{1} \cup S_{2}, y$ a neighbor of $x$ on some path $P_{j}$ distinct from $P_{i}$. Let $P_{j}=P_{j}^{\prime} y P_{j}^{\prime \prime}$. Then the following hold.
(1) $P_{j}$ is not a 1-path.
(2) If $P_{j}$ is a 0-path, then both $P_{j}^{\prime}$ and $P_{j}^{\prime \prime}$ are 1-paths.
(3) If $P_{j}$ is a 2-path, then both $P_{j}^{\prime}$ and $P_{j}^{\prime \prime}$ are 2-paths.

Having chosen the minimal vdp-cover $S=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$, as in [6], rearrange the paths of $S$ to obtain a new vdp-cover $S^{\prime}=\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{k}^{\prime}\right\}$ such that $P_{i}^{\prime}$ is a Hamiltonian path on $V\left(P_{i}\right)$, and so as to maximize the number of outendpoints,
and subject to this maximize the number of $(2,2)$-endpoints. Let $S_{i}^{\prime}$ be the set of $i$-paths in $S^{\prime}$ for $0 \leqslant i \leqslant 2$. Since $\left|V\left(P_{i}^{\prime}\right)\right|=\left|V\left(P_{i}\right)\right|$ for $1 \leqslant i \leqslant k$, it follows that $\left|S_{i}^{\prime}\right|=\left|S_{i}\right|$ for $0 \leqslant i \leqslant 2$. Hence, $S^{\prime}$ is still minimal with respect to the above four conditions and Assertion 2.1 is still valid for the rearranged paths in $S^{\prime}$. For convenience sake, we still denote by $S$ the new vdp-cover of $G$.

For each 1-path $P$ in $S$ which has an outendpoint, choose some vertex $y \notin V(P)$ which is adjacent to an endpoint of $P$ and call $y$ the acceptor for $P$. For each 2-path $P$ in $S$ which has two outendpoints, for each of these endpoints choose a vertex of $G-V(P)$ which is adjacent to it and designate it as the acceptor corresponding to that endpoint. Call a path in $S$ accepting if it contains an acceptor. In addition, for any (2,2)-endpoint $x$ of any path $P$, choose a (2,2)-vertex $y$ of $P$ which is adjacent to $x$ and designate it as an inacceptor for $x$.

For any accepting 2-path $P$, a partition $P=P_{1} P_{2} P_{3}$ such that both $P_{1}$ and $P_{3}$ are 1-paths which contain neither acceptors nor inacceptors, and are maximal with this property. We say that $P_{1}$ and $P_{3}$ are tips of $P$ and $P_{2}$ is its central path. By the maximality of $P_{1}, P_{3}$ and Assertion 2.1, if $x \in P_{2}$ is adjacent in $P_{2}$ to an endpoint of $P_{2}$, then it is an acceptor or inacceptor.

Let $E$ denote the set of such tips $P_{1}$ of an accepting 2-path $P$, which is in $E$ if and only if the corresponding endpoint of $P$ is neither an outendpoint nor a (2,2)-endpoint and we can not dominate $P_{1}$ using $\left\lfloor\frac{1}{3}\left|V\left(P_{1}\right)\right|\right\rfloor$.

Let $W$ be the set of (2,2)-endpoints of accepting 2-paths for which we have chosen an inacceptor.

To any element $T$ of $E$ there corresponds an accepting 2-path $P_{T}$ such that $T$ is a tip of $P_{T}$. Define $E^{\prime}$ by saying that for each $T \in E, T$ is in $E^{\prime}$ if the endpoint of $P_{T}$ not in $T$ is not an element of $W$. The following lemma was proved by Reed (for the proof, see [6], page 285, Fact 11.6).

Lemma 2.2 ([5]). Let $T=a_{1} \ldots a_{k} \in E^{\prime}$. Let $P$ be the accepted 2-path containing $T$ and let $C=c_{0} \ldots c_{l}$ be the central path of $P$. Assume that $c_{0}$ is adjacent to $a_{k}$ on the path $P$. Then $a_{1}$ is adjacent only to the vertices of $V(T) \cup\left\{c_{0}\right\}$.

Proposition 2.3 ([2]). In a double Roman dominating function of weight $\gamma_{\mathrm{dR}}(G)$, no vertex needs to be assigned value 1.

