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Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani,

Mohammad S. Moshtaghioun

Abstract. We introduce and study two new classes of Banach spaces, the so-
called sequentially Right Banach spaces of order p, and those defined by the
dual property, the sequentially Right∗ Banach spaces of order p for 1 ≤ p ≤ ∞.
These classes of Banach spaces are characterized by the notions of Lp-limited sets
in the corresponding dual space and R∗

p
subsets of the involved Banach space,

respectively. In particular, we investigate whether the injective tensor product
of a Banach space X and a reflexive Banach space Y has the sequentially Right
property of order p when X enjoys this property.

Keywords: Right topology; sequentially Right Banach space; pseudo weakly com-
pact operator; Pe lczyński’s property (V) of order p; limited p-converging opera-
tor; p-Gelfand–Phillips property; reciprocal Dunford–Pettis property of order p

Classification: 46B20, 47L05, 46B25

1. Introduction and preliminaries

For each Banach space X there is a locally convex topology on X , called

the Right topology. This topology is obtained as the restriction to X of the

Mackey topology of X∗∗, and it coincides with the topology of uniform conver-

gence on absolutely convex weakly compact subsets of the dual space X∗ of X .

Sequentially Right Banach spaces are introduced and considered in [28], [29]. The

class of Right-to-norm sequentially continuous operators between Banach spaces

is called pseudo weakly compact operators in [28]. According to [28], [29], a Ba-

nach space X is called sequentially Right if every pseudo weakly compact operator

on X is weakly compact. It is shown in the just quoted references that every Ba-

nach space possessing Pe lczyński’s property (V) is sequentially Right. However,

M. Kačena proves in [24] that not every sequentially Right Banach space has

Pe lczyński’s property (V). Moreover, the relations of sequentially Right Banach

spaces with respect to well-known classes of operators and some properties of

Banach spaces such as the Dunford–Pettis property, Reciprocal Dunford–Pettis

property, Pe lczyński’s property (V), Dieudonné property, and the reflexivity are

investigated in [24].
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Let X be a Banach space. A bounded subset K of X∗ is called an L-set, if each

weakly null sequence (xn) in X tends to 0 uniformly on K, see [15]. G. Emmanuele

in [15] characterized Banach spaces not containing l1 using L-sets. The L-limited

subsets in the dual of a Banach space have been defined in [33]. By applying the

notion of L-limited subsets in the dual of a Banach space, I. Ghenciu obtained in

[19] some characterizations of those Banach spaces which are sequentially Right in

terms of some geometric properties of Banach spaces, such as the Gelfand–Phillips

property and the Grothendieck property. In particular, he investigated when

the projective tensor product of two Banach spaces is sequentially Right. The

notion of Right∗ subsets of Banach spaces and the sequentially Right∗ property

as a dual property with respect to the sequentially Right Banach spaces have been

introduced in [7]. More characterizations and properties of Right∗ sets have been

presented in [18].

A sequence (xn) in a Banach space X is called weakly p-summable with 1 ≤

p < ∞, if for each x∗ ∈ X∗, the sequence (〈xn, x
∗〉) is in lp and (xn) is said to be

weakly p-convergent to x ∈ X if (xn −x) ∈ lweak
p (X), where lweak

p (X) denotes the

space of all weakly p-summable sequences in X . The Banach space of all (weakly)

bounded sequences in X with supremum norm is denoted by lweak
∞ (X). Moreover,

by cweak
0 (X) we represent the closed subspace of lweak

∞ (X) which contains all

weakly null sequences of X . Also, a bounded set K in a Banach space is said to

be relatively weakly p-compact, if every sequence in K has a weakly p-convergent

subsequence. If we further assume that the limit point of each weakly p-convergent

subsequence is in K, then K is called weakly p-compact. A Banach space X is

called weakly p-compact if the closed unit ball BX of X is a weakly p-compact

set; cf. [5], [6], [14].

For Banach spaces X and Y , the Banach space of all bounded linear opera-

tors (or compact operators) from X into Y is denoted by L(X,Y ) (or K(X,Y ),

respectively). An operator T ∈ L(X,Y ) is called completely continuous if T

takes weakly null sequences to norm null sequences. In [4], [5], J. M. F. Castillo

and F. Sánchez introduce the ideal of p-converging operators as those operators

which transformed weakly p-summable sequences into norm null sequences to de-

fine an alternative Dunford–Pettis property, called the Dunford–Pettis property

of order p. The ideal of all p-converging operators from X into Y is denoted

by Cp(X,Y ). Also, in [16], J. H. Fourie and E. D. Zeekoei introduce the class of

limited p-converging operators. An operator T ∈ L(X,Y ) is said to be limited

p-converging if it maps limited weakly p-summable sequences into norm null se-

quences. We denote the space of all limited p-converging operators from X into Y

by Clp(X,Y ). Using the concepts of p-converging and limited p-converging op-

erators as key notions, some other alternative geometric properties of Banach
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spaces, such as the Schur property of order p, see [10], [34], p-Gelfand–Phillips

property, see [16], Pe lczyński’s property (V) of order p, see [26], and the recipro-

cal Dunford–Pettis of order p [21], see [20], have been introduced and studied as

generalizations of the respective properties.

