## Commentationes Mathematicae Universitatis Carolinae

# Mitra Jalali; Abolfazl Tehranian; Reza Nikandish; Hamid Rasouli <br> Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings 

Commentationes Mathematicae Universitatis Carolinae, Vol. 61 (2020), No. 1, 27-34

Persistent URL: http://dml.cz/dmlcz/148073

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings 

Mitra Jalali, Abolfazl Tehranian, Reza Nikandish, Hamid Rasouli


#### Abstract

Let $R$ be a commutative ring with identity and $A(R)$ be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of $R$ is defined as the graph $\operatorname{SAG}(R)$ with the vertex set $A(R)^{*}=A(R) \backslash\{0\}$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I \cap \operatorname{Ann}(J) \neq(0)$ and $J \cap \operatorname{Ann}(I) \neq(0)$. In this paper, the perfectness of $\operatorname{SAG}(R)$ for some classes of rings $R$ is investigated.


Keywords: strongly annihilating-ideal graph; perfect graph; chromatic number; clique number

Classification: 13A15, 13B99, 05C99, 05C25

## 1. Introduction

One of the most important and active areas in algebraic combinatorics is study of graphs associated with rings. This field has attracted many researches during the past 20 years. There are many papers on assigning a graph to a ring, for instance see [2], [3], [4], [10] and [11].

Throughout this paper, $R$ is a commutative ring with unity. The sets of all zero-divisors, all ideals of $R$, nilpotent elements, minimal prime ideals of $R$ and jacobson radical of $R$ are denoted by $Z(R), \mathbb{I}(R), \operatorname{Nil}(R), \operatorname{Min}(R)$ and $\operatorname{Jac}(R)$, respectively. For a subset $T$ of a ring $R$ we let $T^{*}=T \backslash\{0\}$. An ideal with nonzero annihilator is called an annihilating ideal. The set of annihilating ideals of $R$ is denoted by $A(R)$. A nonzero ideal $I$ of $R$ is called essential if $I$ has a nonzero intersection with every other nonzero ideal of $R$. An element $e$ of the ring $R$ is called an idempotent if $e^{2}=e$. Two idempotents $e, f \in R$ are called orthogonal if $e f=0$. For a ring $R, \operatorname{Soc}(R)$ is the sum of all minimal ideals of $R$ and $R$ is called perfect if it contains no infinite set of orthogonal idempotents and $\operatorname{Soc}(R)$ is an essential ideal of $R$. The ring $R$ is said to be reduced if it has no nonzero nilpotent element. For any undefined notation or terminology in ring theory, we refer the reader to [9].

Let $G=(V, E)$ be a graph, where $V=V(G)$ is the set of vertices and $E=E(G)$ is the set of edges. By $\bar{G}$, we mean the complement graph of $G$. A complete bipartite graph with part sizes $m$ and $n$ is denoted by $K_{m, n}$. Also, a complete graph of order $n$ is denoted by $K_{n}$. If $U \subseteq V(G)$, then by $N(U)$ we mean the set of all neighbors of $U$ in $G$. The graph $H=\left(V_{0}, E_{0}\right)$ is a subgraph of $G$ if $V_{0} \subseteq V$ and $E_{0} \subseteq E$. Moreover, $H$ is called an induced subgraph by $V_{0}$, denoted by $G\left[V_{0}\right]$, if $V_{0} \subseteq V$ and $E_{0}=\left\{\{u, v\} \in E: u, v \in V_{0}\right\}$. A graph $G$ is empty if it has no edges. Let $G_{1}$ and $G_{2}$ be two disjoint graphs. The join of $G_{1}$ and $G_{2}$, denoted by $G_{1} \vee G_{2}$, is a graph with the vertex set $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. A clique of $G$ is a maximal complete subgraph of $G$ and the number of vertices in the largest clique of $G$, denoted by $\omega(G)$, is called the clique number of $G$. For a graph $G$, let $\chi(G)$ denote the vertex chromatic number of $G$, i.e., the minimal number of colors which can be assigned to the vertices of $G$ in such a way that every two adjacent vertices have different colors. Clearly, for every graph $G, \omega(G) \leq \chi(G)$. A graph $G$ is said to be weakly perfect if $\omega(G)=\chi(G)$. A perfect graph $G$ is a graph in which every induced subgraph is weakly perfect. For any undefined notation or terminology in graph theory, we refer the reader to [12].

