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PROBABILISTIC PROPERTIES OF A MARKOV-SWITCHING
PERIODIC GARCH PROCESS

Billel ALIAT and Fayçal HAMDI

In this paper, we propose an extension of a periodic GARCH (PGARCH) model to a
Markov-switching periodic GARCH (MS-PGA RCH), and provide some probabilistic prop-
erties of this class of models. In particular, we address the question of strictly periodically and
of weakly periodically stationary solutions. We establish necessary and sufficient conditions
ensuring the existence of higher order moments. We further provide closed-form expressions
for calculating the even-order moments as well as the autocovariances of the powers of a MS-
PGARCH process. We thus show how these moments and autocovariances can be used for
estimating model parameters using GMM method.

Keywords: Markov-switching models, periodic GARCH models, periodic stationarity,
higher-order moments, Markov-switching PGARCH models, GMM method

Classification: 62M10, 60G10

1. INTRODUCTION

Modeling volatility remains an important research area given its crucial role in mod-
eling financial data such as stock price indices, interest rates and exchange rate data.
Among volatility models, we find the GARCH model proposed by Bollerslev [15] which
is one of the most popular models, because it represents a powerful tool for analyzing
and forecasting the volatility of financial markets. The GARCH formulation explicitly
describes instantaneous volatility using both conditional variances and squares of obser-
vations. After its introduction in time series literature, GARCH model has captured
several empirical features that characterize many financial data, referred to as stylized
facts, such as lack of serial correlation, nonlinear dependence, heavy-tailed marginal dis-
tributions and volatility clustering. However, other features such as multimodality of
marginal distributions and regime changes remain uncaptured by this class of models.
These features are best represented by regime switching models.

Since the seminal paper by Hamilton [29], the use of Markov-switching (in short MS)
models has become increasingly popular in dynamic econometrics. Introducing changes
in regime into the classical time series models substantially increases their flexibility.
Therefore, different research works using ARCH-type models have been developed in
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that direction. Cai [18] and Hamilton and Susmel [30] introduced the Markov-switching
ARCH model (MS-ARCH). Gray [24] proposed a Markov-switching GARCH (MS-
GARCH) model assuming that the conditional variance, knowing the current regime,
depends on the expectation of past conditional variances, rather than their values.
Klaassen [33] and Haas et al. [26] proposed other MS-GARCH formulations that differ
from Gray’s one. Since then, an important number of studies have been devoted to
MS-GARCH models. See, among others, Francq and Zaköıan [20, 21], Bauwens et al.
[7], Augustyniak [5] and Billio et al. [14].

On the other hand, it is widely documented that most asset and exchange rate returns
exhibit strong seasonal patterns in the form of day of the week and holiday effects (see,
e. g. Bollerslev and Ghysels [16]; Franses and Paap [22]; Hamdi and Souam [28]). Hence,
we can say that each day of the week constitutes a different regime. This seasonal effect
can be interpreted as a deterministic regime-switching behavior. Contrary to the MS
modeling, the regime that occurs at any given point in time is known with certainty
in advance. As a result, financial time series analysts have, nowadays, become more
convinced of the need to combine periodicity and conditional heteroskedasticity in one
model. In particular, the class of periodic GARCH (PGARCH) models introduced
by Bollerslev and Ghysels [16] has shown to be appropriate for capturing periodicity in
the conditional variance, a property that cannot be explained by the classical GARCH
formulation. Despite the interest and importance of the PGARCH model since its
introduction, various limitations of this class of models (see e. g. Bentarzi and Hamdi
[8, 9]; Regnard and Zaköıan [37], Hamdi and Souam [28]) pushed us to propose another,
more flexible, class of models, able to capture different features that characterize, usually,
economic series in general, and financial time series in particular.

In this paper, we present a study of the probabilistic properties of Markov-switching
periodic GARCH (MS-PGARCH) models that constitute a very flexible and parsimo-
nious class of nonlinear time series models of the conditional variance. The rest of this
article is organized as follows. In section 2, we introduce the class of Markov-switching
periodic GARCH models and give some related notations and assumptions. In section
3, we give a condition under which strictly periodically stationary solution to the MS-
GARCH equation exists. In section 4, we focus on conditions ensuring finiteness of
higher order moments, and provide explicitly the expression of these moments. We also
give the autocorrelation function of the squared observations. In Section 5, we concen-
trate on the particular MS-PGARCH (1, 1) case that allows for rather simple explicit
expressions. The first part of the Section 6 is devoted to the GMM parameter estima-
tion problem. In the second part, we provide a simulation study of the performance of
the proposed estimation method.

2. MARKOV-SWITCHING PERIODIC GARCH MODEL

Let {ηt; t ∈ Z} be a sequence of independent and identically distributed (i.i.d.) random
variables and let ωt, αt,i and βt,j , for 1 ≤ i ≤ q and 1 ≤ j ≤ p, be nonnegative periodic
functions with period S, i. e. ωt+τS = ωt > 0, αt+τS,i = αt,i ≥ 0 and βt+τS,j = βt,j ≥
0. Recall that a PGARCH (pt, qt) process {εt, t ∈ Z} with periodic volatility process
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{ht, t ∈ Z} is a solution to the equations
εt =

√
htηt, t ∈ Z

ht = ωt +
qt∑
i=1

αt,iε
2
t−i +

pt∑
j=1

βt,jht−j .
(1)

Note that in some articles the definition of pt and qt for PGARCH models is a S-periodic
function in t. For simplicity purposes, pt and qt can be taken as constants in t; simply
set (p, q) = (max pt,max qt) and take αt,i = 0, for i > qt and βt,j = 0, for j > pt.

By multiplying the second equation in (1) by η2
t , we get

ε2t = htη
2
t = ωtη

2
t +

q∑
i=1

αt,iη
2
t ε

2
t−i +

p∑
j=1

βt,jη
2
t ht−j ,

and by defining the random vectors zt and bt of dimension (p+ q)

zt =
(
ε2t , ε

2
t−1, . . . , ε

2
t−q+1, ht, ht−1, . . . , ht−p+1

)′
and bt =

(
ωtη

2
t ,01×(q−1), ωt,01×(p−1)

)′
,

as well as the square random matrix At of dimension (p+ q)

At =


αt,1:q−1η

2
t αt,qη

2
t βt,1:p−1η

2
t βt,qη

2
t

Iq−1 0(q−1)×1 0(q−1)×(p−1) 0(q−1)×1

αt,1:q−1 αt,q βt,1:p−1 βt,q
0(p−1)×(q−1) 0(q−1)×1 Ip−1 0(p−1)×1

 ,

where αt,1:q = (αt,1, . . . , αt,q) and βt,1:p = (βt,1, . . . , βt,p). As a result, the model (1)
admits the following Markovian representation

Yt = AtYt−1 + bt. (2)

Note that the periodic stationarity property of the model (2) can be studied by examining
the stationarity of a certain appropriate transformation (see Gladyshev [23]). Indeed,
it is well known that a periodically stationary process {Yt, t ∈ Z} is equivalent to the
stationary S-variate process {Yτ , τ ∈ Z}, where Yτ =

(
Y ′1+Sτ , Y

′
2+Sτ , . . . , Y

′
S+Sτ

)
. This

last process admits the generalized autoregressive representation

Yτ = AτYτ−1 + bτ , (3)

where (Aτ ,bτ )τ∈Z is an i.i.d. process and Aτ and bτ are defined by blocks respectively
as

(Aτ )i,j =

i−1∏
s=0

Ai−s+τS1(j=S)

and

(bτ )i,1 =

i∑
v=1

(
i−v−1∏
s=0

Ai−s+τS

)
bv+τS , for i, j = 1, . . . , S.

The strict periodic stationarity of the PGARCH (1, 1) model was studied by Aknouche
and Bentarzi [1]. For more general PGARCH models, the strict periodic stationarity
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conditions were established by Bibi and Aknouche [10], Aknouche and Bibi [2] and Lee
and Shin [35]. Bibi and Aknouche [10] and Lee and Shin [35] used the representation (3)
to obtain strict periodic stationarity conditions of the PGARCH (p, q) model. Aknouche
and Bibi [2] have instead exploited the representation (2) which differs from the standard
formulation studied by Bougerol and Picard [17] in that the sequence (At, bt) is rather
periodically stationary and periodically ergodic. Aknouche and Bibi [2] have shown that
a necessary and sufficient condition for the existence of a nonanticipative and strictly
periodic stationary solution is that the top Lyapunov exponent associated with the se-
quence of matrices A =: {At, t ∈ Z} is strictly negative. This nonanticipative solution
is unique and periodically ergodic. A necessary and sufficient condition of second-order
periodic stationarity of a particular 2-periodic PGARCH (1, 1) model was established in
Bollerslev and Ghysel [16]. The general PGARCH case is considered by Aknouche and
Bentarzi [1], as well as the existence of a strictly periodic stationary solution having finite
higher order moments (see also Aknouche and Bibi [2]; Bibi and Aknouche [10]). The
calculation of some moments and the autocovariances of the squares of PGARCH pro-
cesses were stated by Bibi and Aknouche [10]). The asymptotic properties, namely the
strong consistency and the asymptotic normality, of the quasi-maximum likelihood, the
least squares and a Yule–Walker estimators were respectively established in Aknouche
and Bibi [2], Bibi and Lesheb [11, 12] and Bibi and Lesheb [13].