The reader is referred to [5], [6], [8], [10], [12], [16], [21], [20], [24], [26], [32],

[34] and the references therein for more information about these concepts.

The main aim of this paper is to present and study an appropriate p-variant no-

tion of sequentially Right Banach spaces, the so called sequentially Right Banach

spaces of order p for 1 ≤ p ≤ ∞. Also, we will investigate its dual counter-

part, the sequentially Right∗ Banach spaces of order p. In Section 2, we consider

the class of limited p-converging operators as a generalization of pseudo weakly

compact operators to introduce the sequentially Right Banach spaces of order p.

We will say that a Banach space X has the sequentially Right property of or-

der p (or sequentially Right∗ property of order p), if X is sequentially Right of

order p (or sequentially Right∗ of order p, respectively). In addition, we will com-

pare these two properties with other well-known isomorphic properties of Banach

spaces such as Pe lczyński’s property (V) (or (V∗)) of order p and the reciprocal

Dunford–Pettis property of order p. In particular, in Theorem 2.6 we will obtain

some characterizations of those Banach spaces which have the sequentially Right

property of order p in terms of the class of Lp-limited sets in their corresponding

dual spaces.

It is natural to ask whether there exists a non-reflexive Banach space satisfying

the sequentially Right property of order p? To answer this question, we first prove

that if a Banach space X has the sequentially Right property of order p and Y

is a reflexive Banach space such that L(X,Y ∗) = K(X,Y ∗), then the injective

tensor product X⊗̂εY has the sequentially Right property of order p. Next, we

will present a class of non-reflexive Banach spaces with the sequentially Right

property of order p for some appropriate p.

Section 3 is devoted to introduce and study the sequentially Right∗ property of

order p, as the dual property of the sequentially Right property of order p. Some

characterizations of this property are given, and some examples of Banach spaces

satisfying the sequentially Right∗ property of order p are presented.

2. Sequentially Right Banach spaces of order p

A nonempty bounded subset K of a Banach space X is said to be limited

(or Dunford–Pettis (DP)), if for every weak∗-null (or weakly null, respectively)
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sequence (x∗
n) in the dual space X∗ of X ,

lim
n→∞

sup
x∈K

|〈x, x∗
n〉| = 0,

where 〈x, x∗〉 denotes the duality between x ∈ X and x∗ ∈ X∗, see [1], [3]. In

particular, a sequence (xn) ⊂ X is limited if and only if 〈xn, x
∗
n〉 → 0 for all

weak∗-null sequences (x∗
n) in X∗. Clearly, every limited subset of X is Dunford–

Pettis.

Let X be a Banach space and let F be the family of all weakly compact subsets

of BX∗ . For F ∈ F , define a semi-norm qF on X∗∗ by

qF (x∗∗) = sup
x∗∈F

|〈x∗∗, x∗〉|, x∗∗ ∈ X∗∗.

The locally convex topology of X∗∗ generated by the family of semi-norms {qF :

F ∈ F} is called the Mackey topology of X∗∗, and is denoted by τ(X∗∗, X∗). The

restriction to X of the Mackey topology is called the Right topology. In general,

the Right topology is stronger than the weak topology and weaker than the norm

topology; cf. [28].

A sequence (xn) in a Banach space X is called Right null if xn → 0 in the Right

topology. The following result gives a characterization of Right null sequences.

Proposition 2.1 ([19, Proposition 1]). A sequence (xn) in a Banach space X is

Right null if and only if it is weakly null and a DP set.

Definition 2.2 ([28]). Let T : X → Y be a linear mapping between Banach

spaces. Then T is called pseudo weakly compact if it is Right-to-norm sequen-

tially continuous, that is, T maps Right convergent sequences to norm convergent

sequences.

It is clear that every completely continuous operator is pseudo weakly compact.

Also, every pseudo weakly compact operator is limited p-converging. Indeed, if

T : X → Y is a pseudo weakly compact operator and (xn) is a limited weakly

p-summable sequence in X , then (xn) is DP and weakly null, and so is Right null,

by Proposition 2.1. Hence ‖Txn‖ → 0. It follows that T is limited p-converging.

So, if we denote the spaces of all completely continuous operators and pseudo

weakly compact operators between Banach spaces X and Y by Cc(X,Y ) and

Pwc(X,Y ), respectively, then we have

Cc(X,Y ) ⊆ Pwc(X,Y ) ⊆ Clp(X,Y ).

