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KYBERNET IKA — VOLUME 5 5 ( 2 0 1 9 ) , NUMBER 6 , PAGES 1 0 1 6 – 1 0 3 3

OBSERVER BASED CONTROL FOR STRONG
PRACTICAL STABILIZATION OF A CLASS
OF UNCERTAIN TIME DELAY SYSTEMS

Nadhem Echi And Amel Benabdallah

In this paper, we address the strong practical stabilization problem for a class of uncertain
time delay systems with a nominal part written in triangular form. We propose, firstly, a strong
practical observer. Then, we show that strong practical stability of the closed loop system with
a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is
established, that is, we implement the control law with estimate states given by the strong
practical observer and we prove that the closed loop system is strong practical stable. With
the help of a numerical example, effectiveness of the proposed approach is demonstrated.

Keywords: observer, exponential stability, strong practical stability, time delay,
Lyapunov–Krasovskii

Classification: 93C10, 93D15

1. INTRODUCTION

The separation principle involves the design of a state observer and a state feedback
stabilization controller independently. The problem of theory of output feedback stabi-
lization of nonlinear systems using high gain observers has become the focal interest of
researchers and it has received many attentions. In these studies, a high gain observer
has been used by [2, 3] to provide a separation principle for the considered uncertain
system. In this context, [4] proved a separation principle for nonlinear uncertain systems
with nominal linear part.

Recently, adaptive observer and controller design for nonlinear time-delay systems
have been very prominent and active research fields due to their importance in con-
trolling engineering practice [20] and of real phenomena such as biological systems [27],
chemistry [22], electrical [1], population dynamics models [30] and economic model [19].
Under a Lyapunov–Krasovskii functional, suitable choice, [24] derived a control scheme
to design an adaptive control to stabilize the nonlinear time-delay systems. These sta-
bility findings obtained for delayed systems can be generally classified into two main
types, namely delay independent [4, 5, 12, 31] and delay dependent [11, 15]. [16] has
suggested the problem of observer for a class of nonlinear delay systems. Global and
delay independent conditions are provided. Under a linear observer-based feedback, the

DOI: 10.14736/kyb-2019-6-1016

http://doi.org/10.14736/kyb-2019-6-1016


Observer based control for strong practical stabilization ... 1017

problem global asymptotic stability for a triangular structure of time-delay systems, is
reached by [21]. The problem of state and output feedback stabilization for nonlinear
systems that are diffeomorphic has been considered in [17] and [18] with a constructive
approach. The systems have triangular form with nonlinearities that appear on each
component but there is a restrictive assumption on the nonlinearities. In [9] the prob-
lem of exponential stabilization for nonlinear uncertain systems with time-varying delay
is proved by using the Lyapunov approach and solving linear matrix inequalities. Under
Lipschitz condition and by constructing an appropriate Krasovskii functional and solv-
ing linear matrix inequalities [28], an adaptive observer for a class of nonlinear systems
with time delays is introduced.

Much attention has been paid to solving the problem of exponential stability because
it is an important index to obtain the convergence rates of prescribed time-delay sys-
tems. Therefore, exponential stability of systems with delays has been the interest of
researchers and the subject of numerous papers and monographs [5, 9, 11, 19, 26, 29, 31].
Based on the Lyapunov method, [26] derived a linear matrix inequality. It proposes a ro-
bust exponential stability criterion which is delay dependent. In [10] sufficient conditions
are provided to prove the practical stability for a class of nonlinear delay systems sat-
isfying some relaxed triangular-type condition. According to the Lyapunov–Krasovskii
functional, the problem of global exponential stability of a class of nonlinear time-delay
systems written in triangular form that satisfies a linear growth condition is achieved
by [5]. [29] derives sufficient conditions expressed in terms of linear matrix inequalities
(LMIs) for exponential stability of linear time-delay systems. For constant time delay,
the exponential convergence of the observer is achieved by [19, 31].