Let $R$ be a commutative ring with $1 \neq 0$. The annihilating-ideal graph of $R$, denoted by $\mathbb{A} \mathbb{G}(R)$, is a graph with the vertex set $A(R)^{*}$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I J=0$, see [5] for more details. Coloring of annihilating-ideal graph was investigated in [1]. The strongly annihilating-ideal graph, denoted by $\operatorname{SAG}(R)$, is a graph with the vertex set $A(R)^{*}$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I \cap \operatorname{Ann}(J) \neq(0)$ and $J \cap \operatorname{Ann}(I) \neq(0)$. The strongly annihilating-ideal graph, as a generalization of annihilating-ideal graph, was first introduced and studied in [11]. In [8], it was proved that strongly annihilating-ideal graph of a reduced ring is weakly perfect. In this paper, we prove a stronger result; indeed it is shown that strongly annihilating-ideal graphs of both reduced rings and perfect rings are perfect.

## 2. Strongly annihilating-ideal graph of a reduced ring is perfect

In this section, we show that $\operatorname{SAG}(R)$ is perfect for every reduced ring $R$ with $\omega(\mathrm{SAG}(R))<\infty$. In 2004 M . Chudnovsky et al. [6] settled a long standing conjecture regarding perfect graphs and provided a characterization of perfect graphs.

Theorem 2.1 (The strong perfect graph theorem [6]). A graph $G$ is perfect if and only if neither $G$ nor $\bar{G}$ contains an induced odd cycle of length at least 5 .

## Example 2.1.

(1) Every complete graph and complete bipartite graph is perfect.
(2) Let $G_{1}$ be a complete graph and $G_{2}=C_{n}$ be a cycle of length at least 5 and let $G=G_{1} \vee G_{2}$. If $n$ is odd, then $\omega(\operatorname{SAG}(G))=\left|G_{1}\right|+2$ and $\chi(\operatorname{SAG}(G))=$ $\left|G_{1}\right|+3$, i.e., $G$ is not perfect. If $n$ is even, then every induced subgraph of $G$ is weakly perfect and thus $G$ is perfect.

Let $R \cong D_{1} \times D_{2} \times \cdots \times D_{n}$, where every $D_{i}$ is an integral domain and $S=F_{1} \times F_{2} \times \cdots \times F_{n}$, where every $F_{i}$ is a field. Next, we show that $\operatorname{SAG}(R)$ is perfect if and only if $\operatorname{SAG}(S)$ is perfect. First, we need the following results.

Let $G$ be a graph and $x \in V(G)$ a vertex, and let $G^{\prime}$ be obtained from $G$ by adding a vertex $x^{\prime}$ and joining it to $x$ and all the neighbours of $x$. We say that $G^{\prime}$ is obtained from $G$ by expanding the vertex $x$ to an edge $x-x^{\prime}$.

Lemma 2.1 ([7, Lemma 5.5.5]). Any graph obtained from a perfect graph by expanding a vertex is again perfect.

Remark 2.1. Let $G$ be a graph and $x \in V(G), A \subseteq V(G)$. By Lemma 2.1, if for every $y \in A, N(x)=N(y)$ or $N[x]=N[y]$, then $G$ is perfect if and only if $G \backslash\{A \backslash\{x\}\}$ is perfect.

Lemma 2.2. Let $R$ be a reduced ring and $I, J \in V(\operatorname{SAG}(R))$. If $\operatorname{Ann}(I)=$ $\operatorname{Ann}(J)$, then $N(I)=N(J)$.

Proof: Suppose that $K-I$ is an edge of $\operatorname{SAG}(R)$. Then by [11, Lemma 2.1], $\operatorname{Ann}(I) \nsubseteq \operatorname{Ann}(K)$ and $\operatorname{Ann}(K) \nsubseteq \operatorname{Ann}(I)$. Since $\operatorname{Ann}(I)=\operatorname{Ann}(J)$, we deduce that $\operatorname{Ann}(K) \nsubseteq \operatorname{Ann}(J)$ and $\operatorname{Ann}(J) \nsubseteq \operatorname{Ann}(K)$. This means that $K-J$ is an edge of $\operatorname{SAG}(R)$ and thus $N(I) \subseteq N(J)$. Similarly, $N(J) \subseteq N(I)$, as desired.