According to [28], a Banach space X is said to be sequentially Right (has

property SR) if for any Banach space Y every pseudo weakly compact operator

T : X → Y is weakly compact. In the following definition we introduce the



Sequentially Right Banach spaces of order p 55

new property, sequentially Right property of order p, which is stronger than the

property of being sequentially Right.

Definition 2.3. Let 1 ≤ p ≤ ∞. We say that a Banach space X is sequentially

Right of order p (has the sequentially Right property of order p (SRp property)),

if for any Banach space Y , every limited p-converging operator T : X → Y is

weakly compact.

It is clear that every Banach space satisfying the SRp property is sequentially

Right. Also, we notice that for 1 ≤ p < q ≤ ∞, if X has the SRp property, then

X has the SRq property. In fact, assume that T ∈ Clq(X,Y ) and (xn) ∈ lweak
p (X)

is a limited sequence. Then (xn) ∈ lweak
q (X), and so ‖Txn‖ → 0. It follows that

T ∈ Clq(X,Y ). Therefore T is weakly compact, thanks to the SRp property of X .

A classic property of Banach spaces is the Schur property. A Banach space X

has the Schur property if every weakly null sequence in X converges in norm.

The simplest Banach space with the Schur property is the sequence space l1.

The notion of the p-Schur property in Banach spaces, as a generalization of the

Schur property, has been introduced and studied independently in [10] and [34].

A Banach space X has the p-Schur property, 1 ≤ p ≤ ∞, if every weakly p-

compact subset of X is compact. In other words, if 1 ≤ p < ∞, X has the

p-Schur property if and only if every sequence (xn) ∈ lweak
p (X) is a norm null

sequence. Also, X has the ∞-Schur property if and only if every sequence in

cweak
0 (X) is norm null. So ∞-Schur property coincides with the Schur property.

Moreover, one note that every Schur space has the p-Schur property. The authors

of the just quoted references show a wide list of examples of Banach spaces which

have the p-Schur property for some 1 ≤ p < ∞, but which do not have the Schur

property. For example, lp has the 1-Schur property.

Example 2.4. (1) If 1 ≤ p ≤ ∞, then it is evident that every reflexive Banach

space has the SRp property.

(2) Let 1 ≤ p ≤ ∞. If X is a non-reflexive Banach space with the p-Schur

property, then X does not have the SRp property. In fact, in this case, the

identity operator on X is p-converging, and so is limited p-converging, while it is

not weakly compact. Therefore X does not have the SRp property.

Our next goal is to present some characterizations of the SRp property in

terms of a class of subsets of dual Banach spaces called Lp-limited sets. Let X

be a Banach space. A subset K of a dual space X∗ is called an L-limited set if

every weakly null limited sequence (xn) in X converges uniformly on K, see [33].

We can extend this concept to the ‘p-sense’ in the following way.
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Definition 2.5. Let 1 ≤ p ≤ ∞. A subset K of the dual space X∗ of a Banach

space X is an Lp-limited set if

lim
n

sup
x∗∈K

|〈xn, x
∗〉| = 0

for every limited sequence (xn) ∈ lweak
p (X) (or (xn) ∈ cweak

0 (X) for p = ∞).

It is evident that a sequence (x∗
n) in X∗ is an Lp-limited set if and only if

limn→∞〈xn, x
∗
n〉 = 0 for all limited sequence (xn) ∈ lweak

p (X). Also, note that

L∞-limited sets are called L-limited sets in [33].

The Schur property of l1 implies that Bl∞ is an Lp-limited set. Also, if X has

the p-Schur property and (xn) ∈ lweak
p (X), then

lim
n

sup
x∗∈BX∗

|〈xn, x
∗〉| = lim

n
‖xn‖ = 0.

Thus BX∗ is an Lp-limited set. In particular, the closed unit ball of each lp space

is an L1-limited set.

Let us recall that according to [25], a bounded subset K of a Banach space X

is called p-limited, 1 ≤ p ≤ ∞, if for every (x∗
n) ∈ lweak

p (X∗) there exists (αn) ∈ lp
such that |〈x, x∗

n〉| ≤ αn for all x ∈ K and all n ∈ N. Also, we recall from [26]

that a bounded subset K of X is called p-(V∗) if

lim
n

sup
x∈K

|〈x, x∗
n〉| = 0

for every (x∗
n) ∈ lweak

p (X∗) (or (x∗
n) ∈ cweak

0 (X∗) for p = ∞). It should be noticed

that the p-(V∗) subsets of Banach spaces are called weakly-p-Dunford–Pettis sets

in [21].

It is clear that every p-limited subset of X is a p-(V∗) (weakly p-Dunford–

Pettis) set. But the converse is false. For example, it is easy to see that Bc0

is a p-(V∗) set, but it is not weakly compact and so it is not p-limited, since

every p-limited subset of a Banach space is relatively weakly compact, see [12,

Proposition 2.1]. Also note that every limited set and every Dunford–Pettis set

is p-(V∗).

