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EXACT SIMULTANEOUS LOCATION-SCALE TESTS
FOR TWO SHIFTED EXPONENTIAL SAMPLES

Amitava Mukherjee, Zhi Lin Chong and Marco Marozzi

The failure time distribution for various items often follows a shifted (two-parameter) expo-
nential model and not the traditional (one-parameter) exponential model. The shifted exponen-
tial is very useful in practice, in particular in the engineering, biomedical sciences and industrial
quality control when modeling time to event or survival data. The open problem of simultane-
ous testing for differences in origin and scale parameters of two shifted exponential distributions
is addressed. Two exact tests are proposed using maximum likelihood estimators. They are
based on the combination of two statistics following a maximum-type and a distance-type ap-
proach. The exact null distributions of the respective test statistics are derived analytically.
Small sample type-one error rate and power of the tests are studied numerically. We showed
that the test based on the maximum type combination (the Max test) should be preferred being
generally more powerful than the test based on the distance type combination (the Distance
test). An application to a biomedical experiment is discussed.

Keywords: hypothesis testing, failure time model, simultaneous testing, shifted exponen-
tial, type-one error rate, power

Classification: 62F03, 62N05

1. INTRODUCTION

The one-parameter exponential distribution is widely used in practice. For example,
in the engineering sciences it is used to model the lifespan of electronic components,
transmission, engine and mechanical equipment. Nevertheless, many researchers, in-
cluding Huang, Mukherjee and Yang [8], Kao [10], Krishnamoorthy and Xia [11], Roy
and Mathew [17], and Wu [27], have found that in various practical applications, such as
measuring the reliability of a product, monitoring the high-voltage of current in certain
metal oxide semiconductor transistor on a flash memory wafer, modelling the consumer
lifetime, among others, the two-parameter (shifted) exponential distribution should be
preferred to the one-parameter exponential distribution. The probability density func-
tion (pdf) of the two-parameter exponential distribution is

f(x; θ, λ) =
1

λ
exp−(x−θ)/λ; x > θ > 0, λ > 0. (1)
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Note that θ can be interpreted as the minimum life or guaranteed period in which
no failure should occur. This distribution is also known as the shifted exponential
distribution. The mean of X is θ + λ and the variance is λ. If θ = 0, equation (1)
reduces to the one-parameter exponential distribution. One may conceptualize a two-
parameter exponential distribution for θ ∈ (−∞,∞) , see, for example, Johnson and
Kotz[9]. Here, we consider θ ≥ 0 as we are mainly interested in the time to event data.

Inference problems about a single two-parameter exponential distribution, or a single
parameter for two-parameter exponential distributions have been widely studied. In the
later half of 20th century, Varde [23] studied life testing and reliability estimation for the
two-parameter exponential distribution using a Bayesian approach. Cohen and Helm [4]
studied how to estimate the parameters of the two-parameter exponential distribution
using a modified method of moments. Engelhardt and Bain [6] studied the reliability
tolerance limits and confidence limits. Ebrahimi [5] addressed the problem of hybrid life
testing for the two-parameter exponential distribution.

In early 21st century, Raqab [16] considered a multiple type II censoring scheme
and derived approximate maximum likelihood predictors of forthcoming failure times
of shifted (two-parameter) exponential distributions. Pal, Masoom, and Woo [15] stud-
ied the estimation and testing problem related to the stress-strength model under two-
parameter exponential distribution, that is, the probability that the stress having a two-
parameter exponential distribution exceeds strength variable, which also follows a two-
parameter exponential model. Later, Chaturvedi and Sharma [3] provided a simpler
method for unbiased estimation of stress-strength reliability. Roy and Mathew [17] pro-
posed a generalized confidence interval for the reliability function of the two-parameter
exponential distribution. Wu, Lee, and Lei [26] studied the lifetime performance index of
products using the two-parameter exponential distribution. Krishnamoorthy, Mukher-
jee, and Guo [12] also deliberated over the interval estimation and hypothesis testing of
reliability in stress-strength model with stress and strength having two-parameter expo-
nential distributions. Ahmadi and MirMostafaee [1] examined the prediction intervals
for future order statistics and records data where the underlying distribution is two-
parameter exponential. Singh and Abebe [20] compared multiple exponential popula-
tions with more than one control. Kao [10] showed that the amount of current needed to
break an insulator of the P-type high-voltage metal oxide semiconductor (MOS) transis-
tor (HPM) on a non-volatile drive memory wafer follows the two-parameter exponential
distribution and this article nicely demonstrates the importance of the two-parameter
exponential distribution in the engineering sciences. In the same year, Wu [27] proposed
an interval estimation technique for the scale parameter of a two-parameter exponential
distribution based on Type-II progressive censoring.

In the current decade, Schenk, Burkschat, Cramer and Kamps [19] studied the
Bayesian prediction and estimation of consecutive order statistics for Type-II censored
samples taken from one- and two-parameter exponential distributions. Ganguly, Mitra,
Samanta and Kundu [7] derived the exact distribution of the hybrid Type-II censoring
scheme, where the two-parameter exponential distribution is used to model lifetimes.
Based on generalized pivot variable, Baklizi [2] introduced bootstrap and Bayesian in-
tervals estimation of stress-strength reliability for the two-parameter exponential distri-
bution. Li, Song, and Shi [13] proposed a parametric bootstrap method for constructing
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simultaneous confidence intervals for all pairwise differences of means from several two-
parameter exponential distributions. Sangnawakij and Niwitpong [18] proposed confi-
dence intervals for the single coefficient of variation and the difference of coefficients of
variation in the two-parameter exponential distributions. Krishnamoorthy and Xia [11]
considered some problems related to estimating the confidence interval of the survival
probability for a two-parameter exponential distribution. However, none of the existing
works addressed combined testing of the two parameters in a comprehensive way.