Let $F_{1}, \ldots, F_{n}$ be fields and $D_{1}, \ldots, D_{n}$ be integral domains. It is worth mentioning that perfectness of strongly annihilating-ideal graphs induced by $\prod F_{i}$ and $\prod D_{i}$ does not depend on concrete fields and domains.

Corollary 2.1. Let $R \cong D_{1} \times \cdots \times D_{n}$, where every $D_{i}$ is an integral domain $S=F_{1} \times \cdots \times F_{n}$, where every $F_{i}$ is a field. Then $\operatorname{SAG}(R)$ is perfect if and only if $\operatorname{SAG}(S)$ is perfect.

Proof: Assume that $I=I_{1} \times \cdots \times I_{n}$ and $J=J_{1} \times \cdots \times J_{n}$ are vertices of $\operatorname{SAG}(R)$. Define the relation " $\sim$ " on $V(\mathrm{SAG}(R))$ as follows: $I \sim J$, whenever " $I_{i}=0$ if and only if $J_{i}=0$ " for every $1 \leq i \leq n$. It is easily seen that " $\sim$ " is an equivalence relation on $V(\mathrm{SAG}(R))$ and thus $V(\mathrm{SAG}(R))=\bigcup_{i=1}^{2^{n}-2}[I]_{i}$, where $[I]_{i}$ is the equivalence class of $I$. (We note that the number of equivalence classes is $2^{n}-2$.) Let $[I]$ be the equivalence class of $I$ and $J, K \in[I]$. Then $\operatorname{Ann}(J)=$ Ann $(K)$ and thus by Lemma 2.2, $N(J)=N(K)$. This, together with $I$ is not
adjacent to $J$, implies that $\operatorname{SAG}(R)$ is perfect if and only if $\operatorname{SAG}(R) \backslash\{[I] \backslash\{I\}\}$ is perfect, by Remark 2.1. If we continue this procedure for every equivalence class $[I]\left(2^{n}-2\right.$ times $)$, then we conclude that $\operatorname{SAG}(R)$ is perfect if and only if $\operatorname{SAG}(R)[A]$ is perfect, where

$$
A=\left\{I=I_{1} \times \cdots \times I_{n} \in V(\operatorname{SAG}(R)): I_{i} \in\left\{0, D_{i}\right\} \text { for every } 1 \leq i \leq n\right\}
$$

It is straightforward to check that $\operatorname{SAG}(R)[A] \cong \operatorname{SAG}(S)$ and thus $\operatorname{SAG}(R)$ is perfect if and only if $\operatorname{SAG}(S)$ is perfect.

To prove our main result in this section, we need two following lemmas.
Lemma 2.3. Let $R=F_{1} \times \cdots \times F_{n}$, where every $F_{i}$ is a field and $I, J \in$ $V(\operatorname{SAG}(R))$. Then $I-J$ is an edge of $\operatorname{SAG}(R)$ if and only if $I \nsubseteq J$ and $J \nsubseteq I$.

Proof: First, assume that $I-J$ is an edge of $\operatorname{SAG}(R)$. If $I \subseteq J$ or $J \subseteq I$, then $\operatorname{Ann}(J) \subseteq \operatorname{Ann}(I)$ or $\operatorname{Ann}(I) \subseteq \operatorname{Ann}(J)$, a contradiction, by [11, Lemma 2.1].

The converse is clear.
Lemma 2.4. Let $R=F_{1} \times \cdots \times F_{n}$, where every $F_{i}$ is a field. Then $\operatorname{SAG}(R)$ is perfect.