However, from a practical point of view, dynamics, measurement noises and other
disturbances often prevent origin from being an equilibrium point of the uncertain sys-
tem. So we can no longer expect to design a controller that guarantees the stability of
the origin as an equilibrium point. Due to this reason, the property is referred to as a
practical stability which is more suitable for nonlinear free-delay systems see [6, 7, 8] and
for nonlinear systems with time-delay see [13, 14, 19, 31, 34]. Practically an exponential
convergence of the observation for unknown time delay nonlinear system in triangular
form has been proposed in [19]. In [31] a Lyapunov–Krasovskii function is chosen, and
sufficient assumptions are provided for the purpose of proving the practical stability.
The problem of global uniform practical exponential stability of general nonlinear non
autonomous differential delay equations is proved in [13]. The authors of [34] present
the practical stability of time delay system by constructing an appropriate Krasovskii
functional and solving linear matrix inequalities. By the Lyapunov–Krasovskii theo-
rem, the problem of global practical tracking for a class of uncertain nonlinear multiple
time-delay systems by output feedback is derived in [23].

Now, we want to establish some comparisons with results that addressed issues similar
to those addressed in this document. It is well known that the problem of stabilization
nonlinear systems with time delay is generally more difficult than that of systems without
delays. In [8] the authors consider a class of for free-delay nonlinear uncertain systems.
However, the system considered in [8] is a particular case of the system considered in
our paper. [15] consider a specific canonical form with time delays, which is uniformly
observable. Current work is the natural extension of that one proposed [15] to a class
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of uncertain time delay systems with a nominal part written in a triangular form.
In this paper, motivated by [8] and [28] an observer-based for a class of nonlinear

time delay systems is presented. This class of systems having a triangular structure.
Constant delays for nonlinear parts of the system have been considered in which the
nonlinear parts satisfy the Lipschitz condition while the uncertain part is bounded.
Based on Lyapunov–Krasovskii functional, we investigate the problem of designing an
observer-based output feedback controller in order to practically exponentially stabilize
the closed-loop system. Uncertain bounded and sufficient conditions are given to insure
the strong practical exponential stability of the proposed observer.

The paper is organized as follows: Section 2 presents the basic definitions, some
preliminary results and the system description. The required assumptions and the
statement of the main results as strong practical exponential stability for time vary-
ing nonlinear systems are provided in section 3. Section 4 illustrates the validity of our
design method in the selected numerical example. Section 5 draws some conclusions
based on the findings of the research. Finally, this paper is concluded.

2. SYSTEM DESCRIPTION AND BASIC RESULTS

In this paper, we investigate stability of nonlinear time delay systems. Consider the
nonlinear differential equations: ẋ(t) = Ax(t) +Bu(t) + f(x(t), x(t− τ), u(t)) +Bg(t, x(t), x(t− τ)), ∀t ≥ 0,

y(t) = Cx(t),
x(t) = ϕ(t), ∀t ∈ [−τ, 0],

(1)
where τ > 0 denotes the time delay, x(t) ∈ Rn is the state vector, u(t) ∈ R is the input
of the system, y(t) ∈ R is the measured output and the initial condition is specified as
a continuous function ϕ ∈ C, where C denotes the Banach space of continuous functions
mapping the interval [−τ, 0]→ Rn equipped with the supremum-norm:

‖ ϕ ‖∞ = max
s∈[−τ,0]

‖ ϕ(s) ‖

‖ ‖ being the Euclidean-norm. The matrices A, B and C are given by,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , B =


0
0
...
0
1

 , C =
[

1 0 · · · 0 0
]
,

and the perturbed term is

f(x(t), x(t− τ), u(t)) =


f1(x1(t), x1(t− τ), u(t))

f2(x1(t), x2(t), x1(t− τ), x2(t− τ), u(t))
...

fn(x(t), x(t− τ), u(t))

 .
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We assume that the mappings fi : Rn × Rn × R → R, i = 1, . . . , n, are smooth with
fi(0, 0, u(t)) = 0 and g : R+ × Rn × Rn → R, is unknown and represent the parameter
perturbations. For θ ∈ [−τ, 0], we define the function segment xt by xt(θ) = x(t + θ).
For ϕ ∈ C, the solution of (1) that satisfies x0 = ϕ denote by x(t, ϕ) or shortly x(t).
Finally, we denote the segment of this solution by xt(ϕ) or shortly xt.

The main objective of this paper is the design of a nonlinear observer based controller
that stabilizes system (1). We generalize the systems considered by [6] for free-delay
systems. We shall explore a strong practical observer introduced in [33]. That is the
error converges exponentially towards an arbitrarily small neighborhood of the origin.
All these observers are parameter dependent systems.