We notice that the closed convex hull of an Lp-limited set is also Lp-limited and

every Lp-limited set is bounded. In fact, if K ⊆ X∗ is an Lp-limited set which

is unbounded, then there are (x∗
n) in K and (yn) in BX such that |〈yn, x

∗
n〉| > n2

for all n. Let xn = yn/n
2. Then

∞∑

n=1

‖xn‖
p =

∞∑

n=1

1

n2p
‖yn‖

p < ∞.
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Hence (xn) is a limited sequence in lweak
p (X). Therefore

0 = lim
n→∞

sup
x∗

n∈K
|〈xn, x

∗
n〉| ≥ lim

n→∞
|〈xn, x

∗
n〉| = lim

n→∞

1

n2
|〈yn, x

∗
n〉| > 1.

This is a contradiction.

The following theorem gives a characterization of the SRp property.

Theorem 2.6. Let X be a Banach space and let 1 ≤ p ≤ ∞. Then the following

are equivalent.

(1) The space X has the SRp property.

(2) Every limited p-converging operator T : X → l∞ is weakly compact.

(3) Every Lp-limited subset of X∗ is relatively weakly compact.

Proof: The implication (1) ⇒ (2) is clear.

(2) ⇒ (1). Suppose, on the contrary there is a Banach space Y and an operator

T ∈ Clp(X,Y ) such that T is not weakly compact. Then there is an operator

U : Y → l∞ such that UT is not weakly compact, see [13, page 114]. Obviously,

UT ∈ Clp(X, l∞). But this contradicts (2).

(1) ⇒ (3). Let K be an Lp-limited set in X∗ and

B(K) =
{
f : K → R : ‖f‖ = sup

x∗∈K
|f(x∗)| < ∞

}
.

Then it is easily seen that the operator T : X → B(K) defined by (Tx)(x∗) =

〈x, x∗〉 for any x ∈ X and x∗ ∈ K, is limited p-converging. Indeed, if (xn) is

a limited weakly p-summable sequence in X , then

‖Txn‖ = sup
‖x∗‖≤1

|(Txn)(x∗)| = sup
‖x∗‖≤1

|〈xn, x
∗〉| → 0.

It follows from (1) that T and so T ∗ is weakly compact. For any x∗ ∈ K, if we

define Q ∈ B(K)∗ by Q(f) = f(x∗), then ‖Q‖ ≤ 1 and for any x ∈ X we have

〈x, T ∗Q〉 = 〈Tx,Q〉 = Q(Tx) = (Tx)(x∗) = 〈x, x∗〉.

Hence T ∗(Q) = x∗. Therefore K ⊂ T ∗(BB(K)∗). On the other hand, T ∗(BB(K)∗)

is relatively weakly compact. Thus, K is relatively weakly compact.

(3) ⇒ (2). Let T ∈ Clp(X, l∞). Then for any limited weakly p-summable

sequence (xn) in X we have

sup{|〈xn, T
∗y∗〉| : y∗ ∈ Bl∗

∞

} = sup{|〈Txn, y
∗〉| : y∗ ∈ Bl∗

∞

} = ‖Txn‖ → 0.

It follows that T ∗(Bl∗
∞

) is an Lp-limited set and so it is relatively weakly compact,

by (3). Therefore T ∗ and so T is weakly compact. �
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Recall that a Banach space whose limited sets are relatively compact is said to

have the Gelfand–Phillips (GP) property.

Corollary 2.7. A Banach space X has the GP and the SRp properties for some

1 ≤ p ≤ ∞ if and only if X is reflexive.

Proof: Let X have the GP and the SRp properties and let (xn) be a limited

weakly p-summable sequence in X . Then

lim
n→∞

sup
x∗∈BX∗

|〈xn, x
∗〉| ≤ lim

n→∞
‖xn‖ = 0,

because X has the GP property. Hence BX∗ is an Lp-limited set and so is weakly

compact, by Theorem 2.6. Therefore X is reflexive. �

Remark 2.8. The notion of the p-Gelfand–Phillips property, 1 ≤ p ≤ ∞, as

a generalization of the Gelfand–Phillips property and the p-Schur property, has

been introduced in [16]. It should be noted that this notion has been called

“limited p-Schur property” in [11]. In fact, a Banach space X is said to have the

p-Gelfand–Phillips property (p-GP for short) if every limited weakly p-summable

sequence (xn) in X is norm null. Therefore one can refine the above corollary by

replacing the GP property of X by the p-GP property of X .

We recall that a Banach space X is said to have Pe lczyński’s property (V)

if every unconditionally converging operator (i.e., an operator mapping weakly

unconditionally Cauchy series in X to unconditionally converging series) with do-

main X is weakly compact, see [27]. In [23] A. Grothendieck introduce the recip-

rocal Dunford–Pettis (RDP) property. A Banach space X has the RDP property

if for every Banach space Y , every completely continuous operator T : X → Y is

weakly compact. It is known that a Banach space X has the RDP property if and

only if every L-subset of X∗ is relatively weakly compact, see [22]. In addition,

Banach spaces with Pe lczyński’s property (V), in particular, reflexive spaces, have

the RDP property, see [27].