In recent years, the two-parameter exponential distribution is widely used in sta-
tistical process monitoring and control. Mukherjee, McCracken and Chakraborti [14]
proposed Shewhart-type control charts for simultaneous monitoring of the origin (lo-
cation) and scale parameters of a two-parameter exponential distribution in the known
parameter situation. Huang, Mukherjee and Yang [8] extended the proposals of Mukher-
jee, McCracken and Chakraborti [14] using the concept of cumulative sum (CUSUM)
to introduce Phase-II monitoring schemes of parameters of the two-parameter exponen-
tial distribution with known standards. Very recently, van Zyl and van der Merwe [22]
pointed out that the extension of the results of Mukherjee, McCracken and Chakraborti
[14] to the unknown parameter situation is extremely difficult. The same may be said
about the results of Huang, Mukherjee and Yang [8].

In this paper, we address the problem of simultaneous testing for different origin
and scale parameters of two two-parameter exponential distributions that has not been
solved yet. More precisely, we propose two tests respectively based on a maximum type
and distance type combination of two statistics. The remainder of the paper is organized
as follows. In Section 2, we prove some preliminary results. In Section 3, we describe
the two tests and prove some theoretical results. In Section 4 we study the type-one
error rate and power of the tests. The tests are illustrated with an application example
in Section 5. Conclusions are drawn in Section 6.

2. PRELIMINARY RESULTS

Let X1, X2, . . . , Xm be a random sample of size m from a two-parameter exponential
distribution with origin parameter θ0 and scale parameter λ0. Let Y1, Y2, . . . , Yn be
another random sample of size n from a two-parameter exponential distribution with
the origin parameter θ1 and scale parameter λ1. We assume that the samples come
from two mutually independent populations. We are interested in simultaneous testing
for different origin and scale parameters of two two-parameter exponential distributions
that corresponds to test

H0 : θ0 = θ1 ∩ λ0 = λ1, versus H1 : θ0 6= θ1 ∪ λ0 6= λ1. (2)

The maximum likelihood estimators of θ0 and θ1 are respectively θ̂0 = X(1) and θ̂1 = Y(1),
see, for details, Johnson and Kotz [9]. X(1) and Y(1) denote the minimum or the first-
order statistic of the first and second samples, respectively. The maximum likelihood
estimators of λ0 and λ1 are respectively

λ̂0 =
1

m

m∑
i=1

(Xi − θ̂0) = X̄ −X(1) (3)
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and

λ̂1 =
1

n

n∑
i=1

(Yi − θ̂1) = Ȳ − Y(1), (4)

where X̄ and Ȳ denote the mean of ~X = (X1, X2, . . . , Xm) and ~Y = (Y1, Y2, . . . , Yn)

respectively. θ̂0 and λ̂0, as well as θ̂1 and λ̂1 are independent, see Johnson and Kotz [9].

θ̂0 follows a two-parameter exponential distribution with origin parameter θ0 and scale
parameter λ0

m . Consequently,

EX =
2m(θ̂0 − θ0)

λ0

follows a chi-square distribution with two degrees of freedom. Similarly, θ̂1 follows a
two-parameter exponential distribution with origin parameter θ1 and scale parameter
λ1

n and

EY =
2n(θ̂1 − θ1)

λ1

follows a chi-square distribution with two degrees of freedom. EX and EY are indepen-
dent. Moreover, nEX and mEY follow an exponential distribution with rates 1

2n and
1

2m , respectively.

To obtain the distribution of λ̂0 and λ̂1, first we consider

m∑
i=1

(
Xi − θ̂0

)
=

m∑
i=1

(
Xi −X(1)

)
=

m∑
i=2

(m− i+ 1)(X(i)−X(i−1)).

It is easy to see that

FX =
2mλ̂0

λ0
=

2

λ0

m∑
i=2

(m− i+ 1)(X(i)−X(i−1))

follows a chi-square distribution with 2m−2 degrees of freedom, see, for example, Tanis
[21]. Similarly,

FY =
2nλ̂1

λ1
=

2

λ1

n∑
i=2

(n− i+ 1)(Y(i)−Y(i−1))

follows a chi-square distribution with 2n− 2 degrees of freedom. Moreover, (θ̂0, λ̂0) and

(θ̂1, λ̂1) are mutually independent. Then, it follows that (EX , EY ) and (FX , FY ) are
also mutually independent.

Consider the statistics W1 and W2, defined as

W1 =
mEY − nEX
FY + FX

=

2mn(θ̂1−θ1)
λ1

− 2mn(θ̂0−θ0)
λ0

2nλ̂1

λ1
+ 2mλ̂0

λ0

, (5)

and

W2 =
FY /(2n− 2)

FX/(2m− 2)
=
nλ̂1λ0(m− 1)

mλ̂0λ1(n− 1)
. (6)
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It is easy to see that under the null hypothesis, when θ0 = θ1 and λ0 = λ1, the statistics
W1 and W2 reduce respectively to

W1 =
mEY − nEX
FY + FX

=
mn(θ̂1 − θ̂0)

nλ̂1 +mλ̂0

(7)

and

W2 =
FY /(2n− 2)

FX/(2m− 2)
=
nλ̂1(m− 1)

mλ̂0(n− 1)
. (8)

Note that the two-sample t-statistic evolves from the problem of testing the equality
of location parameters (means) of two independent normal distributions when scale pa-
rameters of the two distributions are equal. Similarly, W1 evolves from the problem of
testing the equality of location parameters (origins) of two-independent shifted expo-
nential distributions when scale parameters of the two distributions are equal. In this
sense, W1 is somewhat analogous to the two-sample t statistic for testing the equality of
means of two independent normal populations, even though their formulae are different.
Likewise, W2 resembles the Fisher’s F ratio statistic for testing the equality of variances
of two independent normal populations.

Theorem 2.1. The pdf of W1 is

fW1(w1) =


m+n−2
m+n

1

(1−w1
n )

m+n−1 , w1 < 0

m+n−2
m+n

1

(1+
w1
m )

m+n−1 , w1 ≥ 0.

P r o o f . See Appendix A.1. �

Using Theorem 2.1 and by integration, it follows that the cumulative density function
(cdf) of W1 is

FW1(w1) =


n

m+n
1

(1−w1
n )

m+n−2 , w1 < 0

n
m+n −

m
m+n

[
1

(1+
w1
m )

m+n−2 − 1

]
, w1 ≥ 0.