For free delay systems, the problem of the conception of a strong practical observer
is addressed in [33] for an uncertain system with nominal linear part and in [8] for an
uncertain system with nonlinear nominal part. Inspired from [33] and [8], we intro-
duce the following definition of a strong practical observer for the uncertain time delay
system (1).

Definition 2.1. (Benabdallah et al. [8]) Consider a system that depends on a param-
eter ε > 0:  ẋ(t) = Fε(t, x(t), x(t− τ)),

y(t) = h(x(t), x(t− τ)),
x(t0) = ϕ(s),

(2)

where x(t) ∈ Rn, t ∈ R+ and Fε : R+ × Rn × Rn → Rn is continuous in t and locally
Lipschitz in x(t) and x(t− τ) uniformly with respect to t. We call the origin of system
(2) is practically globally uniformly exponentially stable if there exists ε∗ > 0 such that
for all ε < ε∗ there exist positive scalars K(ε), λ(ε) and ρ(ε), such that for all t ≥ t0
and ϕ ∈ C, we have

‖x(t)‖ ≤ K(ε)‖ϕ‖ exp(−λ(ε)(t− t0)) + ρ(ε)

with limε→0 λ(ε) = +∞ and limε→0 ρ(ε) = 0.

Definition 2.2. A strong practical observer for system (2) is a family of auxiliary dy-
namic systems written as ˙̂x = Gε(t, x̂(t), x̂(t− τ), y(t)) such that for all t ≥ 0

‖x̂(t)− x(t)‖ ≤ K(ε)e−λ(ε)t sup
s∈[−τ,0]

‖x̂(s)− x(s)‖+ ρ(ε)

with lim
ε→0

λ(ε) = +∞ and lim
ε→0

ρ(ε) = 0.

Remark 2.3. When ρ(ε) = 0, in this case the origin is an equilibrium point, then we
point the classical definition of the exponential stability (see[5, 32]).

Notation 1. Throughout the paper, the notation AT means the transpose of A. For a
real matrix A we denote the minimal and maximal eigenvalue of a matrix A by λmin(A)
and λmax(A) respectively. We note xτ the delayed state vector x(t− τ).
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3. SEPARATION PRINCIPLE

To complete the description of the time-delay system, we suppose the following assump-
tions.

Assumption 1. The nonlinearity f(x(t), x(t−τ), u(t)) is smooth, globally Lipschitz,to
x and x(t − τ), uniformly with respect to u and well-defined for all x(t) ∈ Rn with
f(0, 0, u) = 0.

Assumption 2. For all t ≥ 0, the delay τ is known and constant.

Assumption 3. There exists a positive scalar M such that ‖g(t, x(t), x(t− τ))‖ ≤M .

Remark 3.1. In [25] time delays are considered only in the linear component of the
system, whereas the present work deals delays nonlinear parts of the system.

Remark 3.2. The systems (1) generalizes the systems introduced by [21] for the case
of an nonlinear system without disturbance.

3.1. Observer design

In this subsection, we are studying in designing an observer to estimate the states of
the time-delay nonlinear system. Generally, the direct measurement of all states of a
system is not achieved. It is this fact which has a great interest in studying the systems
whose desired behavior makes the zeros of the state space exponentially stable or an
approximation close to it. The main objective of the next subsection is to construct
a state estimator to ensure the practical convergence of the stability of the resulting
error system. Under the time delay constant and known, we present delay-independent
conditions to ensure strong practical exponential convergence of the observation error.
We will design an observer for system (1) under assumptions A1, A2 and A3. We
propose the following system:{

˙̂x(t) = Ax̂(t) +Bu(t) + f(x̂(t), x̂τ , u(t)) + L(ε)(Cx̂(t)− y(t)),

ŷ(t) = Cx̂(t),
(3)

where L(ε) = [ l1ε , . . . ,
ln
εn ]T , with ε > 0 and L = [l1, . . . , ln]T such that AL := A+ LC is

Hurwitz, x̂(s) = φ̂(s), −τ ≤ s ≤ 0 with φ̂ : [−τ, 0] → Rn being any known continuous
function. Let us now define e = x̂−x the observation error, which denotes the difference
between the actual state and estimated states. The observation error, whose dynamics
is

ė = (A+ L(ε)C)e+ f(x̂, x̂τ , u)− f(x, xτ , u)−Bg(t, x, xτ ). (4)

Let P the symmetric positive definite which satisfies solution of the Lyapunov equation

ATLP + PAL = −I. (5)
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Theorem 3.3. Consider the time-delay system (1) under assumptions A1, A2 and A3.
Then, the system (3) is a strong practical observer for system (1).