Proof: By Theorem 2.1, it is enough to show that $\operatorname{SAG}(R)$ and $\overline{\operatorname{SAG}(R)}$ contain no induced odd cycle of length at least 5 . Consider the following claims:

Claim 1. $\operatorname{SAG}(R)$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
I_{0}-I_{1}-\cdots-I_{n-1}-I_{0}
$$

is an induced odd cycle of length at least 5 in $\operatorname{SAG}(R)$. Since $I_{0}$ is not adjacent to $I_{2}$, by Lemma 2.3 we can assume that $I_{0} \subseteq I_{2}$. Now, if $I_{3} \subseteq I_{0}$, then $I_{3} \subseteq I_{2}$, a contradiction. So $I_{0} \subseteq I_{3}$. Next, we show that $I_{1} \subseteq I_{n-1}$. For this, since $I_{1}$ is not adjacent to $I_{3}$, by Lemma 2.3, we conclude that $I_{1} \subseteq I_{3}$ or $I_{3} \subseteq I_{1}$. If $I_{3} \subseteq I_{1}$, then $I_{0} \subseteq I_{1}$, as $I_{0} \subseteq I_{3}$. This is a contradiction, by Lemma 2.3. So $I_{0} \subseteq I_{3}$. If we continue this procedure for $I_{4}, \ldots, I_{n-1}$, then we get $I_{1} \subseteq I_{n-1}$. If we start the above argument from $I_{2}$, on $I_{4}, \ldots I_{n-1}, I_{0}$, then we get $I_{2} \subseteq I_{0}$. This is a contradiction as $I_{0} \subseteq I_{2}$, and so $\mathrm{SAG}(R)$ contains no induced odd cycle of length at least 5 .

Claim 2. $\overline{\mathrm{SAG}(R)}$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
I_{1}-I_{2}-\cdots-I_{n}-I_{1}
$$

is an induced odd cycle of length at least 5 in $\overline{\operatorname{SAG}(R)}$. By Lemma 2.3, we may assume that $I_{1} \subseteq I_{2}$. If $I_{2} \subseteq I_{3}$, then $I_{1} \subseteq I_{3}$, a contradiction. Thus $I_{1} \subseteq I_{2}$ and $I_{3} \subseteq I_{2}$. If $I_{4} \subseteq I_{3}$, then $I_{4} \subseteq I_{2}$, a contradiction. So $I_{3} \subseteq I_{4}$. If $I_{4} \subseteq I_{5}$, then
$I_{3} \subseteq I_{4}$ implies that $I_{3} \subseteq I_{5}$, a contradiction. Thus $I_{3} \subseteq I_{4}$ and $I_{5} \subseteq I_{4}$. Since $n$ is odd, if we continue this procedure, then $I_{n-2} \subseteq I_{n-1}, I_{n} \subseteq I_{n-1}$. If $I_{1} \subseteq I_{n}$, then since $I_{n} \subseteq I_{n-1}, I_{1} \subseteq I_{n-1}$, a contradiction. So $I_{n} \subseteq I_{1}$ and since $I_{1} \subseteq I_{2}$, we deduce that $I_{n} \subseteq I_{2}$, a contradiction. Therefore, $\overline{\operatorname{SAG}(R)}$ contains no induced odd cycle of length at least 5 . By Claims 1 and $2, \operatorname{SAG}(R)$ is perfect.

Using Lemma 2.4 and Corollary 2.1, we have the following immediate corollary.
Corollary 2.2. Let $R$ be a ring such that $R \cong D_{1} \times \cdots \times D_{n}$, where $D_{i}$ is an integral domain for every $1 \leq i \leq n<\infty$. Then $\operatorname{SAG}(R)$ is a perfect graph.

We are now in a position to state the main result of this section.
Theorem 2.2. Let $R$ be a reduced ring and $\omega(\operatorname{SAG}(R))<\infty$. Then $\operatorname{SAG}(R)$ is a perfect graph.

Proof: Since $\omega(\operatorname{SAG}(R))<\infty$, by [8, Lemma 2.5], $|\operatorname{Min}(R)|<\infty$. Let $\operatorname{Min}(R)=$ $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ and $T=R / \mathfrak{p}_{1} \times \cdots \times R / \mathfrak{p}_{n}$. Define a ring homomorphism $\varphi: R \longrightarrow$ $R / \mathfrak{p}_{1} \times \cdots \times R / \mathfrak{p}_{n}$ with $\varphi(r)=\left(r+\mathfrak{p}_{1}, \ldots, r+\mathfrak{p}_{n}\right)$. Since $\mathfrak{p}_{i}$ are distinct minimal prime ideals, $\mathfrak{p}_{i} \nsubseteq \mathfrak{p}_{j}$ for each $i \neq j$. Hence there exists nonzero ideals $S_{i}$ of $R / \mathfrak{p}_{i}$ such that $S_{1} \times \cdots \times S_{n} \subseteq \varphi(R) \cong R$ and $S_{1} \times \cdots \times S_{n}$ is ideal of both rings $\varphi(R)$ and $T$. We put