Despite the interest and the importance of the PGARCH models since their introduc-
tion, various limitations of this class of models (e. g. Bentarzi and Hamdi [8]; Regnard
and Zaköıan [37]; Hamdi and Souam [27, 28]) let us to propose a new more flexible class,
making possible the capture of the main stylized facts characterizing financial series.

The Markov-switching periodic GARCH model (in short, MS-PGARCH), that we
propose here can be defined as a bivariate process {(εt,∆t) ; t ∈ Z}. The regime, in which
a PGARCH process (εt) is located at a given date t, is indexed by a Markov chain (∆t)
defined on a finite state space. Hence, a stochastic process {εt, t ∈ Z} is said to have
a Markov-switching PGARCH representation with orders p and q and period S ≥ 1,
denoted MS-PGARCHS (p, q), if it is a solution of the following stochastic difference
equation

εt =
√
htηt, t ∈ Z

ht =
d∑
k=1

ω
(k)
t 1(∆t=k) +

q∑
i=1

d∑
k=1

α
(k)
t,i ε

2
t−i1(∆t=k) +

p∑
j=1

d∑
k=1

d∑
l=1

β
(k)
t,j h

(l)
t−j1(∆t=k,∆t−j=l),

(4)
where ht = E

[
ε2t | Ft−1

]
, Ft denotes the σ-algebra based on the information available up

to time t and 1(·) is the indicator function. The process (∆t) is a homogenous Markov
chain defined on a finite state space E = {1, 2, . . . , d} , and {ηt; t ∈ Z} is a sequence of
independent and identically distributed (i.i.d.) random variables such that E (ηt) = 0

and E
(
η2
t

)
= 1. The coefficients ω

(k)
t , α

(k)
t,i and β

(k)
t,j , for 1 ≤ k ≤ d, 1 ≤ i ≤ q and

1 ≤ j ≤ p, are periodic functions with period S (i. e. ω
(k)
t+τS = ω

(k)
t , α

(k)
t+τS,i = α

(k)
t,i

and β
(k)
t+τS,j = β

(k)
t,j ), and satisfy the constraints ω

(k)
t > 0, α

(k)
t,i ≥ 0 and β

(k)
t,j ≥ 0, for

1 ≤ k ≤ d, 1 ≤ i ≤ q and 1 ≤ j ≤ p.
Note that the MS-PGARCH model (4) may be seen as a mixture of d components

of periodic GARCH. At each time point t, one of them generates the observation yt.
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The stochastic process selecting the component generating the observation is supposed
to be homogeneous Markov chain. Thus, our model captures, not only, the stochastic
regime-switching behavior, but also the periodicity (deterministic regime-switching be-
havior) hidden in the autocovariance structure of some economic series in general, and
of financial time series in particular. Another feature of our model, which cannot be
reproduced by with the PGARCH formulation (1) , is time-varying skewness. How-
ever, this flexibility is unfortunately undermined by a path dependence problem which
complicates the parameter estimation process (see Hamilton and Susmel, [30]).

As in the mixture PGARCH framework (see Hamdi and Souam [27]), another spec-
ification which differ from (4) for the conditional variance can be considered. In this
specification, each regime-specific conditional variance depends only on its own lag, that
is,

εt =
√
htηt, t ∈ Z

ht =
d∑
k=1

ωt (k)1(∆t=k) +
q∑
i=1

d∑
k=1

αt,i (k) ε2t−i1(∆t=k) +
p∑
j=1

d∑
k=1

βt,j (k)h
(k)
t−j1(∆t=k).

The idea behind this formulation is to model d parallel periodic GARCH processes
and the Markov chain determines which process is selected at each time. In addition,
the current regime in the lagged variance term is thus preserved. This is, in our view,
somewhat artificial to tackle the issue of eliminating the path-dependence problem by
forcing the past volatilities to be in the same regime of the current volatility. Actually,
the regime of our process can change between t− 1 and t− p. In our opinion, model (4)
appears to be the most natural formulation of MS-PGARCH processes.

To rewrite our proposed model (4) in a simple form, we make the following notations.
Let

ωt (∆t) :=

d∑
k=1

ω
(k)
t 1(∆t=k),

αt,i (∆t) :=

d∑
k=1

α
(k)
t,i 1(∆t=k),

βt,j (∆t) :=

d∑
k=1

β
(k)
t,j 1(∆t=k),

and

ht−j :=

d∑
l=1

h
(l)
t−j1(∆t−j=l),

then model (4) can be written as
εt =

√
htηt,

ht = ωt (∆t) +
q∑
i=1

αt,i (∆t) ε
2
t−i +

p∑
j=1

βt,j (∆t)ht−j ,
t ∈ Z. (5)

In what follows, we consider that the processes (ηt) and (∆t) are assumed to be
independent. In addition, (∆t) is a homogenous, stationary, irreducible and aperiodic
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Markov chain. The stationary probabilities of (∆t) are denoted by π (k) = P (∆1 = k) ,
the transition probability matrix is denoted by P and written in the following way

P = (p (k, l))k,l=1,...,d =


p (1, 1) p (2, 1) · · · p (d, 1)
p (1, 2) p (2, 2) · · · p (d, 2)

...
...

. . .
...

p (1, d) p (2, d) · · · p (d, d)

 ,

where p (k, l) = P (∆t = l | ∆t−1 = k) , and the i-step transition probabilities are de-
noted by p(i) (k, l) = P (∆t = l | ∆t−i = k) , for k, l ∈ E and i ≥ 1.

It is worth mentioning that our proposed MS-PGARCH formulation (5) includes,
as special cases, various models such as:

• If p = 0, we have

εt =
√
htηt, and ht = ωt (∆t) +

q∑
i=1

αt,i (∆t) ε
2
t−i, t ∈ Z,

and the process is called a Markov-switching periodic ARCH (in short, MS-
PARCH).

• MS-GARCH model which can be obtained by assuming that the functions ωt (k) ,
αt,i (k) and βt,j (k) are constant in t (see Haas and Paolella [25] for a survey of
mixture and regime-switching GARCH models).

• Mixture PGARCH model which can be obtained by assuming that (∆t) is an
independent process. This class of models has been proposed and studied by
Hamdi and Souam [28].

• PGARCH model, introduced by Bollerslev and Ghysels [16], which is obtained by
assuming that the Markov-chain (∆t) has a single regime.

• Standard GARCH model of Bollerslev [15] which can be obtained assuming that
the functions ωt (k) , αt,i (k) and βt,j (k) constant over time and regimes.

3. STRICT PERIODIC STATIONARITY OF MS-PGARCH MODEL

In this section we are interested in the existence of a unique strictly periodically sta-
tionary (henceforth s.p.s.) solution of equation (5) in the sense given, for example, by
Aknouche and Guerbyenne [3]. So, we derive a necessary and sufficient condition under
which our process be s.p.s. The definition (5) is difficult to deal with when we want
to study the probabilistic properties of the MS-PGARCH model written in this form.
For this reason, it will be useful to rewrite the model (5) in an equivalent Markovian
representation. Along the lines of the work drawn up by Aknouche and Guerbyenne [3]
for random coefficient periodic autoregressions, we consider the following representation
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zt = Atzt−1 + bt, (6)

where zt and bt are random vectors of dimension r = p+ q defined as follows

zt =
(
ε2t , ε

2
t−1, . . . , ε

2
t−q+1, ht, ht−1, . . . , ht−p+1

)′
,

bt =
(
ωt (∆t) η

2
t ,01×(q−1), ωt (∆t) ,01×(p−1)

)′
,

and At is a square random matrix of dimension r, such that

At =


αt,1:q−1 (∆t) η

2
t αt,q (∆t) η

2
t βt,1:p−1 (∆t) η

2
t βt,q (∆t) η

2
t

Iq−1 0(q−1)×1 0(q−1)×(p−1) 0(q−1)×1

αt,1:q−1 (∆t) αt,q (∆t) βt,1:p−1 (∆t) βt,q (∆t)
0(p−1)×(q−1) 0(q−1)×1 Ip−1 0(p−1)×1

 ,

where αt,1:q (∆t) = (αt,1 (∆t) , . . . , αt,q (∆t)) and βt,1:p (∆t) = (βt,1 (∆t) , . . . , βt,p (∆t)).
Here, In and 0n×m are, respectively, the n × n identity matrix and the n ×m matrix
whose elements are zeros. Note that there exists a one-to-one correspondence between
the solutions (εt) of (5) and the positive solutions (zt) of (6).