The concept of p-(V) set in the dual of Banach spaces has been introduced

and studied in [26], see also [8], to generalize Pe lczyński’s property (V). We no-

tice here that the p-(V) subsets of dual Banach spaces are called weakly-p-L-set

in [21], [20] to introduce and study the reciprocal Dunford–Pettis property of

order p. According to [21], [20], [26], a bounded subset K of X∗ is said to be

p-(V) set (weakly-p-L-set) if every weakly p-summable sequence (xn) in X con-

verges uniformly on K, that is

lim
n

sup
x∗∈K

|〈xn, x
∗〉| = 0
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for all (xn) ∈ lweak
p (X). Note that ∞-(V) sets (weakly ∞-L-sets) are called L-sets

in [15].

Obviously, every p-(V) subset (weakly-p-L-subset) of X∗ is Lp-limited, but the

converse is false. For instance, the closed unit ball of c∗0 = l1 is an Lp-limited set.

In fact, c0 has the GP property and so every limited weakly null sequence in c0 is

norm null. Hence the closed unit ball of c∗0 is an Lp-limited set. However, Bc∗
0

is

not a p-(V) set. Indeed, if Bc∗
0

is a p-(V) set, then

lim
n

‖xn‖ = lim
n

sup
x∗∈Bc∗

0

|〈xn, x
∗〉| = 0

for all (xn) ∈ lweak
p (X). It follows that c0 has the p-Schur property which is

impossible.

Before giving some other results and examples of the SRp property we remark

that in [26] the authors introduce a generalization of Pe lczyński’s property (V)

in the p-sense. The results in [26] prove that a Banach space X has Pe lczyński’s

property (V) of order p (property p-(V) in short) if for every Banach space Y ,

every p-converging operator T : X → Y is weakly compact. Also, according to the

results in [21], [20], a Banach space X has the reciprocal Dunford–Pettis property

of order p (RDPp property) if every p-(V) subset (weakly-p-L-subset) of X∗ is

relatively weakly compact. It follows from [26, Theorem 2.4] that the property

p-(V) and the RDPp property are equivalent. For more information about the

RDPp property and the property p-(V), see [20], [21], [26]. It is evident that

every p-converging operator is limited p-converging. Therefore, if X has the SRp

property, then it has property p-(V) (or RDPp property). But in general, the

next example shows that not every Banach space with property p-(V) admits the

SRp property.

Example 2.9. The James p-space Jp, 1 < p < ∞, in [30] is the real Banach

space of all sequences (an) ∈ c0 with the norm

‖(an)‖ = sup

{( n∑

j=2

|aij − aij−1
|p
)1/p

: i1 < . . . < in, n ∈ N

}
.

By [26] the James p′-space Jp′ is a non-reflexive Banach space with property p-(V)

for 1 < p < ∞, where p′ is the conjugate of p. But Jp′ does not have the SRp

property. Indeed, if Jp′ has the SRp property, then Corollary 2.7 implies that Jp′

is reflexive, since Jp′ is separable, and so has the GP property.

It is easy to see that every Banach space with the SRp property has the RDP

property, but the converse is not true. For example, it is known that the classical

Banach space c0 has the GP and the RDP properties, while it is not SRp. Indeed,
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if c0 has the SRp property, then it would be reflexive, by Corollary 2.7 which

is impossible. The authors of [28] also proved that every C∗-algebra has the SR

property. Unlike the SR property, there exist C∗-algebras which do not have

the SRp property. For example, it is known that the C∗-algebra C(K) of all

continuous functions on a compact Hausdorff space K has the GP property, while

it is not reflexive and so is not SRp. Similarly, one can see that if H is a separable

Hilbert space, then K(H), the C∗-algebra of all compact operators on H , does

not have the SRp property.

To prove our next result, we need the following well known theorem.

Theorem 2.10 ([17, Theorem 3]). Let X and Y be Banach spaces. Suppose

that L(X,Y ) = K(X,Y ) and M is a subset of K(X,Y ) such that

(1) M(x) := {Tx : T ∈ M} is relatively weakly compact for all x ∈ X .

(2) M∗(y∗) = {T ∗y∗ : T ∈ M} is relatively weakly compact for all y∗ ∈ Y ∗.

Then M is relatively weakly compact.

Theorem 2.11. Let X be a Banach space with the SRp property and let Y be

a reflexive Banach space such that L(X,Y ∗) = K(X,Y ∗). Then the injective

tensor product X⊗̂εY has the SRp property for all 1 ≤ p ≤ ∞.