$$
\begin{aligned}
& A=\left\{I_{1} \times \cdots \times I_{n} \in V(\operatorname{SAG}(\varphi(R))): I_{i} \in\left\{0, S_{i}\right\} \text { for every } 1 \leq i \leq n\right\} \\
& B=\left\{J_{1} \times \cdots \times J_{n} \in V(\operatorname{SAG}(T)): J_{i} \in\left\{\mathfrak{p}_{i}, R / \mathfrak{p}_{i}\right\} \text { for every } 1 \leq i \leq n\right\}
\end{aligned}
$$

Now, we can easily get $\operatorname{SAG}(\varphi(R))[A] \cong \operatorname{SAG}(T)[B]$ and thus $\operatorname{SAG}(\varphi(R))[A]$ is perfect if and only if $\operatorname{SAG}(T)[B]$ is perfect. On the other hand, by proof of Corollary 2.1, we can easily get $\operatorname{SAG}(\varphi(R))$ and $\operatorname{SAG}(T)$ are perfect if and only if $\operatorname{SAG}(\varphi(R))[A]$ and $\operatorname{SAG}(T)[B]$ are perfect, respectively. This, together with Corollary 2.2, implies that $\operatorname{SAG}(\varphi(R))$ is a perfect graph and hence $\operatorname{SAG}(R)$ is a perfect graph.

## 3. Strongly annihilating-ideal graph of a perfect ring is perfect

The main aim of this section is to show that $\operatorname{SAG}(R)$ is perfect in case $R$ is a perfect ring. It is known that if $R / \operatorname{Jac}(R)$ is a semisimple ring, then $\operatorname{Soc}(R)=$ $\operatorname{Ann}(\operatorname{Jac}(R))$ (see [13, part 21.15]). Also, to prove our main result it is very important that $\operatorname{Soc}(R)$ to be an essential ideal of $R$. Since the perfect rings have both of these properties, we may show that the strongly annihilating-ideal graph of a perfect ring is perfect.

Lemma 3.1. Let $R$ be a perfect ring and $I \subseteq \operatorname{Jac}(R)$. Then $\operatorname{Ann}(I)$ is an essential ideal of $R$.

Proof: Since $R$ is perfect, $\operatorname{Ann}(\operatorname{Jac}(R))(=\operatorname{Soc}(R))$ is an essential ideal of $R$. Since $I \subseteq \operatorname{Jac}(R), \operatorname{Ann}(\operatorname{Jac}(R)) \subseteq \operatorname{Ann}(I)$ and so $\operatorname{Ann}(I)$ is an essential ideal of $R$.

Lemma 3.2. Let $R$ be a perfect ring and $I, J \in A(R)^{*}$. Then the following statements hold.
(1) If $I \nsubseteq J$, then $I \cap \operatorname{Ann}(J) \neq(0)$. In particular, if $I \nsubseteq J$ and $J \nsubseteq I$, then $I-J$ is an edge of $\operatorname{SAG}(R)$.
(2) If $I \subseteq J$ and $I \cap \operatorname{Ann}(J) \neq(0)$, then $I-J$ is an edge of $\operatorname{SAG}(R)$.