Let u = F (W1). The quantile (or inverse cdf) function of W1 is

QW1
(u) =


n

[
1−

(
n

u(m+n)

) 1
m+n−2

]
, u < n

m+n

m

[(
m

(1−u)(m+n)

) 1
m+n−2 − 1

]
, u ≥ n

m+n .

Theorem 2.2. W2 follows an F distribution with (2n − 2) and (2m − 2) degrees of
freedom independently of the distribution of W1.

P r o o f . See Appendix A.2. �
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3. DESCRIPTION OF THE TESTS

We combine the W1 and W2 statistics to test simultaneously for different origin and scale
parameters of two two-parameter exponential distributions. Two different combination
methods are proposed.

3.1. The Max test

The first method is based on the maximum of W1 and W2. We refer to it as the Max
test. Note that, we consider the two-sided location alternative. If θ1 > θ0 we expect
that W1 will be larger than the expected value of W1 under H0. On the other hand, if
θ1 < θ0 we expect that −W1 will be larger than the expected value of W1 under H0.
Further, we expect that if λ1 > λ0 then W2 will be larger than W2 under H0. Finally,
we expect that if λ1 < λ0 then 1

W2
will be larger than 1

W2
under H0.

Let M1 and M2 denote the cdfs of max{W1,−W1} and max{W2,
1
W2
}, respectively.

Theorem 3.1. The cdfs of M1 and M2 are respectively

M1(z) =
n

m+ n

[
1− 1(

1 + z
n

)m+n−2

]
− m

m+ n

[
1(

1 + z
m

)m+n−2 − 1

]
, 0 ≤ z <∞;

and

M2(z) = F (z)− F
(

1

z

)
where F (·) is the cdf of an F distribution with (2n−2) and (2m−2) degrees of freedom.

P r o o f . See Appendix A.3. �

The Max test is based on

M = max{M1,M2}. (9)

It is easy to see that under H0, M1 and M2 are two independent Uniform(0, 1) variables.
Therefore, the null distribution of the Max test statistic M is a Beta(2, 1) and H0 is
rejected if M > Mα, where Mα is the 100(1−α)th percentile of a Beta(2, 1) distribution.
The distribution function of M is P [M ≤ x] = x2, for 0 ≤ x ≤ 1. Therefore

Mα =
√

1− α. (10)

The exact p-value of the Max test is

pM = 1− M̂2 (11)

where M̂ is the observed value of the Max test statistic.
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3.2. The Distance test

The second method is based on the sum of squares of the M1 and M2 statistics. We
refer to it as the Distance test. The test statistic S of the Distance test is defined as:

S = M2
1 +M2

2 . (12)

S is the square of the Euclidian distance of (M1,M2) from (0, 0). Since M1 and M2 are
independent, S is also the square of the Mahalanobis distance of (M1,M2) from (0, 0).
H0 is rejected if S > Sα, where Sα is the 100(1−α)th percentile of the distribution of S.

Theorem 3.2. The pdf of S under H0 is given by

fS(s) =

{
π
4 , 0 < s < 1

1
2 (sin−1 1√

s
− sin−1

√
s−1
s ), 1 ≤ s < 2.

P r o o f . See Appendix A.4. �

It follows from Theorem 3.2 that the cdf of S under H0 is

FS(s) =

{
πs
4 , 0 < s < 1;
√
s− 1 + s

2

(
sin−1 1√

s
− sin−1

√
s−1
s

)
, 1 ≤ s < 2.

The distribution of M can also be verified from Weissman [25].
Consequently, if

(
1− π

4

)
≤ α ≤ 1, we have Sα = 4

π (1− α). When α < π/4, the critical
point Sα is the solution of

sin
(

1− α− (Sα − 1)1/2
)

=
1

Sα
√
Sα

(
1− (Sα − 1)3/2

)
. (13)

The second case, that is, α < π/4, is more important from practical point of view as the
nominal significance level is set to small values such as 0.01 or 0.05.
The exact p-value of the test is

pS =

1− πŜ
4 , 0 < Ŝ < 1

1−
√
Ŝ − 1− Ŝ

2

(
sin−1 1√

Ŝ
− sin−1

√
Ŝ−1
Ŝ

)
, 1 ≤ Ŝ < 2.

(14)

where Ŝ is the observed value of the S test statistic.