P r o o f . For ε > 0, let D(ε) = diag[1, ε, . . . , εn−1]. Let η = D(ε)e.
Using the fact that A+ L(ε)C = 1

εD(ε)−1ALD(ε), we get

η̇ =
1

ε
ALη +D(ε)(f(x̂, x̂τ , u)− f(x, xτu))−D(ε)Bg(t, x, xτ ). (6)

Let us choose a Lyapunov–Krasovskii functional candidate as follows

V (ηt) = ηTPη +

∫ t

t−τ
e

ln 1
ε

2τ (s−t)‖η(s)‖2ds. (7)

The time derivative of (7) along the trajectories of (6) can be expressed as

V̇ (ηt) = 2ηTP η̇ + ‖η‖2 −
√
ε‖ητ‖2 −

ln 1
ε

2τ
(V (ηt)− ηTPη). (8)

Making use of (5), one obtains for ε < 1

V̇ (ηt) +
ln 1
ε

2τ V (ηt) ≤ −( 1
ε − 1)‖η‖2 +

ln 1
ε

2τ η
TPη −

√
ε‖ητ‖2

+2ηTPD(ε)(f(x̂, x̂τ , u)− f(x, xτu))− 2ηTPD(ε)Bg(t, x, xτ ).

Since P satisfies the following inequality, for all η ∈ Rn,

λmin(P )‖η‖2 ≤ ηTPη ≤ λmax(P )‖η‖2. (9)

The following inequality holds thanks to Assumption 1

‖D(ε)(f(x̂, x̂τ , u)− f(x, xτu))‖ ≤ k‖D(ε)(x̂− x)‖+ k‖D(ε)(x̂τ − xτ )‖
≤ k(‖η‖+ ‖ητ‖) (10)

where k is a Lipschitz constant in (10).
So using Assumption 3, (10) and (9), one obtains

V̇ (ηt) +
ln 1
ε

2τ V (ηt) ≤ −
{

1
ε − 1

}
‖η‖2 +

ln 1
ε

2τ η
TPη + 2k‖P‖‖η‖2 + 2k‖P‖‖η‖‖ητ‖

+2Mεn−1‖P‖‖η‖ −
√
ε‖ητ‖2

≤ −
{

1
ε − 1− λmax(P )

ln 1
ε

2τ − 2k‖P‖
}
‖η‖2 + 2k‖P‖‖η‖‖ητ‖

+2Mεn−1‖P‖‖η‖ −
√
ε‖ητ‖2

Let µ = 2Mεn−1‖P‖. Using the fact that

µ‖η‖ ≤ 1
4‖η‖

2 + µ2

2k‖P‖‖η‖‖ητ‖ ≤ 1√
ε
k2‖P‖2‖η‖2 +

√
ε‖ητ‖2
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we deduce that

V̇ (ηt) +
ln 1

ε

2τ
V (ηt)− µ2 ≤ −

{
1

ε
− ‖P‖

ln 1
ε

2τ
− 5

4
− 2k‖P‖ − 1√

ε
k2‖P‖2

}
‖η‖2. (11)

Now, all we need to do is to choose ε small enough such that

k(ε) =
1

ε
− ‖P‖

ln 1
ε

2τ
− 5

4
− 2k‖P‖ − 1√

ε
k2‖P‖2 > 0. (12)

It is obvious that k(ε) tends to ∞ as ε tends to zero. This implies that there exists
ε0 ∈]0, 1[ such that for all 0 < ε < ε0 condition (12) is fulfilled.
From (11) and (12) we get

V̇ (ηt) +
ln 1

ε

2τ
V (ηt)− µ2 ≤ 0. (13)

Set λ(ε) =
ln 1
ε

4τ . Using the well-known Gronwall inequality, inequality (13) is equivalent
to

V (ηt) ≤ e−2λ(ε)tV (η0) + µ2 2τ

ln 1
ε

. (14)

Using (7) and (9), we have, on the one hand,

V (η0) ≤ λmax(P )‖η0‖2 +

∫ 0

−τ
e
s
2τ ln 1

ε ‖η(s)‖2ds

≤ (λmax(P ) + τ) sup
s∈[−τ,0]

‖η(s)‖2,

and on the other hand,
λmin(P )‖η(t)‖2 ≤ V (η(t)).