Proof: Suppose that J (X,Y ∗) denotes the Banach space of all integral opera-

tors from X into Y ∗. It is known that (X⊗̂εY )∗ = J (X,Y ∗), see [31, page 67].

Let M be an Lp-limited subset of (X⊗̂εY )∗ and let (hn) be a sequence in M . We

will verify the conditions of Theorem 2.10 for the subset {hn : n ∈ N} of M . We

claim that {hnx : n ∈ N} is an Lp-limited subset of Y ∗ for all x ∈ X . If (yn) is

a limited weakly p-summable sequence in Y and T ∈ (X⊗̂εY )∗, then

∞∑

n=1

|〈x⊗ yn, T 〉|
p =

∞∑

n=1

|〈yn, T x〉|
p < ∞.

Hence (x ⊗ yn) is weakly p-summable. Now, let (Tn) be a weak∗-null sequence

in J (X,Y ∗). Since the mapping ϕx : L(X,Y ∗) → Y ∗ defined by ϕx(T ) = Tx

is a bounded linear operator, we conclude that (Tnx) is a weak∗-null sequence

in Y ∗. It follows that

〈x⊗ yn, Tn〉 = 〈Tnx, yn〉 → 0,

since (yn) is a limited sequence in Y . Hence (x⊗ yn) is limited. Similarly, we can

prove that if (xn) is a limited weakly p-summable sequence in X , then (xn ⊗ y)

is limited weakly p-summable for all y ∈ Y . On the other hand, since (hn) is

Lp-limited, we have

〈yn, hnx〉 = 〈x⊗ yn, hn〉 → 0,
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and so {hnx : n ∈ N} is an Lp-limited subset of Y ∗. It follows from Theorem 2.6

that {hnx : n ∈ N} is relatively weakly compact.

Now, fix y ∈ Y . If (xn) is a limited weakly p-summable sequence in X , then

〈xn, h
∗
ny〉 = 〈y, hnxn〉 = 〈xn ⊗ y, hn〉 → 0.

Therefore {h∗
ny : n ∈ N} is Lp-limited in X∗. It follows that {h∗

ny : n ∈ N} is

relatively weakly compact. Thus {hn : n ∈ N} is relatively weakly compact by

Theorem 2.10. Since the sequence (hn) is arbitrary in M , we conclude that M

is relatively weakly compact, and therefore Theorem 2.6 implies that X ⊗ε Y has

the SRp property. �

Lemma 2.12 ([31, Corollary 2.24], see also [9]). Let 1 ≤ p, q < ∞ and let p′ be

the conjugate of p. Then lp⊗̂εlq is reflexive if and only if p′ > q.

Finally, we introduce a class of non-reflexive Banach spaces with the SRp prop-

erty, and so property p-(V) for some appropriate p.

Example 2.13. Let 1 < p, q < ∞ such that p > q and p′ ≤ q. Then L(lp, lq) =

K(lp, lq), by Pitt’s theorem. It follows from Lemma 2.12 and Theorem 2.11 that

lp⊗̂εlq is a non-reflexive Banach space with the SRp property.

3. Sequentially Right∗ property of order p

In this section we introduce the sequentially Right∗ property of order p as a dual

notion of the SRp property, and we give some characterizations of this property.

Also, we will present some classes of Banach spaces with the sequentially Right∗

property of order p.

According to [7], a bounded subset K of a Banach space X is called a Right∗

set if

lim
n

sup
x∈K

|〈x, x∗
n〉| = 0

for all Right null sequence (x∗
n) in X∗. Also, a Banach space X has the sequentially

Right∗ (SR∗) property if every Right∗ subset of X is relatively weakly compact.

The corresponding p-variant notions of Right∗ sets and the SR∗ property can be

defined in the following way.

Definition 3.1. A bounded subset K of a Banach space X is said to be R∗
p set if

lim
n

sup
x∈K

|〈x, x∗
n〉| = 0
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for every limited sequence (x∗
n) ∈ lweak

p (X∗). We say that a Banach space X

is sequentially Right∗ (has the sequentially Right∗ property of order p (or SR∗
p

property in short)), if every R∗
p set in X is relatively weakly compact.

We notice that an R∗
p subset of a Banach space X is an Lp-limited subset

of X∗∗, and thus is bounded. Also, it follows from Proposition 2.1 that every

Right∗ subset of a Banach space X is an R∗
p set for all 1 ≤ p ≤ ∞. Therefore

every Banach space X with the SR∗
p property has the SR∗ property. It is clear

that every reflexive Banach space has the SR∗
p property for all 1 ≤ p ≤ ∞.

Proposition 3.2. Let X be a Banach space.

(1) If X has the SRp property, then its dual has the SR∗
p property.

(2) If X∗ has the SRp property, then X has the SR∗
p property.