4. TYPE-ONE ERROR RATE AND POWER COMPARISON STUDY

In this section, we compare type-one error rate and power of the proposed tests. The
cut-off points for the Max test can be obtained from Equation 10. These are 0.9747
and 0.9950 for α = 0.05 and α = 0.01, respectively. The cut-off points for the Distance
test are computed from the distribution of S or Equation 13 via a numerical method as
1.4355 and 1.7306 for α = 0.05 and α = 0.01, respectively.
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Parameters (m,n)
θ1 λ1 (5,5) (5,10) (5,15) (10,5) (10,10) (10,15) (15,5) (15,10) (15,15)
0 0.25 0.383 0.539 0.588 0.488 0.760 0.845 0.536 0.840 0.922
0.5 0.25 0.536 0.784 0.839 0.677 0.987 0.995 0.675 0.998 1
1 0.25 0.917 0.982 0.987 0.988 1 1 0.994 1 1
1.5 0.25 0.992 0.999 0.999 1 1 1 1 1 1
2 0.25 0.999 1 1 1 1 1 1 1 1
3 0.25 1 1 1 1 1 1 1 1 1
0 0.5 0.124 0.168 0.177 0.141 0.238 0.298 0.152 0.270 0.358
0.5 0.5 0.264 0.385 0.406 0.386 0.907 0.951 0.378 0.975 0.995
1 0.5 0.788 0.927 0.940 0.951 0.999 1 0.973 1 1
1.5 0.5 0.971 0.994 0.995 0.999 1 1 1 1 1
2 0.5 0.997 1 1 1 1 1 1 1 1
3 0.5 1 1 1 1 1 1 1 1 1
0 0.75 0.062 0.069 0.072 0.062 0.077 0.089 0.063 0.079 0.096
0.5 0.75 0.188 0.197 0.155 0.314 0.821 0.892 0.318 0.950 0.989
1 0.75 0.678 0.844 0.862 0.920 0.999 0.999 0.957 1 1
1.5 0.75 0.944 0.986 0.989 0.999 1 1 1 1 1
2 0.75 0.993 0.999 0.999 1 1 1 1 1 1
3 0.75 1 1 1 1 1 1 1 1 1
0 1 0.050 0.050 0.049 0.050 0.051 0.050 0.049 0.050 0.050
0.5 1 0.166 0.128 0.077 0.299 0.743 0.820 0.315 0.917 0.981
1 1 0.600 0.730 0.723 0.888 0.998 0.999 0.938 1 1
1.5 1 0.906 0.970 0.974 0.997 1 1 1 1 1
2 1 0.986 0.997 0.998 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
0 2 0.124 0.141 0.156 0.167 0.237 0.267 0.177 0.295 0.359
0.5 2 0.210 0.167 0.157 0.368 0.579 0.585 0.414 0.812 0.935
1 2 0.443 0.387 0.291 0.784 0.984 0.991 0.876 1 1
1.5 2 0.732 0.766 0.703 0.976 1 1 0.996 1 1
2 2 0.904 0.951 0.944 0.999 1 1 1 1 1
3 2 0.994 0.999 0.999 1 1 1 1 1 1
0 5 0.502 0.633 0.685 0.677 0.876 0.934 0.723 0.934 0.978
0.5 5 0.545 0.638 0.687 0.749 0.915 0.949 0.807 0.970 0.992
1 5 0.609 0.658 0.690 0.856 0.977 0.986 0.922 0.999 1
1.5 5 0.698 0.711 0.708 0.954 0.999 0.999 0.989 1 1
2 5 0.793 0.789 0.754 0.991 1 1 0.999 1 1
3 5 0.931 0.939 0.910 1 1 1 1 1 1
0 10 0.831 0.936 0.964 0.939 0.995 0.999 0.957 0.999 1
0.5 10 0.848 0.937 0.964 0.951 0.997 0.999 0.970 0.999 1
1 10 0.864 0.940 0.965 0.970 0.999 1 0.986 1 1
1.5 10 0.882 0.945 0.965 0.986 1 1 0.997 1 1
2 10 0.905 0.950 0.966 0.996 1 1 1 1 1
3 10 0.951 0.969 0.973 1 1 1 1 1 1

Type-one error rates correspond to θ1 = 0 and λ1 = 1 and are underlined.

Tab. 1. Power and type-one error rate of the Max test for θ0 = 0 and

λ0 = 1.

We consider all combinations of m = 5, 10, 15 and n = 5, 10, 15 as the sample size
settings. To obtain a precise estimate of the type-I error rate power, we consider 100000
Monte Carlo simulations, as in Wang and Ng [24]. Under H0, the samples are simulated
with θ0 = θ1 and λ0 = λ1, and the proportion of simulations where test p-value is less
than or equal to α is the estimated type-I error rate. Under H1, two shifted exponentially
distributed samples are simulated with θ0 6= θ1 or λ0 6= λ1 or both. The power is
estimated by the proportion of simulations where test p-value is less than or equal to α.
The resulting root mean squared error (RMSE ) when estimating a rejection probability
of ξ is

RMSE =
√
ξ(1− ξ)/100000. (15)
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Parameters (m,n)
θ1 λ1 (5,5) (5,10) (5,15) (10,5) (10,10) (10,15) (15,5) (15,10) (15,15)
0 0.25 0.256 0.440 0.511 0.134 0.374 0.496 0.063 0.277 0.411
0.5 0.25 0.664 0.792 0.818 0.876 0.963 0.976 0.927 0.989 0.995
1 0.25 0.810 0.871 0.887 0.923 0.973 0.982 0.949 0.990 0.996
1.5 0.25 0.825 0.876 0.891 0.924 0.973 0.983 0.950 0.990 0.996
2 0.25 0.827 0.878 0.893 0.922 0.972 0.983 0.949 0.990 0.996
3 0.25 0.828 0.878 0.893 0.924 0.972 0.982 0.950 0.990 0.996
0 0.5 0.098 0.164 0.195 0.066 0.161 0.227 0.052 0.136 0.212
0.5 0.5 0.343 0.431 0.454 0.516 0.677 0.722 0.566 0.750 0.808
1 0.5 0.492 0.552 0.570 0.599 0.698 0.737 0.632 0.758 0.809
1.5 0.5 0.519 0.564 0.582 0.604 0.701 0.738 0.638 0.757 0.808
2 0.5 0.524 0.565 0.587 0.608 0.699 0.737 0.642 0.759 0.810
3 0.5 0.528 0.569 0.583 0.607 0.696 0.735 0.641 0.754 0.811
0 0.75 0.059 0.072 0.077 0.050 0.069 0.083 0.047 0.064 0.082
0.5 0.75 0.214 0.238 0.238 0.311 0.394 0.413 0.336 0.431 0.461
1 0.75 0.335 0.356 0.362 0.386 0.421 0.434 0.402 0.446 0.465
1.5 0.75 0.362 0.381 0.382 0.397 0.420 0.434 0.407 0.442 0.466
2 0.75 0.374 0.385 0.385 0.398 0.422 0.436 0.408 0.445 0.464
3 0.75 0.376 0.384 0.388 0.401 0.423 0.434 0.407 0.444 0.465
0 1 0.050 0.051 0.050 0.051 0.051 0.050 0.049 0.051 0.051
0.5 1 0.182 0.189 0.176 0.250 0.306 0.311 0.264 0.325 0.334
1 1 0.291 0.303 0.302 0.323 0.336 0.341 0.327 0.339 0.339
1.5 1 0.326 0.331 0.330 0.334 0.341 0.342 0.337 0.339 0.340
2 1 0.334 0.339 0.337 0.340 0.342 0.343 0.340 0.339 0.341
3 1 0.340 0.338 0.342 0.340 0.342 0.341 0.341 0.340 0.341
0 2 0.099 0.066 0.051 0.164 0.162 0.134 0.192 0.228 0.211
0.5 2 0.271 0.294 0.269 0.451 0.634 0.699 0.499 0.717 0.798
1 2 0.434 0.518 0.529 0.546 0.695 0.754 0.572 0.735 0.809
1.5 2 0.493 0.581 0.607 0.562 0.698 0.757 0.582 0.735 0.809
2 2 0.511 0.597 0.628 0.568 0.699 0.759 0.583 0.736 0.808
3 2 0.523 0.606 0.641 0.572 0.695 0.756 0.586 0.737 0.809
0 5 0.316 0.163 0.070 0.519 0.422 0.301 0.591 0.540 0.438
0.5 5 0.514 0.416 0.278 0.824 0.930 0.939 0.902 0.990 0.995
1 5 0.736 0.798 0.760 0.921 0.990 0.997 0.936 0.995 0.999
1.5 5 0.848 0.931 0.940 0.927 0.991 0.998 0.939 0.995 0.999
2 5 0.877 0.955 0.970 0.929 0.991 0.998 0.939 0.995 0.999
3 5 0.887 0.962 0.979 0.930 0.990 0.998 0.940 0.995 0.999
0 10 0.468 0.238 0.103 0.667 0.501 0.358 0.735 0.618 0.503
0.5 10 0.595 0.390 0.216 0.851 0.813 0.745 0.930 0.953 0.955
1 10 0.749 0.622 0.454 0.966 0.988 0.990 0.990 1 1
1.5 10 0.876 0.852 0.772 0.989 1 1 0.992 1 1
2 10 0.942 0.962 0.948 0.991 1 1 0.993 1 1
3 10 0.978 0.998 0.999 0.991 1 1 0.993 1 1