As in many periodic time series models (e. g., Aknouche and Guerbyenne [3]; Hamdi
and Souam [28]), the main tool for studying strict periodic stationarity is the top Lya-
punov exponent associated to independent and periodically distributed (i.p.d.) random
matrices. Let ‖·‖ be an arbitrary norm operator inMr×r (R) , the space of real matrices
of dimension r. Then, the top Lyapunov exponent associated with the i.p.d. sequence
of matrices A =: {At, t ∈ Z} is defined by

γS (A) := inf
n∈N∗

1

n
E {log ‖AnSAnS−1 . . . A1‖} , (7)

whenever
∑S
s=1 E

(
log+ ‖As‖

)
<∞, where for x > 0, log+ (x) = max (log (x) , 0).

We state now the following theorem that provides a necessary and sufficient condition
ensuring the existence of a unique s.p.s. solution of (5) which is also periodically ergodic.

Theorem 3.1. Model (5) admits a nonanticipative s.p.s. solution given by the first
component of

zt = bt +

∞∑
i=1

i−1∏
j=0

At−i

 bt−j , t ∈ Z, (8)

if and only if γS (A) given by (7) is strictly negative, where the series (8) converges
almost surely for all t ∈ Z. Moreover, this solution is unique and periodically ergodic.

P r o o f . The proof is similar to that of Aknouche and Guerbyenne ([3], Theorem 2.1
and Remark 2.1) and hence it will be omitted. �

Remark 3.2. We give the reduced conditions obtained in some special cases, which
coincides with some known results in literature.
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1. It is well known that for S = 1, γS (A) defined in (7) reduces to the definition of
the top Lyapunov exponent for i.i.d. matrices (Bougerol and Picard [17]

γ (A) = inf
n∈N∗

E
{

1

t
‖AtAt−1 . . . A1‖

}
.

Thus, the non-periodic model (5) (when S = 1), admits a unique nonanticipative
strictly stationary and ergodic solution if and only if γ (A) < 0. Note that this
condition is the same one obtained by Francq et al. (2001, Theorem 1) for non-
periodic MS-GARCH models.

2. If d = 1, the previous theorem coincides with the result provided in Aknouche and
Bibi ([2], Theorem 1) for the strict periodic stationarity of PGARCH models.

3. When the process (∆t) is an i.i.d. random variables sequence, the previous theorem
coincides with the result stated in Hamdi and Souam ([28], Theorem 1) for the
case of mixture periodic GARCH models.

4. EXISTENCE AND CALCULATION OF HIGHER ORDER MOMENTS OF
A MS-PGARCH PROCESS

It is important to know whether the s.p.s. solution has moments of higher order. In
this section, one is interested in conditions ensuring finiteness of higher order moments,
the most important case being finiteness of E

(
ε2t
)

and E
(
ε4t
)
, under which we study the

autocovariance structure of the squared MS-PGARCH process.

4.1. Conditions of existence of higher order moments

It may be pointed out that if the symmetry assumption is made on the distribution
of (ηt), the odd-order moments of (εt) are null when they exist. In this section, only
even-order moments are considered. Before stating the result ensuring the existence of
moments of orders 2m, where m is a strictly positive integer, we give some notations
that we will need afterwards. Denote by ρ (A) the spectral radius of any square matrix
A. Let ⊗ denote the Kronecker product. For any matrix A and any strictly positive
integer m, let A[m] be the Kronecker power A⊗A⊗ · · · ⊗A of m factors.

Recall that, a matrix A in Mn×m (R) is said to be positive (resp. strictly positive),
that we note A ≥ 0 (resp. A > 0), if no element of A is negative (resp. negative or null).
For two matrices A and B of the same size, the notation A � B (resp. A � B) means
that A−B is a positive matrix (resp. A−B is strictly positive).

Let us define A
[m]
t (k) as the conditional expectation of the matrix A

[m]
t given ∆t

equal to k. We similarly define the function b
[m]
t by b

[m]
t (·) = E

[
b
[m]
t

∣∣∣∆t = ·
]
. Let us

also define the following matrices

Pft =

 p (1, 1) ft (1) · · · p (d, 1) ft (1)
...

. . .
...

p (1, d) ft (d) · · · p (d, d) ft (d)

 and Πft =

 π (1) ft (1)
...

π (d) ft (d)

 ,
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for any periodic function ft : E → Mn×n′ (R), where n and n′ are strictly positive
integers.

Theorem 4.1. Suppose that E
(
η2m
t

)
<∞ and

ρ

(
S−1∏
s=0

P
A

[m]
S−s

)
< 1, (9)

then, for all t ∈ Z, the series defined by (8) converges in Lm and the process {εt, t ∈ Z},
defined as the first component of {zt, t ∈ Z}, is s.p.s. and admits moments up to order
m.

Conversely, if
∏S−1
s=0 P

A
[m]
S−s

is irreducible and ρ
(∏S−1

s=0 P
A

[m]
S−s

)
≥ 1, then the model

(5) has no s.p.s. solution such that E
(
ε2mt
)
<∞.

P r o o f . The proof is an adaptation of that provided in Francq and Zaköıan ([20],
Theorem 1) to the periodic case.

(i) Let

zt =

∞∑
k=0

zt,k, (10)

with zt,0 = bt and zt,k =
(∏k−1

l=0 At−l

)
bt−k, for k ≥ 1.

By the fact that the matrices At, . . . , At−k+1, bt−k are independent conditional on
∆t, we have

E
[
z

[m]
t,k

]
= E

[
A

[m]
t A

[m]
t−1 . . . A

[m]
t−k+1b

[m]
t−k

]
= E

[
E
[
A

[m]
t A

[m]
t−1 . . . A

[m]
t−k+1b

[m]
t−k

∣∣∣∆t, . . . ,∆t−k

]]
= E

[
A

[m]
t (∆t)A

[m]
t−1 (∆t−1) . . . A

[m]
t−k+1 (∆t−k+1) b

[m]
t−k (∆t−k)

]
.

Let t = s + Sτ and k = ν + Sδ such that τ ∈ Z, δ ∈ N and s, ν ∈ {1, 2, . . . , S}. Using
the relation (7) given in Aliat and Hamdi ([4], Lemma 1), we obtain

E
(
z

[m]
t,k

)
= Irm

(∏S−1

l=0
P
A

[m]
s−l

)δ (∏ν−1

l=0
P
A

[m]
s−l

)
Π
b
[m]
s−ν

, (11)

where In = (In, . . . , In) is a n× nd matrix.

Let ‖·‖ denote the matrix norm such that ‖A‖ =
∑
i,j |ai,j |, where ai,j denotes the
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generic element of a matrix A. Using some Kronecker product properties, we get

‖zt,k‖Lm = (E [‖zt,k‖m])
1/m

=
(∥∥∥E [z[m]

t,k

]∥∥∥)1/m

=

∥∥∥∥∥Irm
(∏S−1

l=0
P
A

[m]
s−l

)δ (∏ν−1

l=0
P
A

[m]
s−l

)
Π
b
[m]
s−ν

∥∥∥∥∥
1/m

≤ ‖Irm‖1/m
∥∥∥∥∥
(∏S−1

l=0
P
A

[m]
s−l

)δ∥∥∥∥∥
1/m

×
∥∥∥∥(∏ν−1

l=0
P
A

[m]
s−l

)∥∥∥∥1/m ∥∥∥Π
b
[m]
s−ν

∥∥∥1/m

.

If the spectral radius of the matrix
∏S−1
l=0 P

A
[m]
s−l

is strictly less than 1, then

∥∥∥∥(∏S−1
l=0 P

A
[m]
s−l

)δ∥∥∥∥
converges to zero at an exponential rate as δ −→ ∞. Since for all s,

∥∥∥∏ν−1
l=0 P

A
[m]
s−l

∥∥∥ is

uniformly bounded by max1≤s≤S

∥∥∥(∏ν−1
l=0 P

A
[m]
s−l

)∥∥∥, which is finite, then zt =
∑∞
k=0 zt,k

is almost surely finite and belongs to Lm. Moreover, by the circular property of the
spectral radius, it can be easily seen that

ρ

(∏S−1

l=0
P
A

[m]
s−l

)
= ρ

(∏S−1

s=0
P
A

[m]
S−s

)
, for all s, 1 ≤ s ≤ S.