By Proposition 2.3, when determining the value $\gamma_{\mathrm{dR}}(G)$ for any graph $G$, we can assume that $V_{1}=\emptyset$ for all double Roman dominating functions under consideration.

Lemma 2.4. $\gamma_{\mathrm{dR}}\left(C_{4}\right)=4, \gamma_{\mathrm{dR}}\left(C_{5}\right)=6$.
Theorem 2.5. Let $G$ be a connected graph with order $n$ and minimum degree at least two. If $G \neq C_{5}$, then $\gamma_{\mathrm{dR}}(G) \leqslant\left\lfloor\frac{13}{11} n\right\rfloor$.

Proof. Let $S$ be the minimal vdp-cover of $G$. Then $S=S_{0} \cup S_{1} \cup S_{2}$. For any path $P \in S$, let $G_{P}$ denote the subgraph induced by $V(P)$.

Claim 2.6. For each 0-path $P \in S_{0}, \gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.
Proof. Let $D=\{x \in V(P) \mid x$ is a $(1,1)$-vertex of $P\}$. Then $D$ is a dominating set of $P$. Let $f_{0}^{P}$ be a function assigning 3 to every vertex in $D$ and 0 to all other vertices in $V(P) \backslash D$. It is obvious that $f_{0}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant 3|D|=3|V(P)| / 3=|V(P)| \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.7. For each 1-path $P \in S_{1}$ with $|V(P)| \geqslant 7, \gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.
Proof. Assume that $P=a_{1} a_{2} \ldots a_{3 k+1}$. Then $k \geqslant 2$. Let $D=\left\{a_{3 i}: i=\right.$ $1,2, \ldots, k\}$. Let $f_{11}^{P}$ be a function assigning 3 to every vertex in $D, 2$ to $a_{1}$ and 0 to all other vertices in $V(P) \backslash\left(D \cup\left\{a_{1}\right\}\right)$. It is obvious that $f_{11}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant 3|D|+2=3 k+2=|V(P)|+1 \leqslant$ $\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.8. Let $P=a_{1} a_{2} a_{3} a_{4}$ be a path in $S_{1}$. If $a_{1}$ is an outendpoint, then $\gamma_{\mathrm{dR}}\left(G\left[V(P) \backslash\left\{a_{1}\right\}\right]\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Proof. Let $f_{12}^{P}$ be a function assigning 3 to vertex $a_{3}$ and 0 to all other vertices in $V(P) \backslash\left\{a_{1}, a_{3}\right\}$. It is obvious that $f_{12}^{P}$ is a double Roman dominating function of $G\left[V(P) \backslash\left\{a_{1}\right\}\right]$. Hence, $\gamma_{\mathrm{dR}}\left(G\left[V(P) \backslash\left\{a_{1}\right\}\right]\right) \leqslant 3<\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.9. Let $P=a_{1} a_{2} a_{3} a_{4}$ be a 1-path with no outendpoint. Then $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant$ $\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Proof. If $a_{1} a_{3} \in E(G)$, then let $f_{13}^{P}$ be a function assigning 3 to vertex $a_{3}$ and 0 to all other vertices in $V(P) \backslash\left\{a_{3}\right\}$. It is obvious that $f_{13}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant 3<\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$. We may assume that $a_{1} a_{3} \notin E(G)$. Since $\delta(G) \geqslant 2, a_{1} a_{4} \in E(G)$. Hence $C_{4}$ is a spanning subgraph of $G_{P}$. By Lemma 2.4, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant \gamma_{\mathrm{dR}}\left(C_{4}\right)=4 \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.10. For each 2-path $P \in S_{2}$ with $|V(P)| \geqslant 11, \gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.
Proof. Assume that $P=a_{1} a_{2} \ldots a_{3 k+2}$. Then $k \geqslant 3$. Let $D=\{x \in V(P) \mid x$ is an (2,2)-vertex of $P\}$. Let $f_{21}^{P}$ be a function assigning 3 to every vertex in $D, 2$ to every vertex in $\left\{a_{1}, a_{3 k+2}\right\}$, and 0 to all other vertices in $V(P) \backslash\left(D \cup\left\{a_{1}, a_{3 k+2}\right\}\right)$. It is obvious that $f_{21}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant$ $3|D|+4=3 k+4=|V(P)|+2 \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.11. Let $P=a_{1} a_{2} \ldots a_{3 k+2}$ be a path in $S_{2}$ with $0 \leqslant k \leqslant 2$. If $a_{1}$ is an outendpoint or a $(2,2)$-endpoint, then $\gamma_{\mathrm{dR}}\left(G\left[V(P) \backslash\left\{a_{1}\right\}\right]\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Proof. Let $D=\{x \in V(P) \mid x$ is a (2,2)-vertex of $P\}$. Let $f_{22}^{P}$ be a function assigning 3 to every vertex in $D, 2$ to vertex $a_{3 k+2}$ and 0 to all other vertices in $V(P) \backslash\left(D \cup\left\{a_{1}, a_{3 k+2}\right\}\right)$. It is obvious that $f_{22}^{P}$ is a double Roman dominating function of $G\left[V(P) \backslash\left\{a_{1}\right\}\right]$. Hence, $\gamma_{\mathrm{dR}}\left(G\left[V(P) \backslash\left\{a_{1}\right\}\right]\right) \leqslant 3|D|+2=3 k+2=$ $|V(P)| \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.12. Let $P=a_{1} a_{2} \ldots a_{3 k+2}$ be an accepting 2-path which has neither an outendpoint nor a (2,2)-endpoint. Then $k \geqslant 3$.