Type-one error rates correspond to θ1 = 0 and λ1 = 1 and are underlined.

Tab. 2. Power and type-one error rate of the Distance test for θ0 = 0

and λ0 = 1.

When H0 is true, we are estimating ξ = 0.05 therefore RMSE = 0.00069. The RMSE
is maximum when estimating ξ = 0.5, i. e.,

max{RMSE} =
√

0.5(1− 0.5)/100000 = 0.00158. (16)

In this power comparison, α is set to 0.05. First we consider θ0 = 0 and λ0 = 1.
This is an important problem where a standard exponential distribution is compared to
a shifted exponential distribution with a possible different rate parameter as well. We
present the results for various values of θ1 and λ1 in Tables 1 and 2 for the Max and
Distance test respectively. Note that in Tables 1 and 2, the probability of rejecting the
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null hypothesis for θ1 = 0 and λ1 = 1 corresponds to the type-one error rate. In these
tables, we observe that the type-one error rate of the tests is very close to α = 0.05 and
this indicates that the tests control the type-one error rate very well as expected. Tables
1 and 2 show that the Max test is generally more powerful than the Distance test, in
particular when n or m are larger than 5.

Tables 3 and 4 present the results with θ0 = 10 and λ0 = 10 for various values of θ1

and λ1. Note that in Tables 3 and 4, the probability of rejecting the null hypothesis for
θ1 = 10 and λ1 = 10 corresponds to the type-one error rate. Tables 3 and 4 confirm the
results reported in Tables 1 and 2.

Parameters (m,n)
θ1 λ1 (5,5) (5,10) (5,15) (10,5) (10,10) (10,15) (15,5) (15,10) (15,15)
5 6 0.356 0.661 0.751 0.297 0.958 0.998 0.212 0.975 1
5 8 0.235 0.447 0.495 0.188 0.866 0.977 0.120 0.911 0.995
5 10 0.165 0.299 0.315 0.126 0.739 0.918 0.078 0.820 0.981
5 12 0.129 0.214 0.213 0.095 0.610 0.820 0.060 0.718 0.953
5 14 0.112 0.167 0.166 0.087 0.507 0.703 0.058 0.622 0.911
7 6 0.181 0.331 0.371 0.129 0.589 0.831 0.106 0.615 0.949
7 8 0.115 0.197 0.214 0.069 0.386 0.605 0.052 0.403 0.827
7 10 0.083 0.134 0.136 0.046 0.260 0.423 0.035 0.270 0.678
7 12 0.072 0.105 0.105 0.044 0.194 0.303 0.035 0.202 0.533
7 14 0.073 0.098 0.100 0.054 0.168 0.246 0.046 0.175 0.441
10 6 0.088 0.112 0.120 0.093 0.147 0.176 0.101 0.160 0.206
10 8 0.057 0.063 0.064 0.056 0.066 0.073 0.057 0.065 0.076
10 10 0.050 0.050 0.051 0.049 0.050 0.050 0.050 0.049 0.051
10 12 0.056 0.053 0.054 0.059 0.061 0.060 0.060 0.068 0.067
10 14 0.066 0.067 0.069 0.079 0.089 0.092 0.079 0.103 0.112
13 6 0.108 0.095 0.076 0.152 0.415 0.538 0.150 0.576 0.849
13 8 0.084 0.054 0.035 0.128 0.307 0.369 0.127 0.472 0.758
13 10 0.082 0.047 0.034 0.133 0.258 0.271 0.135 0.422 0.678
13 12 0.092 0.056 0.046 0.147 0.245 0.232 0.155 0.400 0.611
13 14 0.106 0.071 0.064 0.169 0.256 0.228 0.183 0.401 0.572
15 6 0.221 0.285 0.275 0.345 0.873 0.930 0.340 0.966 0.992
15 8 0.183 0.175 0.131 0.309 0.805 0.881 0.316 0.942 0.987
15 10 0.165 0.126 0.079 0.298 0.739 0.817 0.317 0.919 0.982
15 12 0.165 0.110 0.068 0.300 0.678 0.749 0.329 0.888 0.974
15 14 0.169 0.109 0.078 0.310 0.629 0.679 0.345 0.862 0.965

Type-one error rates correspond to θ1 = 10 and λ1 = 10 and are underlined.