It is clear that the norm of zt is greater than that of its first component ε2t . Hence, a

sufficient condition for the existence of E
(
ε2mt
)

is then ρ
(∏S−1

s=0 P
A

[m]
S−s

)
< 1.

Furthermore, for each K,
∑K
i=0 zt,k is a S-periodic measurable function of the i.p.d.

sequence {(At, bt) , t ∈ Z}. Hence, the solution zt is s.p.s. and periodically ergodic (see
e. g. Aknouche and Guerbyenne [3]).

(ii) The proof of uniqueness is similar to that of Francq and Zaköıan ([20], Theorem
1) and hence omitted.

(iii) Conversely, suppose that E
(
ε2mt
)
< ∞. From (6) the nonnegativity of all the

elements of the vector zt and the matrices At, we have for any k ≥ 0

zt = zt,0 + · · ·+ zt,k +AtAt−1 . . . At−kzt−k−1 �
k∑
i=0

zt,i.
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Thus, zt �
∑∞
i=0 zt,i and

E
[
z

[m]
t

]
� E

( ∞∑
k=0

zt,k

)[m]
 � ∞∑

k=0

E
[
z

[m]
t,k

]

=

∞∑
k=0

Irm
(∏k−1

j=0
P
A

[m]
t−j

)
Π
b
[m]
t−k

=

S−1∑
ν=0

∞∑
δ=0

Irm
(∏S−1

j=0
P
A

[m]
s−j

)δ (∏ν−1

j=0
P
A

[m]
s−j

)
Π
b
[m]
s−ν

.

Using some nonnegative matrices properties (see e. g. Lancaster and Tismenetsky [34],
Chapter 15), we get

∥∥∥E [z[m]
t

]∥∥∥ ≥

∥∥∥∥∥
S−1∑
ν=0

∞∑
δ=0

Irm
(∏S−1

j=0
P
A

[m]
s−j

)δ (∏ν−1

j=0
P
A

[m]
s−j

)
Π
b
[m]
s−ν

∥∥∥∥∥
=

S−1∑
ν=0

∞∑
δ=0

∥∥∥∥∥Irm
(∏S−1

j=0
P
A

[m]
s−j

)δ (∏ν−1

j=0
P
A

[m]
s−j

)
Π
b
[m]
s−ν

∥∥∥∥∥
=

S−1∑
ν=0

∞∑
δ=0

∥∥∥∥∥
(∏S−1

j=0
P
A

[m]
s−j

)lδ [
Idrm +

(∏S−1

j=0
P
A

[m]
s−j

)
+ · · ·

+

(∏S−1

j=0
P
A

[m]
s−j

)l−1
]
×
(∏ν−1

j=0
P
A

[m]
s−j

)
Π
b
[m]
s−ν

∥∥∥∥
≥ 1

l!

S−1∑
ν=0

∞∑
δ=0

∥∥∥∥∥
(∏S−1

j=0
P
A

[m]
s−j

)lδ [
Idrm +

(∏S−1

j=0
P
A

[m]
s−j

)]l−1

×
(∏ν−1

j=0
P
A

[m]
s−j

)
Π
b
[m]
s−ν

∥∥∥∥
≥ Sc

l!

∞∑
δ=0

∥∥∥∥∥
(∏S−1

j=0
P
A

[m]
s−j

)lδ∥∥∥∥∥
≥ Sc

l!

∞∑
δ=0

{
ρ

(∏S−1

j=0
P
A

[m]
s−j

)}lδ
,

where c is the smallest element of[
Idrm +

(∏S−1

j=0
P
A

[m]
s−j

)]l−1(∏ν−1

j=0
P
A

[m]
s−j

)
Π
b
[m]
s−ν

,

and l is a fixed strictly positive integer. Finally, it is easy to see that since E
[
ε2mt
]
<∞,

we also have
∥∥∥E [z[m]

t

]∥∥∥ < ∞ and consequently the condition (9) must hold which

completes the proof of the theorem. �
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Remark 4.2.

1. Note that, if there exist only one regime, i. e. d = 1, the condition (9) is reduced
to

ρ

(
S−1∏
s=0

E
(
A

[m]
S−s

))
< 1.

This condition is the same obtained by Aknouche and Bentarzi ([1], Proposition
3.1) and Bibi and Aknouche ([10], Theorem 4.2), in the case of PGARCH models.

2. When S = 1, the condition (9) can be reduced to

ρ
(
PA[m]

)
< 1,

with A[m] (·) = E
(
A

[m]
t

∣∣∣∆t = ·
)

. This condition was established in Francq and

Zaköıan ([20], Theorem 1) for non-periodic MS-GARCH models.

3. In the case where (∆t) is a sequence of i.i.d. random variables, the condition (9)
can be written as follows

ρ

(
S−1∏
s=0

P
A

[m]
S−s

)
< 1,

where A[m] (·) = E
(
A

[m]
t

∣∣∣Z(·)
t = 1

)
, and the variable Z

(k)
t (for k = 1, . . . , d) is

equal to 1 means that the observation εt comes from the kth component of the
mixture. This condition is the one obtained by Hamdi and Souam ([28], Theorem
2) for the mixture periodic GARCH models.

4.2. Calculation of moments

In this section, we will characterize explicitly the moments for the MS-PGARCH model
(4). Suppose that (9) holds and E

(
η2m
t

)
<∞. It can be shown that

(Atzt−1 + bt)
[m]

=

m∑
l=0

∑
li∈{0,1}∑m
i=1

li=l

{(
A

[l1]
t ⊗ b

[1−l1]
t

)
⊗ · · · ⊗

(
A

[lm]
t ⊗ b[1−lm]

t

)}
z

[l]
t−1,

and by taking the expectation with respect to ∆t = k, we get

π (k)E
(
z

[m]
t

∣∣∣∆t = k
)

= π (k) b
[m]
t (k)

+π (k)
m−1∑
l=1

∑
li∈{0,1}∑m
i=1

li=l

d∑
j=1

{(
A

[l1]
t (k)⊗ b[1−l1]

t (k)
)
⊗ · · · ⊗

(
A

[lm]
t (k)⊗ b[1−lm]

t (k)
)}

×E
(
z

[l]
t−1

∣∣∣∆t−1 = j
)
p (j, k)π (j)

+π (k)A
[m]
t (k)

d∑
j=1

E
(
z

[m]
t−1

∣∣∣∆t−1 = j
)
p (j, k)π (j) .
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As in the MS-PARMA model (Aliat and Hamdi [4]), let us consider the drm-variate
S-periodic vectors

Mt,m =

 Mt,m (1)
...

Mt,m (d)

 :=


π (1)E

(
z

[m]
t

∣∣∣∆t = 1
)

...

π (d)E
(
z

[m]
t

∣∣∣∆t = d
)
 and Ct,m =

 cm (1)
...

cm (d)

 ,

where

cm (k) = π (k) b
[m]
t (k) + π (k)

m−1∑
l=1

∑
li∈{0,1}∑m
i=1

li=l

d∑
j=1

{(
A

[l1]
t (k)⊗ b[1−l1]

t (k)
)
⊗ · · ·

⊗
(
A

[lm]
t (k)⊗ b[1−lm]

t (k)
)}

E
(
z

[l]
t−1

∣∣∣∆t−1 = j
)
p (j, k)π (j) ,

from which we can easily show that

Mt,m = Ct,m + P
A

[m]
t
Mt−1,m,

After S − 1 successive replacements in the latter equation and taking into account the
periodicity of Mt,m, we get

Mt,m =

S−1∑
i=0

i−1∏
j=0

P
A

[m]
t−j

Ct−i,m +

S−1∏
j=0

P
A

[m]
t−j

Mt,m,

and as a result, we obtain

Mt,m =

Irm −
S−1∏
j=0

P
A

[m]
t−j

−1 S−1∑
i=0

i−1∏
j=0

P
A

[m]
t−j

Ct−i,m

 .
From the definitions of Mt,m and zt, the unconditional moments E

(
ε2mt
)

can be obtained
as

E
(
ε2mt
)

= HrmIrmMt,m,

where Hn =
(
1,01×(n−1)

)
is a row-vector of size n with 1 in the first position and zero

elsewhere.

4.3. Autocovariances of the squares of a MS-PGARCH

To calculate the autocovariances of the squares of the MS-PGARCH model (5), we can
use its Markovian representation (6). In the following, we shall show how to compute
these autocovariances explicitly.