We deduce that

‖η(t)‖ ≤

√
‖P‖+ τ

λmin(P )
e−λ(ε)t sup

s∈[−τ,0]
‖η(s)‖+

√
2µ2τ

λmin(P ) ln 1
ε

. (15)

Since ε < 1, one has

‖η(t)‖ ≤ ‖e‖ ≤ 1

εn−1
‖η(t)‖

and inequality (15) can be written as

‖e(t)‖ ≤ K(ε)e−λ(ε)t sup
s∈[−τ,0]

‖e(s)‖+ ρ(ε)

where

K(ε) = 1
εn−1

√
‖P‖+τ
λmin(P )

ρ(ε) = 2M‖P‖
√

2τ
λmin(P ) ln 1

ε

λ(ε) =
ln 1
ε

4τ ,

with limε→0 ρ(ε) = 0 and limε→0 λ(ε) = +∞. �
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Remark 3.4. In [25, 28], the sufficient conditions which guarantee that the estimation
error converges asymptotically towards zero are given in terms of a linear matrix in-
equality. The conditions given in Theorem 3.3 are quite different from the ones used in
[25, 28]. Comparing with [25, 28], our results are less conservative and more convenient
to use since they are independent of time delays and the results in [25, 28], are not
practical for networks with large size. The free terms in Theorem, for example, ε0 and
ε, help in the observer design (3) for the system (1), but the linear matrix inequality in
[25, 28] do not.

3.2. Global exponential stabilization by state feedback

In this subsection, using the Lyapunov–Krasovskii method, we establish a delay-independent
condition for the strong practical exponential stabilization of the nonlinear system (1).
The state feedback controller is given by

u = K(ε)x (16)

where K(ε) = [ k1εn , . . . ,
kn
ε ] and K = [k1, . . . , kn] such that AK := A + BK is Hurwitz.

Let S be the symmetric positive definite solution of the Lyapunov equation

ATKS + SAK = −I. (17)

Theorem 3.5. Consider the time-delay system (1) under assumptions A1, A2 and A3.
Then, the closed loop time-delay system (1) – (16) is strong globally practically expo-
nentially stable.

P r o o f . The closed-loop dynamics are given by

ẋ = (A+BK(ε))x+ f(x, xτ , u) +Bg(t, x, xτ ). (18)

For ε > 0, let D(ε) = diag[1, ε, . . . , εn−1] and χ = D(ε)x.

Using the fact that A+BK(ε) = 1
εD(ε)−1AKD(ε), we get

χ̇ =
1

ε
AKχ+D(ε)f(x, xτ , u) +D(ε)Bg(t, x, xτ ). (19)

Let the Lyapunov–Krasovskii

W (χt) = χTSχ+

∫ t

t−τ
e

ln 1
ε

2τ (s−t)‖χ(s)‖2ds. (20)

Taking the time derivative of (20) along the trajectories of (19), can be expressed as

Ẇ (χt) = 2χTSχ̇+ ‖χ‖2 −
√
ε‖χτ‖2 −

ln 1
ε

2τ
(W (χt)− χTSχ). (21)

As in the proof of Theorem 3.3, we have,

λmin(S)‖χ‖2 ≤ χTSχ ≤ λmax(S)‖χ‖2. (22)
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Since f(0, 0, u) = 0, (10) implies that

‖D(ε)f(x, xτu)‖ ≤ k(‖χ‖+ ‖χτ‖). (23)

So using Assumption 3, (23) and (22), one obtains

Ẇ (χt) +
ln 1
ε

2τ W (χt) ≤ −
{

1
ε − 1

}
‖χ‖2 +

ln 1
ε

2τ χ
TSχ+ 2k‖S‖‖η‖2 + 2k‖S‖‖χ‖‖χτ‖

+2Mεn−1‖S‖‖χ‖ −
√
ε‖χτ‖2

≤ −
{

1
ε − 1− ‖S‖ ln

1
ε

2τ − 2k‖S‖
}
‖χ‖2 + 2k‖S‖‖χ‖‖χτ‖

+2Mεn−1‖S‖‖χ‖ −
√
ε‖χτ‖2.