Tab. 3. Power and type-one error rate of the Max test for θ0 = 10

and λ0 = 10.

5. PRACTICAL EXAMPLE

To illustrate the proposed two-sample tests, we analyse survival data from Krishnamoor-
thy and Xia [11]. This dataset consists of the number of survival days for patients with
incurable lung cancer. As in Krishnamoorthy and Xia [11], we consider two categories
of patients’ cancer type, i. e. squamous and small cells. There are m = 9 patients with
squamous cell cancer type, and n = 9 patients with small cell cancer type, see Table 5.
Survival times are sorted in the increasing order. For the first sample, that is, for the
patients with squamous cell, the maximum likelihood estimates of the location (origin)
θ0 and scale λ0 parameters are 8 and 43, respectively. For the second sample, that is,
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Parameters (m,n)
θ1 λ1 (5,5) (5,10) (5,15) (10,5) (10,10) (10,15) (15,5) (15,10) (15,15)
5 6 0.339 0.435 0.455 0.393 0.558 0.597 0.399 0.606 0.661
5 8 0.226 0.299 0.314 0.246 0.370 0.394 0.239 0.388 0.414
5 10 0.183 0.254 0.266 0.187 0.303 0.322 0.175 0.313 0.335
5 12 0.165 0.248 0.269 0.174 0.322 0.364 0.165 0.333 0.383
5 14 0.156 0.262 0.291 0.180 0.371 0.441 0.173 0.401 0.487
7 6 0.227 0.360 0.396 0.252 0.507 0.576 0.234 0.560 0.651
7 8 0.144 0.219 0.241 0.140 0.302 0.353 0.121 0.325 0.390
7 10 0.110 0.168 0.185 0.099 0.227 0.272 0.083 0.234 0.296
7 12 0.097 0.156 0.174 0.091 0.226 0.285 0.078 0.239 0.328
7 14 0.092 0.154 0.181 0.095 0.252 0.341 0.087 0.281 0.410
10 6 0.075 0.112 0.130 0.058 0.112 0.150 0.049 0.098 0.144
10 8 0.055 0.064 0.069 0.048 0.061 0.071 0.047 0.058 0.068
10 10 0.051 0.050 0.050 0.050 0.049 0.050 0.051 0.050 0.050
10 12 0.053 0.047 0.046 0.062 0.057 0.053 0.063 0.064 0.064
10 14 0.061 0.050 0.048 0.081 0.076 0.069 0.088 0.095 0.091
13 6 0.157 0.202 0.204 0.280 0.450 0.504 0.328 0.551 0.628
13 8 0.119 0.122 0.110 0.197 0.280 0.298 0.221 0.339 0.380
13 10 0.108 0.101 0.084 0.169 0.226 0.237 0.185 0.271 0.300
13 12 0.111 0.102 0.083 0.179 0.249 0.261 0.198 0.304 0.343
13 14 0.123 0.113 0.089 0.206 0.304 0.331 0.231 0.381 0.445
15 6 0.277 0.333 0.344 0.410 0.542 0.582 0.451 0.607 0.657
15 8 0.202 0.221 0.215 0.291 0.361 0.377 0.307 0.394 0.414
15 10 0.182 0.189 0.175 0.255 0.306 0.312 0.266 0.325 0.335
15 12 0.185 0.193 0.181 0.261 0.333 0.350 0.276 0.359 0.389
15 14 0.199 0.213 0.200 0.297 0.402 0.433 0.321 0.446 0.496

Type-one error rates correspond to θ1 = 10 and λ1 = 10 and are underlined.

Tab. 4. Power and type-one error rate of the Distance test for

θ0 = 10 and λ0 = 10.

for the patients with small cancer cell, the maximum likelihood estimates of the origin
θ1 and scale λ1 parameters are 13 and 9.111, respectively, and α is set to 0.05.

Squamous Cell
Sample-1 8 10 11 25 42 72 81 100 110

Small Cell
Sample-2 13 16 18 20 21 23 27 30 31

Tab. 5. Number of survival days for patients with squamous and

small cell lung cancer.

We would like to simultaneously test for different origin and scale parameters of the
populations behind sample 1 and 2. Here W1 = 0.8635 and W2 = 0.2119. The Max
test should be preferred according to our simulation study. Then, we use the maximum
combining function to combine W1 and W2, and obtain max{W1,−W1} = 0.8635 and
max{W2,

1
W2
}= 4.7195. By considering the cdfs of max{W1,−W1} and max{W2,

1
W2
} as

in Theorem 3, M1 and M2 are respectively computed as 0.7691 and 0.9965. Therefore,
M = max{M1,M2} = 0.9965. The cut-off value Mα is 0.9747 for α = 0.05. Since
M > Mα, we reject the null hypothesis that the parent population distributions are
equal. The p-value of the Max test is 0.00694.
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We also apply the Distance test and obtain S = {M2
1 + M2

2 } = 1.5846. The cut-off
value Sα from the cdf of S is 1.4355. Since S > Sα then we reject H 0. The p-value
of the Distance test is 0.02525. Note that this p-value is larger than the p-value of the
Max test that finds more evidence than the Distance test against the null hypothesis,
confirming the results of our simulation study. We conclude that both tests lead to the
same conclusion that θ0 6= θ1 and λ0 6= λ1.

6. CONCLUSION

The open problem of simultaneous testing for different origin and scale parameters of
two-parameter (shifted) exponential distributions has been addressed. Two combined
tests have been proposed, studied and compared. We showed that the test based on
a maximum type combination should be preferred being generally more powerful than
the other test based on a distance type combination. Since two-parameter exponential
distribution is very useful in the engineering sciences and industrial quality control, a
possible direction for future research is to use the Max test to design a Phase-II control
chart for shifted exponential processes with unknown parameters.

APPENDIX

A.1. Proof of Theorem 2.1

We obtain the result following the line of Pal, Masoom, and Woo [15]. First, consider
the joint density of EX and EY

f(EX ,EY )(eX , eY ) =
1

4
e−

1
2 (eX+eY ), eX > 0, eY > 0.