Proof. Since $a_{1}$ has degree at least two in $G$ and $a_{1}$ is neither an outendpoint nor a $(2,2)$-endpoint, it has at least two neighbors in $V(P)$. By Lemma $2.2, a_{3}$ is not an acceptor. Similarly, $a_{3 k}$ is not an acceptor. Hence, $k \geqslant 3$.

By Claim 2.12, if a path $P \in S_{2}$ with $|V(P)| \in\{5,8\}$ has neither an outendpoint nor a $(2,2)$-endpoint, then the path $P$ is a nonaccepting 2-path.

Claim 2.13. Let $P=a_{1} a_{2} a_{3} a_{4} a_{5}$ be a nonaccepting 2-path which has neither an outendpoint nor a $(2,2)$-endpoint. Then $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Proof. If $a_{1} a_{3} \in E(G)$, then let $f_{23}^{P}$ be a function assigning 3 to vertex $a_{3}, 2$ to vertex $a_{5}$ and 0 to all other vertices in $V(P) \backslash\left\{a_{3}, a_{5}\right\}$. It is obvious that $f_{23}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant 5 \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$. We may assume that $a_{1} a_{3} \notin E(G)$. If $a_{1} a_{4} \in E(G)$, then let $f_{23}^{P}$ be a function assigning 3 to vertex $a_{4}, 2$ to vertex $a_{2}$ and 0 to all other vertices in $V(P) \backslash\left\{a_{2}, a_{4}\right\}$. It is obvious that $f_{23}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant 5 \leqslant$ $\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$. We may assume that $a_{1} a_{3} \notin E(G)$ and $a_{1} a_{4} \notin E(G)$. Since $\delta(G) \geqslant 2$, $a_{1} a_{5} \in E(G)$. Then, the subgraph induced by $V(P)$ has a hamiltonian cycle. As we choose $S$ so as to maximize the number of the outendpoints, $|V(G)|=|V(P)|=5$. Since $G \neq C_{5}, \quad\left\{a_{2} a_{4}, a_{2} a_{5}, a_{3} a_{5}\right\} \cap E(G) \neq \emptyset$. In a way similar to the above, it follows that $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant 5 \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Claim 2.14. Let $P=a_{1} a_{2} \ldots a_{8}$ be a nonaccepting 2-path which has neither an outendpoint nor a $(2,2)$-endpoint. Then $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Proof. It is obvious that $\gamma\left(G_{P}\right) \leqslant 3$. Let $D$ be a $\gamma$-set of $G_{P}$. Let $f_{24}^{P}$ be a function assigning 3 to all vertices in $D$ and 0 to all other vertices in $V(P) \backslash D$. It is obvious that $f_{24}^{P}$ is a double Roman dominating function of $G_{P}$. Hence, $\gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant$ $3|D|=9 \leqslant\left\lfloor\frac{13}{11}|V(P)|\right\rfloor$.