Let µ1 = 2Mεn−1‖S‖. Using the fact that

µ1‖χ‖ ≤ 1
4‖χ‖

2 + µ2
1

2k‖S‖‖χ‖‖χτ‖ ≤ 1√
ε
k2‖S‖2‖χ‖2 +

√
ε‖χτ‖2

we deduce that

Ẇ (χt) +
ln 1

ε

2τ
W (χt)− µ2

1 ≤ −
{

1

ε
− ‖S‖

ln 1
ε

2τ
− 5

4
− 2k‖S‖ − 1√

ε
k2‖S‖2

}
‖η‖2. (24)

Now, all we need to do is to choose ε small enough such that

k1(ε) =
1

ε
− ‖S‖

ln 1
ε

2τ
− 5

4
− 2k‖S‖ − 1√

ε
k2‖S‖2 > 0. (25)

It is obvious that k1(ε) tends to ∞ as ε tends to zero. This implies that there exists
ε0 ∈]0, 1[ such that for all 0 < ε < ε0 condition (25) is fulfilled.
From (24) and (25) we get

Ẇ (χt) +
ln 1

ε

2τ
W (χt)− µ2

1 ≤ 0. (26)

Set λ(ε) =
ln 1
ε

4τ . Using the well-known Gronwall inequality, inequality (26) is equivalent
to

W (χt) ≤ e−2λ(ε)tW (χ0) + µ2
1

2τ

ln 1
ε

. (27)

Using (20) and (22), we have, on the one hand,

W (χ0) ≤ λmax(S)‖χ0‖2 +

∫ 0

−τ
e
s
2τ ln 1

ε ‖χ(s)‖2ds

≤ (λmax(S) + τ) sup
s∈[−τ,0]

‖χ(s)‖2,
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and on the other hand,
λmin(S)‖χ(t)‖2 ≤W (χ(t)).

We deduce that

‖χ(t)‖ ≤

√
‖S‖+ τ

λmin(S)
e−λ(ε)t sup

s∈[−τ,0]
‖χ(s)‖+

√
2µ2

1τ

λmin(S) ln 1
ε

. (28)

Since ε < 1, one has

‖χ(t)‖ ≤ ‖x‖ ≤ 1

εn−1
‖χ(t)‖

and inequality (28) can then be expressed as follow

‖x(t)‖ ≤ K1(ε)e−λ(ε)t sup
s∈[−τ,0]

‖x(s)‖+ ρ1(ε)

where

K1(ε) = 1
εn−1

√
‖S‖+τ
λmin(S)

ρ1(ε) = 2M‖S‖
√

2τ
λmin(S) ln

1
ε

λ(ε) =
ln 1
ε

4τ ,

with limε→0 ρ1(ε) = 0 and e limε→0 λ(ε) = +∞. �

3.3. Observer-based control stabilization

In this subsection, is devoted to the design of the observer-based controller. We im-
plement the control law with estimate states. The observer-based controller is given
by:

u = K(ε)x̂, (29)

where x̂ is provided by the observer (3).

Theorem 3.6. Suppose that Assumptions 1 – 2 – 3 are satisfied. Then, there exists
ε0 ∈]0, 1[ such that the origin of the closed loop time-delay system (1) – (29) is strong
globally practically exponentially stable.

P r o o f . The closed loop system in the (χ, η) coordinates can be written as follows:

χ̇ = 1
εAKχ+ 1

εBKη +D(ε)f(x, xτ , u) +D(ε)Bg(t, x, xτ ),

η̇ = 1
εALη +D(ε)(f(x̂, x̂τ , u)− f(x, xτ , u))−D(ε)Bg(t, x, xτ ).

(30)

Let
U(ηt, χt) = αV (ηt) +W (χt).

From the proof of Theorems 3.3 and 3.5, we get

U̇(ηt, χt) +
ln 1
ε

2τ U(ηt, χt)− αµ2 − µ2
1 ≤ −αk(ε)‖η‖2 − k1(ε)‖χ‖2 + 2

ε‖S‖‖K‖‖η‖‖χ‖.
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Now using the fact that for all θ > 0,

2‖χ‖‖η‖ ≤ θ‖χ‖2 +
1

θ
‖η‖2.