Define, Z1 = mEY − nEX and DX = EX . Under this transformation,

EX = DX , and EY =
Z1 + nDX

m
.

Unconditionally, dX > 0, z1 ∈ (−∞,∞) but conditionally, dX > 0, z1 > −ndX . The
Jacobian of the transformation is∣∣∣∣J (eX , eYdX , z1

)∣∣∣∣ =

∥∥∥∥ 1 0
n
m

1
m

∥∥∥∥ =
1

m
.

The joint density of Z1 and DX is

f(DX ,Z1)(dX , z1) =
1

4m
e
− 1

2

(
z1+ndX

m +dX
)
, dX > 0, z1 > −ndX .

Therefore, the marginal distribution of Z1 is

fZ1
(z1) =

1

4m
e−

z1
2m

∫ ∞
max{0,− z1

n }
e−

dX
2 (1+ n

m ) ddX , z1 ∈ (−∞,∞),
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=


1

4me
− z1

2m

[
− 2

(1+ n
m )
e−

dX
2 (1+ n

m )
]∞
− z1

n

, z1 < 0;

1
4me

− z1
2m

[
− 2

(1+ n
m )
e−

dX
2 (1+ n

m )
]∞

0

, z1 ≥ 0;

=

{
1

4me
− z1

2m
2

(1+ n
m )e

z1
2n (1+ n

m ), z1 < 0;
1

2m(1+ n
m )e

− z1
2m , z1 ≥ 0;

=

{
1

2(m+n)e
z1
2n , z1 < 0;

1
2(m+n)e

− z1
2m , z1 ≥ 0.

Note that the mean of Z1 is 2(m−n) and that Z1 follows a Laplace distribution if m = n.
Moreover, FY +FX follows a chi-square distribution with 2m+2n−4 degrees of freedom
independently of Z1. We need the distribution of W1 = Z1

ZS
where ZS = FY + FX .

The joint density of Z1 and ZS is

f(Z1,ZS)(z1, zS) =

{
1

2m+n−1(m+n)Γ(m+n−2)e
−(− z1

2n +
zS
2 )(zS)m+n−3, z1 < 0, zS > 0

1
2m+n−1(m+n)Γ(m+n−2)e

−( z1
2m +

zS
2 )(zS)m+n−3, z1 ≥ 0, zS > 0

Define W1 = Z1

ZS
and ZX = ZS . Under this transformation, Z1 = W1ZX and ZS = ZX

with ZX > 0,W1 ∈ (−∞,∞). The Jacobian of the transformation is∣∣∣∣J ( z1, zS
w1, zX

)∣∣∣∣ =

∥∥∥∥zX w1

0 1

∥∥∥∥ = zX .

The joint density of W1 and ZX is

f(W1,ZX)(w1, zX) =

{
1

2m+n−1(m+n)Γ(m+n−2)e
−(−w1zX

2n +
zX
2 )(zX)m+n−2, w1 < 0, zX > 0

1
2m+n−1(m+n)Γ(m+n−2)e

−(w1zX
2m +

zX
2 )(zX)m+n−2, w1 ≥ 0, zX > 0.

Therefore, the marginal distribution of W1 is

fW1
(w1) =

{
1

2m+n−1(m+n)Γ(m+n−2)

∫∞
0
e−( 1

2−
w1
2n )zX (zX)m+n−2 dzX , w1 < 0

1
2m+n−1(m+n)Γ(m+n−2)

∫∞
0
e−( 1

2 +
w1
2m )zX (zX)m+n−2 dzX , w1 ≥ 0.

The integrals can be easily computed using the following property of the Gamma dis-
tribution

Γ (b+ 1)

ab+1
=

∫ ∞
0

xbe−ax dx.

Consequently,

fW1
(w1) =


1

2m+n−1(m+n)Γ(m+n−2)
Γ(m+n−1)

( 1
2−

w1
2n )

m+n−1 , w1 < 0;

1
2m+n−1(m+n)Γ(m+n−2)

Γ(m+n−1)

( 1
2 +

w1
2m )

m+n−1 , w1 ≥ 0;

=


m+n−2
(m+n)

1

(1−w1
n )

m+n−1 , w1 < 0;

m+n−2
(m+n)

1

(1+
w1
m )

m+n−1 , w1 ≥ 0.
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A.2. Proof of Theorem 2.2

We need to show that

1. W1 and W2 are mutually independent;

2. W2 follows an F distribution with (2n− 2) and (2m− 2) degrees of freedom.

Consider the transformation

Z1 = mEY − nEX , Z2 = FX , and Z3 = FY ;

where Z1, Z2 and Z3 are mutually independent. The joint density of Z1, Z2 and Z3 is

f(Z1,Z2,Z3)(z1, z2, z3)

=

{
1

2m+n−1(m+n)Γ(m−1)Γ(n−1)e
−(− z1

2n +
z2
2 +

z3
2 )zm−2

2 zn−2
3 , z1 < 0, z2, z3 > 0

1
2m+n−1(m+n)Γ(m−1)Γ(n−1)e

−( z1
2m +

z2
2 +

z3
2 )zm−2

2 zn−2
3 , z1 ≥ 0, z2, z3 > 0.

Further, consider the transformation

W1 =
Z1

Z2 + Z3
,

W2 =

(
Z3

Z2

)
m− 1

n− 1
,

W3 = Z2 + Z3.

Under this transformation,

Z1 = W1W3,

Z3 = W3 − Z2

⇒ W2 =

(
W3 − Z2

Z2

)
m− 1

n− 1
⇒ W3

Z2
= 1 +W2

n− 1

m− 1
⇒ Z2 =

W3

1 +W2
n−1
m−1

.

Finally,

Z3 = W3 −
W3

1 +W2
n−1
m−1

= W3

(
W2

n−1
m−1

1 +W2
n−1
m−1

)
.