Proof: (1) If K is an R∗
p subset of X∗, then it is easy to see that K is an

Lp-limited subset of X∗, and therefore it is relatively weakly compact, by Theo-

rem 2.6.

(2) If X∗ has the SRp property, then (1) implies that X∗∗ and so X has the

SR∗
p property. �

As a direct consequence of Example 2.13 and Proposition 3.2 we have the

following result.

Corollary 3.3. Let 1 < p, q < ∞ such that p > q and p′ ≤ q, where p′ is the

conjugate of p. Then (lp⊗̂εlq)∗ = J (lp, lq′) is a non-reflexive Banach space with

the SR∗
p property.

Theorem 3.4. Let X be a Banach space. Then X∗ has the p-GP property if

and only if BX is an R∗
p set in X .

Proof: Suppose that X∗ has the p-GP property. Then every limited weakly

p-summable sequence in X∗ is norm null. Therefore

lim
n

sup
x∈BX

|〈x, x∗
n〉| ≤ lim

n
‖x∗

n‖ = 0

for all limited weakly p-summable (x∗
n) in X∗. It implies that BX is an R∗

p

set. Conversely, assume that X∗ does not have the p-GP property. Then there

exists a limited sequence (x∗
n) ∈ lweak

p (X∗) which is not norm null. Then we may

assume that there exists ε > 0 such that ‖x∗
n‖ > ε for all n ∈ N. It follows

from the Hahn–Banach theorem that there is a sequence (xn) ⊆ BX such that

|〈xn, x
∗
n〉| > ε. This is a contradiction, since BX is an R∗

p-set. �

Corollary 3.5. If a Banach space X has the SR∗
p property and X∗ has the p-GP

property, then X is reflexive.
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Proof: It follows from Theorem 3.4 that BX is an R∗
p set in X . Therefore BX

is weakly compact, and so X is reflexive. �

Example 3.6. Since c∗0 = l1 has the p-GP property, it follows from Theorem 3.4

that Bc0 is an R∗
p set. On the other hand, it is known that Bc0 is not weakly

compact. Therefore c0 does not have the SR∗
p property.

A Banach space X has property (V∗) if and only if for every Banach space Y ,

every unconditionally converging operator T : X → Y is weakly compact, see [27].

Also, a Banach space X has property RDP∗ if every DP subset of X is rela-

tively weakly compact, see [2]. The concept of property p-(V∗) (property RDP∗
p)

was introduced in [26] (or [21], respectively) as a generalization of property (V∗)

(or RDP∗). More precisely, a Banach space X has property p-(V∗) (or RDP∗
p)

if every p-(V∗) subset (weakly-p-Dunford–Pettis subset) of X is relatively weakly

compact. It is trivial that every p-(V∗) (weakly-p-Dunford–Pettis) subset of a Ba-

nach space X is an R∗
p set. Therefore, if X has the SR∗

p property, then X has

property p-(V∗) (or RDP∗
p). However, the converse is not true. To provide an

appropriate example, we need the following result from [18].

Lemma 3.7 ([18, Corollary 19]). If X is a non-reflexive Banach space with the

SR∗ property, then X contains a copy of l1.

Example 3.8. It has been proved in [26, Theorem 2.14] that the James p-

space Jp, 1 < p < ∞, has property p-(V∗). But, Jp does not have the SR∗
p

property. In fact, the James p-space, Jp and its dual J∗
p are separable non-

reflexive Banach spaces. Then Jp does not contain a copy of l1 . It follows from

Lemma 3.7 that Jp does not have the SR∗ property, and so Jp does not have the

SR∗
p property.

Theorem 3.9. Let X and Y be two Banach spaces. Then the following state-

ments are equivalent.

(1) If T ∈ L(X,Y ) such that T ∗ is limited p-converging, then T is weakly

compact.

(2) If T ∈ L(l1, Y ) such that T ∗ is limited p-converging, then T is weakly

compact.

(3) The space Y has the SR∗
p property.

Proof: The implication (1) ⇒ (2) is clear.

(2) ⇒ (3). Suppose that K is an R∗
p subset of Y and (yk) is an arbitrary se-

quence in K. Define T : l1 → Y by T ((αk)) =
∑∞

n=1 αkyk. So T ∗y∗ = (〈yk, y
∗〉)

for all y∗ ∈ Y ∗. Indeed, for α = (αk) ∈ l1 we have

〈T ∗y∗, α〉 = 〈y∗, Tα〉 =

〈
y∗,

∞∑

n=1

αkyk

〉
= 〈(〈yk, y

∗〉), α〉.
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If (y∗n) is limited weakly p-summable sequence in Y ∗, then limn→∞ ‖T ∗y∗n‖ = 0,

since K is an R∗
p set, and therefore

lim
n

‖T ∗y∗n‖ lim
n

‖(〈yk, y
∗
n〉)‖ = lim

n
sup
k

|〈yk, y
∗
n〉| = 0.