Proof: (1) Let $I=I_{1} \times \cdots \times I_{n}$ and $J=J_{1} \times \cdots \times J_{n}$. Since $I \nsubseteq J$, with no loss of generality, assume that $I_{1} \nsubseteq J_{1}$. This implies that $J_{1} \neq R_{1}$ and thus $\operatorname{Ann}\left(J_{1}\right)$ is an essential ideal of $R_{1}$, by Lemma 3.1. Hence $I_{1} \cap \operatorname{Ann}\left(J_{1}\right) \neq(0)$. Let $0 \neq a_{1} \in I_{1} \cap \operatorname{Ann}\left(J_{1}\right)$. Then $\left(a_{1}, 0, \ldots, 0\right) \in I \cap \operatorname{Ann}(J)$ and so $I \cap \operatorname{Ann}(J) \neq(0)$. The "in particular" statement is now clear.
(2) Since $I \cap \operatorname{Ann}(J) \neq(0)$, we need only to show that $J \cap \operatorname{Ann}(I) \neq(0)$. Let $0 \neq a \in I \cap \operatorname{Ann}(J)$. Since $I \subseteq J, a \in J$. Also, $a J=(0)$ and $I \subseteq J$ imply that $a I=(0)$. Thus $a \in J \cap \operatorname{Ann}(I)$ and so $I-J$ is an edge of $\operatorname{SAG}(R)$.

Theorem 3.1. Let $R$ be a perfect ring. Then $\operatorname{SAG}(R)$ is perfect.
Proof: Since $R$ is perfect, then there exists a positive integer $n$ such that $R \cong$ $R_{1} \times \cdots \times R_{n}$, where every $R_{i}$ is a local ring. The argument here is a refinement of the proof of Corollary 2.1 and Lemma 2.4. By Theorem 2.1, it is enough to show that $\operatorname{SAG}(R)$ and $\overline{\mathrm{SAG}(R)}$ contain no induced odd cycle of length at least 5 . Consider the following claims:

Claim 1. $\operatorname{SAG}(R)$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
I_{0}-I_{1}-\cdots-I_{n-1}-I_{0}
$$

is an induced odd cycle of length at least 5 in $\operatorname{SAG}(R)$. Since $I_{0}$ is not adjacent to $I_{2}$, by Part (1) of Lemma 3.2, $I_{0} \subseteq I_{2}$ or $I_{2} \subseteq I_{0}$. Without loss of generality, we may assume that $I_{0} \subseteq I_{2}$. Since $I_{0}$ is not adjacent to $I_{3}$, by Lemma 3.2, $I_{0} \subseteq I_{3}$ or $I_{3} \subseteq I_{0}$. If $I_{3} \subseteq I_{0}$, then since $I_{0} \subseteq I_{2}, I_{3} \subseteq I_{2}$. Since $I_{3} \cap \operatorname{Ann}\left(I_{2}\right) \neq(0)$ and $I_{3} \subseteq I_{0}, I_{0} \cap \operatorname{Ann}\left(I_{2}\right) \neq(0)$. This, together with Part (2) of Lemma 3.2, implies that $I_{0}$ is adjacent to $I_{2}$, a contradiction. Thus $I_{0} \subseteq I_{3}$. Now, by a refinement of the proof of Lemma 2.4, we get $I_{1} \subseteq I_{n-1}$ and $I_{2} \subseteq I_{0}$. This is a contradiction as $I_{0} \subseteq I_{2}$, and so $\operatorname{SAG}(R)$ contains no induced odd cycle of length at least 5 .

Claim 2. $\overline{\mathrm{SAG}(R)}$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
I_{1}-I_{2}-\cdots-I_{n}-I_{1}
$$