The Jacobian of the transformation is

∣∣∣∣J ( z1, z2, z3

w1, w2, w3

)∣∣∣∣ =

∥∥∥∥∥∥∥∥
w3 0 w1

0 −w3
n−1
m−1

(
1 + w2

n−1
m−1

)−2 (
1 + w2

n−1
m−1

)−1

0 w3
n−1
m−1

(
1 + w2

n−1
m−1

)−2

1−
(

1 + w2
n−1
m−1

)−1

∥∥∥∥∥∥∥∥
=

n− 1

m− 1

(
w3

1 + w2
n−1
m−1

)2

.
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The joint distribution of W1,W2 and W3 is

f(W1,W2,W3)(w1, w2, w3)

=


(n−1)e−(−w1w3

2n
+

w3
2

)(
w3

1+w2
n−1
m−1

)m(w3(
w2

n−1
m−1

1+w2
n−1
m−1

))n−2

(m−1)2m+n−1(m+n)Γ(m−1)Γ(n−1) , w1 < 0, w2, w3 > 0;

(n−1)e−(
w1w3
2m

+
w3
2

)(
w3

1+w2
n−1
m−1

)m(w3(
w2

n−1
m−1

1+w2
n−1
m−1

))n−2

(m−1)2m+n−1(m+n)Γ(m−1)Γ(n−1) , w1 ≥ 0, w2, w3 > 0;

=


(n−1)e−

w3
2

(1−w1
n

)(w3)m+n−2(w2
n−1
m−1 )n−2

(m−1)2m+n−1(m+n)Γ(m−1)Γ(n−1)(1+w2
n−1
m−1 )m+n−2

, w1 < 0, w2, w3 > 0;

(n−1)e−
w3
2

(1+
w1
m

)(w3)m+n−2(w2
n−1
m−1 )n−2

(m−1)2m+n−1(m+n)Γ(m−1)Γ(n−1)(1+w2
n−1
m−1 )m+n−2

, w1 ≥ 0, w2, w3 > 0.

Therefore, using the same property of the Gamma distribution as before, we obtain the
joint distribution of W1 and W2

f(W1,W2)(w1, w2) =

∫ ∞
0

f(W1,W2,W3)(w1, w2, w3) dw3

=


(n−1)Γ(m+n−1)(w2

n−1
m−1 )n−2

(m−1)(m+n)Γ(m−1)Γ(n−1)(1+w2
n−1
m−1 )m+n−2(1−w1

n )m+n−1
, w1 < 0, w2 > 0

(n−1)Γ(m+n−1)(w2
n−1
m−1 )n−2

(m−1)(m+n)Γ(m−1)Γ(n−1)(1+w2
n−1
m−1 )m+n−2(1+

w1
m )m+n−1

, w1 ≥ 0, w2 > 0.

Since f(W1,W2)(w1, w2) is the product of fW1(w1) and the pdf of an F distribution with
(2n−2) and (2m−2) degrees of freedom, we conclude that W1 and W2 are independent
and that

fW2
(w2) =

Γ (m+ n− 2)

Γ (n− 1) Γ (m− 1)

(
n− 1

m− 1

)n−1

wn−2
2

(
1 + w2

n− 1

m− 1

)−(n+m−2)

, w2 > 0.

A.3. Proof of Theorem 3.1

The distribution of W ∗1 = max{W1,−W1} is

GW∗
1

(w) = Prob [W ∗1 ≤ w] = Prob [max{W1,−W1} ≤ w]

= Prob [W1 ≥ −w ∩W1 ≤ 0] + Prob [W1 ≤ w ∩W1 > 0]

=

[∫ 0

−w

m+ n− 2

m+ n

1

(1− w1

n )m+n−1
dw1

]
+

[∫ w

0

m+ n− 2

m+ n

1

(1 + w1

m )m+n−1
dw1

]
=

m+ n− 2

m+ n

[
(1− w1

n )2−m−n

(2−m− n)(− 1
n )

]0

−w
+
m+ n− 2

m+ n

[
(1 + w1

m )2−m−n

(2−m− n)( 1
m )

]w
0

=
n

m+ n

[
1− 1

(1 + w
n )m+n−2

]
− m

m+ n

[
1

(1 + w
m )m+n−2

− 1

]
,

where 0 ≤ w <∞. Similarly, the distribution of W ∗2 = max{W2,
1
W2
} is
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GW∗
2

(w) = Prob(W ∗2 ≤ w) = Prob

(
max{W2,

1

W2
} ≤ w

)
= Prob (W2 ≥ 1/w ∩W2 < 1) + Prob (W2 ≤ w ∩W2 ≥ 1)

= F (1)− F (1/w) + F (w)− F (1) = F (w)− F (1/w).

A.4. Proof of Theorem 3.2

Let S = M2
1 +M2

2 and T = M1. Under this transformation, M1 = T and M2 =
√
S − T 2.

The Jacobian of transformation is∣∣∣∣J (m1,m2

s, t

)∣∣∣∣ =

∥∥∥∥ 0 1
1

2
√
s−t2 − t√

s−t2

∥∥∥∥ =

∣∣∣∣− 1

2
√
s− t2

∣∣∣∣ =
1

2
√
s− t2

.

Note that, being cdfs, M1 and M2 are two independent uniformly distributed random
variables in (0, 1), i. e. M1,M2 ∼ U(0, 1). Therefore, f(M1,M2)(m1,m2) = 1 for all
(m1,m2) ∈ (0, 1)× (0, 1), and

f(S,T )(s, t) = f(M1,M2)(m1,m2)

∣∣∣∣J (m1,m2

s, t

)∣∣∣∣ =
1

2
√
s− t2

,

For 0 < s < 1, we have 0 < t <
√
s, therefore

fS(s) =

∫ √s
0

f(S,T )(s, t) dt =

∫ √s
0

1

2
√
s− t2

dt =

[
1

2
sin−1 t√

s

]√s
0

=
1

2
sin−1 1 =

π

4
.

For 1 ≤ s < 2, we have
√
s− 1 < t < 1, therefore

fS(s) =

∫ 1

√
s−1

f(S,T )(s, t)dt =

∫ 1

√
s−1

1

2
√
s− t2

dt =

[
1

2
sin−1 t√

s

]1

√
s−1

=
1

2

(
sin−1 1√

s
− sin−1

√
s− 1

s

)
.

Hence the result follows.
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