Hence T ∗ is limited p-converging and so T is weakly compact, by (2). Thus

T ((ek)) = (yk) is a weakly compact sequence. Therefore K is weakly compact,

since (yk) is an arbitrary sequence in K.

(3) ⇒ (1). Assume that T ∈ L(X,Y ) and T ∗ is limited p-converging. If (y∗k)

is a limited weakly p-summable sequence in Y ∗ and x ∈ BX , then

lim
k

sup
x∈BX

|〈Tx, y∗k〉| = lim
k

sup
x∈BX

|〈x, T ∗y∗k〉|

≤ lim
k

‖T ∗y∗k‖ = 0.

Therefore T (BX) is an R∗
p subset of Y . It follows from (3) that T is weakly

compact. �

Corollary 3.10. Let X and Y be Banach spaces. If Y has the SR∗
p property

and X∗ has the p-GP property, then L(X,Y ) = W (X,Y ).

Proof: Let T ∈ L(X,Y ) and let (y∗n) ∈ lweak
p (Y ∗) be a limited sequence. Then

(T ∗y∗n) is limited weakly p-summable sequence in X∗. So ‖T ∗y∗n‖ → 0, since X∗

has the p-GP property. It yields that T ∗ ∈ Clp(Y ∗, X∗). Therefore Theorem 3.9

and the SR∗
p property of Y imply that T is weakly compact. �

Theorem 3.11. If every conjugate limited p-converging operator T ∗ : Y ∗ → X∗

is weakly compact, then Y has the SR∗
p property.

Proof: Let K be an R∗
p set of Y and (yn) be an arbitrary sequence in K. Define

an operator T : l1 → Y by

T (α) =

∞∑

n=1

αnyn

for all α = (αn) ∈ l1. We observe that T ∗y∗ = (〈yn, y
∗〉) for all y∗ ∈ Y ∗. We

claim that T ∗ is limited p-converging. Assume, on the contrary, that (y∗n) ∈

lweak
p (Y ∗) is limited and (T ∗y∗n) is not norm null. Therefore there is ε > 0 such

that

‖T ∗y∗n‖ > ε

for all n ∈ N. It follows that there is a subsequence (ymn
) such that

|〈ymn
y∗n〉| > ε, n ∈ N.
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Since (ymn
) is an R∗

p set, we get a contradiction. Hence T ∗ is limited p-converging.

Then T ∗∗ and so T is weakly compact, by hypothesis. It follows that (yn) =

(T (en)) is weakly convergent. Therefore K is relatively weakly compact. �

Theorem 3.12. If K is an R∗
p subset of a Banach space X and T : X → lp,

1 ≤ p < ∞, is a bounded linear operator with limited adjoint, then T (K) is

relatively compact.

Proof: Let x∗
n = T ∗(e∗n), where (e∗n) is the vector basis of lp′ and 1/p+1/p′ = 1.

Then Tx = (〈x, x∗
n〉) for all x ∈ X . It is known that the operator T ∗ : lp′ → X∗

is weakly p-compact, since Blp′ is weakly p-compact. Hence T is weakly compact,

and so T ∗ is (w∗, w)-continuous. It follows that (x∗
n) is weakly null. On the other

hand, (x∗
n) is limited weakly p-compact, since T ∗ is limited. Hence without loss

of generality we may assume that (x∗
n) ∈ lweak

p (X∗). Since K is an R∗
p set we

conclude that

lim
n

sup
x∈K

|〈x, x∗
n〉| = 0.

Therefore T (K) is relatively compact in lp by the characterization of relatively

compact subsets of lp. �

Theorem 3.13. Let X be a Banach space and let K be a bounded subset of X .

Then the following statements are equivalent.

(1) The set K is an R∗
p set.

(2) If T : X → c0 is a bounded linear operator with limited weakly p-compact

adjoint, then T (K) is relatively compact.

Proof: The implication (1) ⇒ (2) can be proved by the same argument as the

proof of Theorem 3.12, using the characterization of relatively compact subsets

of c0.

(2) ⇒ (1). Let (x∗
n) be a limited weakly p-summable sequence in X∗. De-

fine T : X → c0 by Tx = (〈x, x∗
n〉), x ∈ X . Then T ∗en = x∗

n for all n ∈ N

and T ∗((αn)) =
∑∞

n=1 αnx
∗
n for all (αn) ∈ l1. It is clear that T ∗(Bl1) ={∑∞

n=1 αnx
∗
n : (αn) ∈ l1

}
is the closed absolutely convex hull of (x∗

n). Then

T ∗(Bl1) is limited weakly p-compact. Hence T ∗ is a limited weakly p-compact

operator. It follows from (2) that T (K) is relatively compact. Therefore

lim
n

sup
x∈K

|〈x, x∗
n〉| = 0,

by the characterization of relatively compact subsets of c0, and so K is an R∗
p

subset of X . �
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