Suppose that ρ
(∏S−1

s=0 P
A

[2]
S−s

)
< 1, and E

(
η4
t

)
< ∞. It is easy to see that for all

h ≥ 0, we have

zt ⊗ zt−h = (At ⊗ Ir) (zt−1 ⊗ zt−h) + (bt ⊗ Ir) zt−h,
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and for k = 1, 2, . . . , d,

π (k)E [zt ⊗ zt−h|∆t = k] =

d∑
j=1

Υt (k)E [zt−1 ⊗ zt−h|∆t−1 = j] p (j, k)π (j)

+

d∑
j=1

Ξt (k)E [zt−h|∆t−h = j] p(h) (j, k)π (j) ,

where Υt (·) = A
[1]
t (·) ⊗ Ir and Ξt (·) = b

[1]
t (·) ⊗ Ir. Hence, we obtain the following

system

W
(t)
h =

{
Mt,2 if h = 0,

PΥtW
(t−1)
h−1 + P(h)

Ξt
Mt−h,1 if h ≥ 1,

(12)

where W
(t)
h = (π (1)E [zt ⊗ zt−h|∆t = 1] , . . . , π (d)E [zt ⊗ zt−h|∆t = d]), t, h ∈ Z. Con-

sequently, we get for all h ∈ N

E (zt ⊗ zt−h) =

d∑
k=1

W
(t)
h (k) .

Finally, the autocovariance function of lag h and period s of the squares of a MS-
PGARCH process defined by (5) is given by

γ
(t)
ε2,h = Hr2Ir2W

(t)
h − (HrIrMt,1) (HrIrMt−h,1) . (13)

5. STUDY OF THE MS-PGARCHS (1, 1)

5.1. Periodic stationarity and existence of higher order moments

We have already studied the periodic stationarity and we have calculates higher order
moments and autocorrelations of the squares of the specification (5). In this section,
we shall thus concentrate on the particular MS-PGARCHS (1, 1) case that allows for
rather simple explicit expressions.

When p = q = 1, the model (5) will be written as follows{
εt =

√
htηt,

ht = ωt (∆t) + αt (∆t) ε
2
t−1 + βt (∆t)ht−1,

t ∈ Z. (14)

From this representation, it is easy to see that the volatility process ht can be written
as

ht = atht−1 + bt, (15)

where bt = ωt (∆t) and at = αt (∆t) η
2
t−1 + βt (∆t). Iterating equation (15) l time and

letting l goes to infinity, we thus obtain

ht = bt +

∞∑
k=1

(
k−1∏
i=0

at−i

)
bt−k.
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For the series defined in the previous relation, to belong to Lm, it suffices that ht,k =(∏k−1
i=0 at−i

)
bt−k converges to zero in Lm. It is not difficult to show from the definition

of ht,k that

E
(
hmt,k

)
= E

{
E

[(
k−1∏
i=0

at−i

)m
bmt−k

∣∣∣∣∣∆t, . . . ,∆t−k

]}

= E

{(
k−1∏
i=0

at−i,m (∆t−i)

)
bt,m (∆t−k)

}

= I1

(
S−1∏
l=0

Pas−l,m

)δ (ν−1∏
l=0

Pas−l,m

)
Πbs−ν,m ,

where at,m (·) = E (amt | ∆t = ·) and bt,m (·) = E (bmt | ∆t = ·). It follows that

‖ht,k‖Lm = (E [‖ht,k‖m])
1/m

=

∥∥∥∥∥∥I1
(
S−1∏
l=0

Pas−l,m

)δ (ν−1∏
l=0

Pas−l,m

)
Πbs−ν,m

∥∥∥∥∥∥
1/m

≤ ‖I1‖1/m
∥∥∥∥∥∥
(
S−1∏
l=0

Pas−l,m

)δ∥∥∥∥∥∥
1/m ∥∥∥∥∥

(
ν−1∏
l=0

Pas−l,m

)∥∥∥∥∥
1/m ∥∥Πbs−ν,m

∥∥1/m
.

If ρ
(∏S−1

l=0 Pas−l,m
)
< 1, then

∥∥∥∥(∏S−1
l=0 Pas−l,m

)δ∥∥∥∥ converges to zero at an expo-

nential rate as δ −→ ∞. Since for all s,
∥∥∥(∏ν−1

l=0 Pas−l,m
)∥∥∥ is uniformly bounded by

max1≤s≤S

∥∥∥(∏ν−1
l=0 Pas−l,m

)∥∥∥, which is finite, then ht =
∑∞
k=0 ht,k is almost surely finite

and belongs to Lm. So, we conclude that, ρ
(∏S−1

s=0 PaS−s,m
)
< 1, is a sufficient condition

for the existence of the moments up to order 2m of the process MS-PGARCHS (1, 1)
defined in (14).

An analogous reasoning to that of part (iii) of the proof of Theorem 2, with

E (hmt ) ≥
∞∑
i=0

I1

i−1∏
j=0

Pat−j,m

Πbt−i,m ,

will lead us to conclude that in the case of MS-PGARCHS (1, 1) model, the condition,

ρ
(∏S−1

s=0 PaS−s,m
)
< 1, is also necessary.

We now compute the variance of the process {εt; t ∈ Z}. If ρ
(∏S−1

s=0 PaS−s,1
)
< 1, we

have

E
(
ε2t
)

=

d∑
k=1

π (k)E
(
ε2t | ∆t = k

)
=

d∑
k=1

Nt,2 (k) ,
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where Nt,m (·) = π (·)E [εmt | ∆t = ·]. From (14), we have

ε2t = ωt (∆t) η
2
t + αt (∆t) η

2
t ε

2
t−1 + βt (∆t) η

2
t ht−1,

and for k = 1, 2, . . . , d

π (k)E
[
ε2t
∣∣∆t = k

]
= π (k)ωt (k) + π (k)αt (k)E

[
ε2t−1

∣∣∆t = k
]

+π (k)βt (k)E (ht−1|∆t = k) .

Furthermore, since E [ht−1 | ∆t = k] = E
[
ε2t−1 | ∆t = k

]
, thus the previous equation can

be written as follows

π (k)E
[
ε2t
∣∣∆t = k

]
= π (k)ωt (k) + π (k) [αt (k) + βt (k)]E

[
ε2t−1

∣∣∆t = k
]

= π (k)ωt (k) +

d∑
j=1

at,1 (k)E
[
ε2t−1

∣∣∆t−1 = j
]
p (j, k)π (j) ,

from which we obtain the following system

Nt,2 = Pat,1Nt−1,2 + Πωt ,

where Nt,m = (π (1)E [εmt | ∆t = 1] , . . . , π (d)E (εmt | ∆t = d))
′
. After S − 1 successive

replacements in the previous equation and taking into account the periodicity of Nt,2,
we get

Nt,2 =

[
Id −

S−1∏
i=0

Pat−i,1

]−1 S−1∑
j=0

[
j−1∏
i=0

Pat−i,1

]
Πωt−j . (16)

Therefore, the second order moment of {εt; t ∈ Z} is given by

E
(
ε2t
)

=

d∑
k=1

Nt,2 (k) . (17)

On the other hand, we know that ε4t = h2
tη

4
t . So

ε4t = η4
t

[
ωt (∆t) + αt (∆t) ε

2
t−1 + βt (∆t)ht−1

]2
= η4

t

[
ω2
t (∆t) + 2ωt (∆t)αt (∆t) ε

2
t−1 + 2ωt (∆t)βt (∆t)ht−1

+α2
t (∆t) ε

4
t−1 + 2αt (∆t)βt (∆t) ε

2
t−1ht−1 + β2

t (∆t)h
2
t−1

]
.

Suppose that ρ
(∏S−1

s=0 PaS−s,2
)
< 1, and µ4 = E

(
η4
t

)
<∞, then

E
(
ε4t
)

=

d∑
k=1

π (k)E
[
ε4t | ∆t = k

]
.

But

E
(
ε4t
∣∣∆t = k

)
= µ4

{
ω2
t (k) + 2ωt (k)αt (k)E

[
ε2t−1

∣∣∆t = k
]

+ 2ωt (k)βt (k)E [ht−1|∆t = k] + α2
t (k)E

[
ε4t−1

∣∣∆t = k
]

+ 2αt (k)βt (k)E
[
ε2t−1ht−1

∣∣∆t = k
]

+β2
t (k)E

[
h2
t−1

∣∣∆t = k
]}
.
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By reason of

E
[
ε2t−1ht−1

∣∣∆t = k
]

= E
[
h2
t−1

∣∣∆t = k
]

E [ht−1|∆t = k] = E
[
ε2t−1

∣∣∆t = k
]
,

and
E
[
ε4t−1

∣∣∆t = k
]

= µ4E
[
h2
t−1

∣∣∆t = k
]
,

the conditional expectation E
(
ε4t
∣∣∆t = k

)
can be written in the following form

E
[
ε4t
∣∣∆t = k

]
= µ4ω

2
t (k) + 2µ4ωt (k) {αt (k) + βt (k)}E

[
ε2t−1

∣∣∆t = k
]

+
{
µ4α

2
t (k) + 2αt (k)βt (k) + β2

t (k)
}
E
[
ε4t−1

∣∣∆t = k
]
.