Now, we define a double Roman dominating function $f$ of $G$ as follows: Let $P$ be a path in $S$.
(1) If $P \in S_{0}$, then let $f=f_{0}^{P}$.
(2) Suppose that $P \in S_{1}$. If $|V(P)| \geqslant 7$, then let $f=f_{11}^{P}$. If $|V(P)|=4$ and $P$ has an outendpoint, then let $f=f_{12}^{P}$. If $|V(P)|=4$ and $P$ has no outendpoint, then let $f=f_{13}^{P}$.
(3) Suppose that $P \in S_{2}$. If $|V(P)| \geqslant 11$, then let $f=f_{21}^{P}$. If $|V(P)|=2,5,8$ and $P$ has an outendpoint or a (2,2)-endpoint, then let $f=f_{22}^{P}$. If $P$ is a nonaccepting 2-path with $|V(P)|=5$ and $P$ has neither an outendpoint nor a (2, 2)-endpoint, then let $f=f_{23}^{P}$. If $P$ is a nonaccepting 2-path with $|V(P)|=8$ and $P$ has neither an outendpoint nor a (2,2)-endpoint, then let $f=f_{24}^{P}$.
(4) For any outendpoint or $(2,2)$-endpoint $v$, define $f(v)=0$.

For any (1,1)-vertex $v$, it follows that $f(v)=3$ by Claim 2.6. For any $(2,2)$-vertex $v$, if $v$ belongs to an accepting path, it follows that $f(v)=3$ by Claims 2.10, 2.11 and 2.12. Hence, $f$ assigns 3 to every acceptor. By Claims 2.10 and 2.11, $f$ assigns 3 to every inacceptor. So any outendpoint or (2,2)-endpoint is adjacent to a vertex $w$ with $f(w)=3$. Since $\delta(G) \geqslant 2$, if $P \in S_{1}$ with $|V(P)|=1$, say $V(P)=\{v\}$, then $v$ is an outendpoint. By Claims 2.6-2.14, $f$ is a double Roman dominating function of $G$. Hence, $\gamma_{\mathrm{dR}}(G) \leqslant \sum_{P \in S} \gamma_{\mathrm{dR}}\left(G_{P}\right) \leqslant$ $\sum_{P \in S}\left\lfloor\frac{13}{11}|V(P)|\right\rfloor \leqslant\left\lfloor\frac{13}{11} n\right\rfloor$.

Remark 2.15. Let $C_{5}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Let $H$ be the graph obtained from $C_{5}$ by adding an edge $v_{2} v_{5}$. It is obvious that if $G \in\left\{C_{3}, C_{4}, H\right\}$, then $\gamma_{\mathrm{dR}}(G)=\left\lfloor\frac{13}{11} n\right\rfloor$. Hence, the upper bound in Theorem 2.5 is tight.

Acknowledgments. The author would like to thank the anonymous referees for their kind comments and helpful suggestions on the original manuscript, which resulted in this revised version.

## References

[1] H. Ahangar Abdollahzadeh, M. Chellali, S. M. Sheikholeslami: On the double Roman domination in graphs. Discrete Appl. Math. 232 (2017), 1-7.
[2] R. A. Beeler, T.W.Haynes, S. T. Hedetniemi: Double Roman domination. Discrete Appl. Math. 211 (2016), 23-29.

Zbl MR doi

3] E. J. Cockayne, P. M. Dreyer jun., S. M. Hedetniemi, S. T. Hedetniemi: Roman domination in graphs. Discrete Math. 278 (2004), 11-22.
zbl MR doi
] W. McCuaig, B. Shepherd: Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.
] B. A. Reed: Paths, Stars, and the Number Three: The Grunge. Research Report CORR 89-41, University of Waterloo, Department of Combinatorics and Optimization, Waterloo, 1989.
[6] B. A. Reed: Paths, stars, and the number three. Comb. Probab. Comput. 5 (1996), 277-295.
zbl MR doi
[7] C.S. ReVelle, K. E. Rosing: Defendents imperium Romanum: a classical problem in military strategy. Am. Math. Mon. 107 (2000), 585-594.
zbl MR doi
[8] I. Stewart: Defend the Roman empire!. Sci. Amer. 281 (1999), 136-139.

Author's address: Xue-gang Chen, Department of Mathematics, North China Electric Power University, No. 2, Beinong road, Changping District, Beijing 102206, P. R. China, e-mail: gxcxdm@163.com.