Then, by taking θ = εk1(ε)
2‖S‖‖K‖ , we can write that

U̇(ηt, χt)+
ln 1

ε

2τ
U(ηt, χt)−αµ2−µ2

1 ≤ −αk(ε)‖η‖2− k1(ε)

2
‖χ‖2+

2

ε2k1(ε)
‖S‖2‖K‖2‖η‖2.

Finally we select α such that

αk(ε)− 2

ε2k1(ε)
‖S‖2‖K‖2 > 0

to deduce that the origin of system (30) is globally practically exponentially stable. �

4. NUMERICAL EXAMPLE

In this section, as an illustration, we give an example of application of our observer to a
biological Predator-Prey Interaction. We consider a system with two populations. Such
model is described by the following system:

ẋ1 = x2(t) + 1
2x1(t− τ) + x1(t) cosu,

ẋ2 = 1
2x2(t− τ) + 1

2x2(t) + u+ g(t),
y(t) = x1(t)

(31)

where, x1(t) denotes the prey population, x2(t) represents mature predators. u denotes
the change rate of the predators and is regarded as an known input. g is the transition
from homogeneous to diffusive predator movement.(i. e. the introduction of mobility
limitation.) The constant delay in system (31) can be regarded as a gestation period
or reaction time of the predators. In order to test the obtained solution the unknown
exogenous disturbance is supposed as

g(t) =

[
7.5 cos(80t)
10 sin(20t)

]
.

The initial conditions for the system are x(0) = [−10,−20]T , and the initial conditions
the observer have been given by x̂(0) = [10, 10]T . We have the Lipschitz constant defined
in (10) equal to 1√

2
. Now, select K = [−4 − 9] and L = [−5 − 5]T , AK and AL are

Hurwitz. Using Matlab, the solutions of the Lyapunov equations (5) and (17) are given
by

P =

[
0.1200 0.1000
0.1000 1.100

]

S =

[
1.1944 −0.5000
−0.5000 0.2778

]
.
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Fig. 1. The evolution of x1 and its estimate x̂1 for τ = 1 s.

So, ‖P‖ = 1.1101 and ‖S‖ = 1.4144. According to the strong practical stability en-
hanced in the proof of Theorem 3.3 and Theorem 3.5, it is clear that the observation
error of the observer converges to a ball with a radius r > 0 depending on a parameter
ε. The value of the observer-based control parameter ε has been set to 0.01.
Fig. 1 and Fig. 2 shows that the estimated magnitudes converges practically to the real
one, for a constant delay equal to τ = 1 s. It can be seen, from Fig. 3 and Fig. 4, that for
a large delay τ = 10 s and for different initial conditions the converges practically to the
real one is still verified which means that are not dependent on the size of the delay, for
all parameter ε ≤ 0.01. Fig. 5 and Fig. 6, we show that for a delay τ = 1 and parameter
ε = 10−4. Under different time delays, the above Figures 1-6 show the performance of
the observer-controller are bound to on a parameter ε. By comparing the convergence
radius r, we note that if the parameter ε tends to 0 the radius of convergence is also.

Remark 4.1. It is obvious that our result is an extension observer synthesis for a class
of nonlinear time delay systems for a similar class of free-delay systems inspired from
[6, 8].
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Fig. 2. The evolution of x2 and its estimate x̂2 for τ = 1 s.

Fig. 3. The evolution of x1 and its estimate x̂1 for τ = 10 s.
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Fig. 4. The evolution of x2 and its estimate x̂2 for τ = 10 s.

Fig. 5. The evolution of x1 and its estimate x̂1 for ε = 10−4, τ = 1 s.
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Fig. 6. The evolution of x2 and its estimate x̂2 for ε = 10−4, τ = 1 s.

5. CONCLUSION

In this paper, we have proposed a separation principle for a class of nonlinear time-delay
systems. The nonlinearities of this class of systems satisfy the Lipschitz condition while
the uncertain term is bounded. Since the origin is not supposed to be an equilibrium
point, using Lyapunov–Krasovskii functionals, we proposed a strong practical observer, a
state feedback, and we proved that the observer based controller asserts strong practical
stability of the closed loop system. Finally, simulation study has been undertaken to
illustrate the theory.
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