Let for k = 1, . . . , d

φt,2 (k) = 2µ4ωt (k) (αt (k) + βt (k)) and λt,2 (k) = µ4ω
2
t (k) .

Using these notations, then we have

π (k)E
[
ε4t
∣∣∆t = k

]
= π (k)λt (k) +

d∑
j=1

φt,2 (k)E
[
ε2t−1

∣∣∆t−1 = j
]
p (j, k)π (j)

+

d∑
j=1

at,2 (k)E
[
ε4t−1

∣∣∆t−1 = j
]
p (j, k)π (j) ,

which gives the following system

Nt,4 = Pat,2Nt−1,4 + Ct,2,

where Ct,2 = Πλt,2 + Pφt,2Nt−1,2. After S − 1 successive replacements, we obtain

Nt,4 =

[
Id −

S−1∏
i=0

Pat−i,2

]−1 S−1∑
j=0

[
j−1∏
i=0

Pat−i,2

]
Ct−j,2. (18)

Consequently, the fourth order moment of {εt; t ∈ Z} is given by

E
(
ε4t
)

=

d∑
k=1

Nt,4 (k) . (19)

Now, let us consider the calculation of E
[
ε2mt
]
. We have, for any positive integer m ≥ 1,

ε2mt = η2m
t hmt . However,

hmt =
{
ωt (∆t) +

[
αt (∆t) η

2
t−1 + βt (∆t)

]
ht−1

}m
= ωmt (∆t) +

m−1∑
i=1

(
m

i

)
ωm−it (∆t)

[
αt (∆t) η

2
t−1 + βt (∆t)

]i
hit−1

+
[
αt (∆t) η

2
t−1 + βt (∆t)

]m
hmt−1.
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Under the assumption ρ
(∏S−1

s=0 PaS−s,m
)
< 1 and µ2m = E

[
η2m
t

]
<∞, we have

E
(
ε2mt
)

=

d∑
k=1

Nt,2m (k) = µ2m

d∑
k=1

π (k)E [hmt | ∆t = k] .

But

E [hmt | ∆t = k] = ωmt (k) +

m−1∑
i=1

(
m

i

)
ωm−it (k) at,i (k)

µ2i
E
[
ε2it−1 | ∆t = k

]
+
at,m
µ2m

E
[
ε2mt−1 | ∆t = k

]
.

Thus,

π (k)E
[
ε2mt | ∆t = k

]
= π (k)µ2mω

m
t (k)

+
m−1∑
i=1

d∑
l=1

(
m
i

)
µ2m

µ2i
ωm−it (k) at,i (k) p (l, k)π (l)E

[
ε2it−1 | ∆t−1 = l

]
+

d∑
l=1

at,mp (l, k)π (l)E
[
ε2mt−1 | ∆t−1 = l

]
,

which can be stacked as follows

Nt,2m = Pat,mNt−1,2m + Ct,m,

where

Ct,m =

m−1∑
i=1

Pφt,2iNt−1,2i + Πλt,m ,

φt,2i (·) =

(
m

i

)
µ2m

µ2i
ωm−it (·) at,i (·) ,

and

λt,m (·) = µ2mω
m
t (·) .

After S − 1 successive replacements

Nt,2m =

[
Id −

S−1∏
i=0

Pat−i,m

]−1 S−1∑
j=0

[
j−1∏
i=0

Pat−i,m

]
Ct−j,m. (20)

Hence, the moment of order 2m of {εt; t ∈ Z} can be computed as follows

E
[
ε2mt
]

=

d∑
k=1

Nt,2m (k) .
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Proposition 5.1. Suppose that E
(
η2m
t

)
< ∞. A necessary and sufficient condition

under which the MS-PGARCH process defined by (14) is s.p.s. and E
[
ε2mt
]
< ∞, is

given by

ρ

(
S−1∏
s=0

PaS−s,m

)
< 1. (21)

In that case, the closed-form expression of the moment of order 2m of the process
{εt; t ∈ Z}, for any positive integer m ≥ 1, is given by

E
(
ε2mt
)

=

d∑
k=1

Nt,2m (k) ,

where Nt,2m can be obtained from (20). Therefore, the variance and the kurtosis of the
distribution of εs+τS are

σ(s)2
ε := E

(
ε2s+τS

)
=

d∑
k=1

Ns+τS,2 (k) , s = 1, 2, . . . , S,

and

κ(s)
ε :=

E
(
ε4s+τS

)[
E
(
ε2s+τS

)]2 =

∑d
k=1Ns+τS,4 (k)[∑d
k=1Ns+τS,2 (k)

]2 , s = 1, 2, . . . , S.

Remark 5.2.

1. When S = 1, then the condition (21) can be written as follows

ρ (PΦm) < 1,

where Φm (·) = E
[(
α1,1 (·) η2

t + β1,1 (·)
)m]

and which is the same established
by Francq and Zaköıan ([20], Corollary 2) in the case of the non-periodic MS-
GARCH models.

2. If (∆t) is a sequence of i.i.d. random variables, then the condition ensuring the
existence of moments of order 2m of the mixture periodic GARCH model is given
by

ρ

(
S−1∏
s=0

PΩS−s,m

)
< 1, (22)

where Ωt,m (·) = E
[(
αt,1 (·) η2

t + βt,1 (·)
)m]

. In this particular case, we can rewrite
this last condition in another simpler form. Indeed, we have

S−1∏
s=0

PΩS−s,m =


π (1)E

[(
α

(1)
S,1η

2
S + β

(1)
S,1

)m]
· · · π (1)E

[(
α

(1)
S,1η

2
S + β

(1)
S,1

)m]
...

. . .
...

π (d)E
[(
α

(d)
S,1η

2
S + β

(d)
S,1

)m]
· · · π (d)E

[(
α

(d)
S,1η

2
S + β

(d)
S,1

)m]


×

{
S−1∏
s=1

(
d∑

k=1

π (k)E
[(
α

(k)
S−s,1η

2
S−s + β

(k)
S−s,1

)m])}
.
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Note that this last matrix is positive such that the sum of the terms of each column
is constant and equal to

S−1∏
s=0

(
d∑
k=1

π (k)E
[(
α

(k)
S−s,1η

2
S−s + β

(k)
S−s,1

)m])
,

which is then an eigenvalue of
∏S−1
s=0 PΩS−s,m and

ρ

(
S−1∏
s=0

PΩS−s,m

)
=

S−1∏
s=0

(
d∑
k=1

π (k)E
[(
α

(k)
S−s,1η

2
S−s + β

(k)
S−s,1

)m])
,

(see Horn and Johnson [32], Lemma 8.1.21, p. 521).

For m = 1, the condition (22) coincides with that obtained by Hamdi et Souam
([28], Corollary 1) for the second order periodic stationarity of the mixture PGARCH
models.

5.2. Autocovariance structure of the powers of the MS-PGARCHS (1, 1)
process

From (14), we clearly see that if n ∈ {0, 1, . . . ,m} and m ∈ N∗, we have

ε2nt ε
2m
t−1 = η2n

t

[
ωt (∆t) +

{
αt (∆t) η

2
t−1 + βt (∆t)

}
ht−1

]n
ε2mt−1,

and under the assumption that E
(
η2m
t

)
<∞ and ρ

(∏S−1
s=0 PaS−s,2m

)
< 1, we obtain

E
(
ε2nt ε

2m
t−1

∣∣∆t = k
)

= E
(
η2n
t

[
ωt (∆t) +

{
αt (∆t) η

2
t−1 + βt (∆t)

}
ht−1

]n
ε2mt−1

∣∣∆t = k
)

= E
(
η2n
t

{
n∑
i=0

(
n
i

)
{ωt (∆t)}n−i

[
αt (∆t) η

2
t−1 + βt (∆t)

]i
hm+i
t−1 η

2m
t−1

}∣∣∣∣∆t = k

)
=

n∑
i=0

i∑
j=0

(
n
i

)(
i
j

)
E
(
η2n
t {ωt (∆t)}n−i {αt (∆t)}j {βt (∆t)}i−j η2(j+m)

t−1 hm+i
t−1

∣∣∣∆t = k
)

=
n∑
i=0

ξ
(t)
n,i,m (k)E

(
ε
2(m+i)
t−1

∣∣∣∆t = k
)

where the S-periodic functions ξ
(t)
n,i,m (·) are given by

ξ
(t)
n,i,m (·) =

(
n
i

)
{ωt (·)}n−i µ2n

µ2(m+i)

i∑
j=0

(
i
j

)
{αt (·)}j {βt (·)}i−j µ2(m+j),

for all i ∈ {0, 1, . . . , n} , n ∈ {0, 1, . . . ,m} and m ∈ N∗.