is an induced odd cycle of length at least 5 in $\overline{\operatorname{SAG}(R)}$. By Lemma 3.2, we may assume that $I_{1} \subseteq I_{2}$. If $I_{2} \subseteq I_{3}$, then since $I_{1} \cap \operatorname{Ann}\left(I_{3}\right) \neq(0)$, we conclude
that $I_{2} \cap \operatorname{Ann}\left(I_{3}\right) \neq(0)$. By Lemma 3.2, $I_{2}$ is adjacent to $I_{3}$ in $\operatorname{SAG}(R)$, a contradiction. Thus $I_{1} \subseteq I_{2}$ and $I_{3} \subseteq I_{2}$. If $I_{4} \subseteq I_{3}$, then $I_{3} \cap \operatorname{Ann}\left(I_{2}\right) \neq(0)$, as $I_{4} \cap \operatorname{Ann}\left(I_{2}\right) \neq(0)$ and thus by Lemma $3.2, I_{2}$ is adjacent to $I_{3}$ in $\operatorname{SAG}(R)$, a contradiction. So $I_{3} \subseteq I_{4}$. If $I_{4} \subseteq I_{5}$, then $I_{3} \subseteq I_{4}$ and $I_{3} \cap \operatorname{Ann}\left(I_{5}\right) \neq(0)$ imply that $I_{4} \cap \operatorname{Ann}\left(I_{5}\right) \neq(0)$ and thus by Lemma $3.2, I_{4}$ is adjacent to $I_{5}$ in $\operatorname{SAG}(R)$, a contradiction. Thus $I_{3} \subseteq I_{4}$ and $I_{5} \subseteq I_{4}$. Since $n$ is odd, by continuing this procedure $I_{n-2} \subseteq I_{n-1}$ and $I_{n} \subseteq I_{n-1}$. If $I_{1} \subseteq I_{n}$, then $I_{1} \cap \operatorname{Ann}\left(I_{n-1}\right) \neq(0)$ implies that $I_{n} \cap \operatorname{Ann}\left(I_{n-1}\right) \neq(0)$ and thus by Lemma 3.2, $I_{n}$ is adjacent to $I_{n-1}$ in $\operatorname{SAG}(R)$, a contradiction. Hence $I_{n} \subseteq I_{1}$ and so $I_{n} \cap \operatorname{Ann}\left(I_{2}\right) \neq(0)$. Thus $I_{1} \cap \operatorname{Ann}\left(I_{2}\right) \neq(0)$. By Lemma 3.2, $I_{1}$ is adjacent to $I_{2}$ in $\operatorname{SAG}(R)$, a contradiction. Therefore, $\overline{\operatorname{SAG}(R)}$ contains no induced odd cycle of length at least 5 .

By Claims 1 and 2, the proof is complete.
We have not found any examples of a non-domain ring $R$ such that $\operatorname{SAG}(R)$ is not perfect. The lack of such counterexamples, together with the fact that SAG $(R)$ is perfect if $R$ is reduced (with $\omega(\mathrm{SAG}(R))<\infty$ ) or perfect motivates the following conjecture.

Conjecture 3.1. Let $R$ be a ring. Then $\operatorname{SAG}(R)$ is perfect.

Acknowledgement. The authors express their deep gratitude to learned referee for his/her meticulous reading, contributions and valuable suggestions which have definitely improved the paper.

## References

[1] Aalipour G., Akbari S., Nikandish R., Nikmehr M. J., Shaveisi F., On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math. 312 (2012), no. 17, 2620-2626.
[2] Anderson D.F., Livingston P. S., The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[3] Badawi A., On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108-121.
[4] Beck I., Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[5] Behboodi M., Rakeei Z., The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.
[6] Chudnovsky M., Robertson N., Seymour P., Thomas R., The strong perfect graph theorem, Ann. of Math. (2) $\mathbf{1 6 4}$ (2006), no. 1, 51-229.
[7] Diestel R., Graph Theory, Graduate Texts in Mathematics, 173, Springer, New York, 2000.
[8] Nikandish R., Nikmehr M. J., Tohidi N. Kh., Some results on the strongly annihilating-ideal graph of a commutative ring, Bol. Soc. Mat. Mex. (3) 24 (2018), no. 2, 307-318.
[9] Sharp R. Y., Steps in Commutative Algebra, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 2000.
[10] Taheri R., Behboodi M., Tehranian A., The spectrum subgraph of the annihilating-ideal graph of a commutative ring, J. Algebra Appl. 14 (2015), no. 8, 1550130, 19 pages.
[11] Tohidi N. Kh., Nikmehr M.J., Nikandish R., On the strongly annihilating-ideal graph of a commutative ring, Discrete Math. Algorithms Appl. 9 (2017), no. 2, 1750028, 13 pages.
[12] West D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.
[13] Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, 1991.
M. Jalali, A. Tehranian, H. Rasouli:

Department of Mathematics, Science and Research Branch,
Islamic Azad University, Ferdos Blvd Tehran, 1477893855, Iran
E-mail: mjalali@gmail.com
E-mail: tehranian@srbiau.ac.ir
E-mail: hrasouli@srbiau.ac.ir
R. Nikandish (corresponding author):

Department of Mathematics, Jundi-Shapur University of Technology, Sardaran Shahid Bolvar, Khozestan, P. O. Box 64615-334, Dezful, Iran

E-mail: r.nikandish@ipm.ir