Thus, for all k = 1, . . . , d, we have

π (k)E
(
ε2nt ε

2m
t−1

∣∣∆t = k
)

=

n∑
i=0

d∑
l=1

ξ
(t)
n,i,m (k)E

(
ε
2(i+m)
t−1

∣∣∣∆t−1 = l
)
p (l, k)π (l) ,
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from which we obtain the following system

W
(t)
1,n,m =

n∑
i=0

P
ξ
(t)
n,i,m

Nt−1,2(i+m), (23)

where W
(t)
h,n,m =

(
π (1)E

(
ε2nt ε

2m
t−h
∣∣∆t = 1

)
, . . . , π (d)E

(
ε2nt ε

2m
t−h
∣∣∆t = d

))′
, t, h ∈ Z.

Moreover, we have for all k = 1, . . . , d and all h > 1, m ∈ N∗ and n ∈ {0, 1, . . . ,m} ,

π (k)E
(
ε2nt ε

2m
t−h
∣∣∆t = k

)
= π (k)µ2nE

(
hnt ε

2m
t−h
∣∣∆t = k

)
= π (k)µ2n

n∑
i=0

(
n
i

)
{ωt (k)}n−i E

([
αt (k) η2

t−1 + βt (k)
]i
hit−1ε

2m
t−h

∣∣∣∆t = k
)

= π (k)µ2n

n∑
i=0

i∑
j=0

(
n
i

)(
i
j

)
{ωt (k)}n−i {αt (k)}j {βt (k)}i−j E

(
η2j
t−1h

i
t−1ε

2m
t−h

∣∣∣∆t = k
)

= π (k)
n∑
i=0

i∑
j=0

(
n
i

)(
i
j

)
{ωt (k)}n−i {αt (k)}j {βt (k)}i−j µ2jµ2n

µ2i
E
(
ε2it−1ε

2m
t−h
∣∣∆t = k

)
= π (k)

n∑
i=0

ψ
(t)
n,i (k)E

(
ε2it−1ε

2m
t−h
∣∣∆t = k

)
=

n∑
i=0

d∑
l=1

ψ
(t)
n,i (k)E

(
ε2it−1ε

2m
t−h
∣∣∆t−1 = l

)
p (l, k)π (l) ,

where

ψ
(t)
n,i (·) =

(
n

i

)
{ωt (·)}n−i µ2n

µ2i

i∑
j=0

(
i

j

)
{αt (·)}j {βt (·)}i−j µ2j .

Therefore, we obtain the following system

W
(t)
h,n,m =

n∑
i=0

P
ψ

(t)
n,i
W

(t−1)
h−1,i,m. (24)

Consequently, we get for all h ∈ N

γ
(t)
ε2m,h := cov

(
ε2mt , ε2mt−h

)
=

d∑
k=1

W
(t)
h,m,m (k)−

(
d∑
k=1

Nt,2m (k)

)(
d∑
k=1

Nt−h,2m (k)

)
. (25)

The following algorithm summarizes the calculation of the autocovariances of the
powers of an MS-PGARCHS (1, 1) process.

Algorithm 5.3.

1. For s = 1, 2, . . . , S compute Nt,2i for i = m,m+ 1, . . . , 2m, using (20) .

2. For s = 1, 2, . . . , S, m ∈ N∗ and n = 0, 1, . . . ,m calculate W
(t)
1,n,m using (23) .
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3. For s = 1, 2, . . . , S, m ∈ N∗, h > 1 and n = 0, 1, . . . ,m compute W
(t)
h,n,m from (24) .

4. For s = 1, 2, . . . , S, m ∈ N∗ and h ∈ N∗, compute the autocovariances of
{
ε2mt , t ∈ Z

}
using (25) .

6. ESTIMATION OF THEMS-PGARCHS (1, 1) MODEL USINGGMM METHOD

6.1. GMM estimation

The estimation of the Markov-switching PGARCH model is so hard, and this is due to
the recursiveness of the conditional variance equation. Indeed, through equation (14) ,
one can clearly see that the conditional variance depend at time t on the whole history
of regimes generated by the markov chain (∆t) up to time t. So, since the regimes are
unobservable, one should to integrate over all possible regime paths to evaluate the
likelihood function. Whereas, the number of possible paths grows exponentially with
t and becomes quickly unmanageable. For instance, the computation of the likelihood
function over a sample of length T, require summation over all dT unobserved states.
Hence, the path dependence property of this class of models renders the exact calculation
of the likelihood very cumbersome numerically. This prompted many authors (e. g. Gray
[24]; Klaassen [33] to propose estimation procedures based on modified versions of the
non-periodic MS-GARCH model that circumvent the path dependence problem by
maximum likelihood. Other authors suggested alternative estimation methods such as
generalized method of moments (GMM) (Francq and Zaköıan, [21]), Bayesian MCMC
methods (e. g. Bauwens et al. [7]; Henneke et al. [31]; Billio et al. [14] and Collapsing
procedure (e. g. Augustyniak et al. [6]).

Since we gave the explicit expressions of the moments of the squared process and the
autocovariances of its powers, we propose in this section, a generalization of the GMM
procedure, proposed by Francq and Zaköıan [21], into the periodic case. Suppose that the
number of regimes d and the period S are known. The unknown parameters are gathered

in a vector θ =
(
vec (P)

′
, θ

(1)
1 , . . . , θ

(1)
S , θ

(2)
1 , . . . , θ

(2)
S , . . . , θ

(d)
1 , . . . , θ

(d)
S

)′
belonging in to

a parameter space Θ, where θ
(k)
s =

(
ω

(k)
s , α

(k)
s,1 , β

(k)
s,1

)
, for s = 1, . . . , S, k = 1, . . . , d and

vec is the usual column stacking. The true parameter value denoted by θ0 is unknown
and should to be estimated. For this purpose, let {ε1, . . . , εT | T = NS, N ∈ N∗} be a
realization of length T ≥ l, where l is a given lag. To estimate the unknown parameters
of the model via a GMM procedure, we use the orthogonality conditions given by

Eθ0 [Hτ (θ0, ετ )] = 0, (26)

where

ετ = (ε1+Sτ , . . . , εS+Sτ , εSτ , . . . , εS+Sτ−1, . . . , ε1+Sτ−l, . . . , εS+Sτ−l) ,

Hτ (θ, ετ ) =
(
h

(0)
1,τ , h

(1)
1,τ , . . . , h

(m)
1,τ , h

(0)
2,τ , h

(1)
2,τ , . . . , h

(m)
2,τ , . . . , h

(0)
S,τ , h

(1)
S,τ , . . . , h

(m)
S,τ

)′
,

with h
(0)
s,τ = ε2s+Sτ − Eθ

(
ε2s+Sτ

)
and h

(i)
s,τ = (ε4is+Sτ − Eθ

(
ε4is+Sτ

)
, ε2is+Sτ ε

2i
s+Sτ−1 −

Eθ
(
ε2is+Sτ ε

2i
s+Sτ−1

)
, . . . , ε2is+Sτ ε

2i
s+Sτ−l − Eθ

(
ε2is+Sτ ε

2i
s+Sτ−l

)
), for i = 1, . . . ,m, and s =
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1, . . . , S. Note that m and l are chosen such that the system (26) be identifiable and
the conditions of existence of moments, given by Proposition 5.1, are satisfied.

The idea behind GMM is to choose θ so as to make the sample moment HN (θ)
as close as possible to the population moment which equal to zero; that is, the GMM
estimator θ̂ is the value of θ that minimizes

QN (θ) = H ′N (θ)WNHN (θ) ,

where HN (θ) denote the sample average of Hτ (θ, ετ ) , i. e.,

HN (θ) =
1

N − τ0

N∑
τ=τ0+1

Hτ (θ, ετ ) ,

and (WN ) is a sequence of positive definite weighting matrices. Here τ0 denotes the
largest integer less than or equal to l/S. Finally, to estimate the unknown parameters

of the model, one should compute the optimal weighting matrix ŴN = V̂ −1, using the
estimator of Newey and West [36], which is defined by

V̂ = ΩN (0) +

ν∑
i=1

K

(
i

ν

)
{ΩN (i) + Ω′N (i)}

where

ΩN (i) =
1

N − τ0

N∑
τ=τ0+1+i

Hτ

(
θ̂, ετ

)
H
′
τ−i

(
θ̂, ετ

)
,

Hτ

(
θ̂, ετ

)
= Hτ

(
θ̂, ετ

)
− 1

N − τ0

N∑
τ=τ0+1

Hτ

(
θ̂, ετ

)
,

and ν is a truncation parameter which is a function of N allowed to grow slowly enough
with the sample size and required to grow slower than 4

√
N (see Newey and West [36]

for more details about the choice of ν). For the simulation study reported in Section
6.2, we used the Bartlett kernel weight K (x) defined by (1− |x|)1(|x|≤1).

Hence, a GMM estimator θ̂ is obtained as

θ̂ = arg min
θ∈Θ

H ′N (θ) ŴNHN (θ) .

6.2. Simulation study

In order to investigate the performance of the GMM method for parameters estimation,
we carried out a simulation study based on two MS-PGARCHS (1, 1) models (S = 2, 4,
d = 2 and ηt ∼ N (0, 1)). We simulated 1000 data samples with different lengths. The
sample sizes to be examined in this simulation study are 1000, 2000, 5000 and 10000.
The corresponding parameter values are chosen to satisfy the condition (21) for m = 4,
i. e. the existence of moments of order 8. The GMM criterion was constructed on the
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basis of the expectations of the following (19× S) variables ε2s+Sτ and ε2is+Sτ ε
2i
s+Sτ−h,

h = 1, . . . , 8, and i = 1, 2.
In Tables 1-2 are reported the true values (TV ) of the parameters of each of the

considered MS-PGARCHS (1, 1) data-generating process, the mean and the root-mean-
square error (RMSE) of their estimates for the 1000 replications.

T = 1000 T = 2000 T = 5000 T = 10000
TV Mean RMSE Mean RMSE Mean RMSE Mean RMSE

p (1, 1) 0.85 0.5747 0.3210 0.6727 0.2714 0.8100 0.1655 0.8350 0.1567
p (2, 1) 0.25 0.2718 0.1195 0.2424 0.1391 0.2454 0.1173 0.2551 0.1068

ω
(1)
1 0.30 0.4750 0.2673 0.4741 0.2089 0.2735 0.1715 0,2752 0.1579

α
(1)
1,1 0.10 0.1316 0.0984 0.1312 0.0938 0.1055 0.0765 0.1036 0.0679

β
(1)
1,1 0.10 0.2322 0.1720 0.2089 0.1817 0.0567 0.1018 0.0864 0.1011

ω
(1)
2 0.50 0.6563 0.2571 0.6545 0.2226 0.3364 0.2533 0.3570 0.2089

α
(1)
2,1 0.15 0.1956 0.1179 0.1795 0.1166 0.1862 0.1048 0.1772 0.0841

β
(1)
2,1 0.20 0.3088 0.2122 0.2925 0.1924 0.2493 0.1816 0.2481 0.1453

ω
(2)
1 0.90 0.4463 0.5138 0.5590 0.5013 0.8444 0.4368 0.8591 0.3566

α
(2)
1,1 0.13 0.1168 0.0771 0.1097 0.0671 0.1115 0.0542 0.1203 0.0518

β
(2)
1,1 0.70 0.2513 0.4741 0.2307 0.5019 0.5115 0.3854 0.6282 0.3500

ω
(2)
2 1.10 0.5892 0.5823 0.7007 0.5722 1.2022 0.4104 1.1365 0.4087

α
(2)
2,1 0.18 0.2262 0.1518 0.1917 0.1080 0.1440 0.0652 0.1869 0.0443

β
(2)
2,1 0.50 0.3357 0.2358 0.3229 0.2138 0.2130 0.2006 0.4087 0.1981

Tab. 1. Results of a simulation study for an MS-PGARCH2 (1, 1)

model with different values of the sample size T and 1000 replications.

From Tables 1 and 2, we can observe that the estimates of the MS-PGARCH coeffi-
cients based on GMM model display significant biases which decrease as the sample size
is increased. Unlike the non-periodic case, the transition probabilities are estimated with
low accuracy. It can also be seen that the RMSEs of some parameters are relatively
large but they often gradually decrease as the sample size is increased.

CONCLUSION

This article proposes a new Markov-switching periodic GARCH model, which captures
both the periodicity and the regime change phenomenon of time series in conditional
variance. We studied some probabilistic properties of this class of models as well as the
autocovariance structure of the squared MS-PGARCH process.

As in the non-periodic model, the estimation can be done by using the GMM method.
Simulation examples showed that the proposed GMM procedure does not perform well
when the sample size is small to moderate. However, it does provide a good starting value
for others methods. In order to improve the estimation quality, it could be interesting
in a future research to develop a new approach, for example by adopting the simulated
methods (Bauwens et al. [7]; Henneke et al. [31]; Augustyniak [5]; Billio et al. [14];
Augustyniak et al. [6]). It could be also interesting to see what happens if one fits a
non-periodic MS-GARCH model to a periodic data.
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T = 1000 T = 2000 T = 5000 T = 10000
TV Mean RMSE Mean RMSE Mean RMSE Mean RMSE

p (1, 1) 0.95 0.7838 0.2482 0.8338 0.1619 0.8786 0.1369 0.9371 0.1244
p (2, 1) 0.10 0.3960 0.3438 0.1132 0.3521 0.1298 0.2223 0.1712 0.2002

ω
(1)
1 0.60 0.6169 0.1970 0.6306 0.1741 0.6349 0.1631 0.6264 0.1560

α
(1)
1,1 0.35 0.1772 0.2295 0.1826 0.1893 0.2393 0.1838 0.3398 0.1693

β
(1)
1,1 0.30 0.2845 0.1589 0.3023 0.1513 0.3164 0.1447 0.3156 0.1320

ω
(1)
2 0.40 0.4438 0.1536 0.4915 0.1866 0.5080 0.1633 0.4481 0.1579

α
(1)
2,1 0.20 0.1323 0.1886 0.1716 0.1019 0.1861 0.1403 0.1885 0.0962

β
(1)
2,1 0.25 0.2130 0.1462 0.2225 0.1348 0.1793 0.1334 0.2474 0.1221

ω
(1)
3 0.30 0.3337 0.2137 0.3861 0.1499 0.3779 0.1506 0.3121 0.1376

α
(1)
3,1 0.15 0.1196 0.1006 0.1282 0.0724 0.1346 0.0717 0.1396 0.0668

β
(1)
3,1 0.20 0.1849 0.1270 0.2032 0.1158 0.1687 0.1110 0.2013 0.1025

ω
(1)
4 0.50 0.4812 0.2515 0.5278 0.2219 0.5346 0.2064 0.5028 0.1988

α
(1)
4,1 0.22 0.1688 0.1573 0.2175 0.1481 0.2079 0.1403 0.2139 0.0785

β
(1)
4,1 0.35 0.2578 0.1743 0.3147 0.1393 0.3423 0.1221 0.3402 0.1054

ω
(2)
1 1.50 0.8108 0.7806 1.2268 0.4268 1.3627 0.3756 1.4403 0.2605

α
(2)
1,1 0.30 0.0914 0.2191 0.0903 0.2121 0.1115 0.1926 0.2270 0.1808

β
(2)
1,1 0.42 0.2983 0.2127 0.3046 0.1891 0.3339 0.1821 0.3807 0.1544

ω
(2)
2 1.20 0.7466 0.5442 1.0454 0.3227 1.1345 0.3160 1.2269 0.2927

α
(2)
2,1 0.25 0.0756 0.1811 0.0892 0.1658 0.0933 0.1604 0.2254 0.1500

β
(2)
2,1 0.40 0.2482 0.2247 0.2599 0.1865 0.2763 0.1953 0.3575 0.1728

ω
(2)
3 0.90 0.5679 0.4316 0.8009 0.2919 0.8292 0.2863 0.8371 0.2672

α
(2)
3,1 0.20 0.0659 0.1405 0.0795 0.1250 0.0829 0.1221 0.1696 0.1104

β
(2)
3,1 0.35 0.2304 0.1963 0.2123 0.1632 0.2497 0.1623 0.3178 0.1331

ω
(2)
4 1.00 0.7074 0.4087 0.9409 0.2805 0.9600 0.2731 1.0216 0.2147

α
(2)
4,1 0.27 0.0917 0.1880 0.0969 0.1779 0.1132 0.1632 0.2229 0.1550

β
(2)
4,1 0.45 0.2910 0.2317 0.3120 0.2120 0.3422 0.2183 0.3877 0.1536

Tab. 2. Results of a simulation study for an MS-PGARCH4 (1, 1)

model with different values of the sample size T and 1000 replications.
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